

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

#### Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + *Refrain from automated querying* Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + Keep it legal Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

#### **About Google Book Search**

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/





.

•

. .

# ANHONNE BYOREL FUND

.

•

• , . • . . . . .

.

Copyright, 1907 and 1911 by D. VAN NOSTRAND COMPANY

> Stanbor Pres P. H. GILGON COMPANY BOSTON, U.S.A.

•

.

.

.

## PREFACE

545

DURING the years which have elapsed since Professor Arthur M. Comey's admirable "Dictionary of Chemical Solubilities" went to press (March, 1894), the literature upon solubilities has grown to such an extent that it has appeared desirable to make a new compilation of it. Soon after beginning work upon this volume the author realized that it would not be possible to prepare a compilation of solubility results which would fulfill completely the various requirements of theoretical, technical, analytical, and other classes of chemists, and he has therefore endeavored to meet some of the needs of all chemists rather than provide information especially arranged for any particular class.

The following features have been considered of chief importance in preparing the present compilation: completeness of the data, reliability of the determinations, uniformity in expression of results, convenience of arrangement of material, and the indexing of the cross-references to tables.

The material has been collected almost entirely from the original sources, and not from text-books or works of reference. The plan followed has been to search diligently the tables of contents or indices of twenty-five of the principal chemical journals issued since 1875, and to consult all articles in these as well as in other journals to which references could be obtained. In this connection, however, it should be stated that indexed references to work on solubility usually appear under the name of the substance employed, and not under the heading "solubility." Furthermore, solubility determinations are often incidental to other investigations, and consequently are not indicated in the title of the article or included in the index of the journal. Considering these difficulties there can be little hope of making such a compilation complete in every detail, and in the present case the best that can be said is that an earnest effort has been made to omit nothing of importance. This has been done not only for the author's personal satisfaction in perfecting the work, but also to give the reader a reasonable assurance that the absence from these pages of results upon a particular substance is good evidence that such determinations of satisfactory reliability

31320

are not readily obtainable from the usually accessible chemical journals.

Although at the time Professor Comey compiled his book it appeared inadvisable to attempt, in the majority of cases, to select the most reliable determinations of the solubility of the same substance reported by different investigators, the present author believes that this can now be done with advantage. The selections have been made in all cases by calculating the available determinations to a common basis and drawing curves through the points plotted on cross-section paper. A comparison of the curves, together with a study of the details of the methods by which the determinations were made in the several cases, has usually furnished clear evidence for a reliable selection. For some substances, however, this plan could not be followed, and it has therefore been necessary to present two or more sets of disagreeing results.

In many instances the calculations and study necessary to ascertain the most reliable figures have required much labor, and perhaps in some cases the author has not succeeded in selecting the ones nearest the truth; but it is believed that the economy of space required to present the material, and the saving of the time of the reader in making the necessary selections himself, will far overbalance the disadvantage resulting from the accidental inaccuracies introduced through extended computations.

An additional advantage resulting from the recalculation of different determinations to a common basis is the increased uniformity in the expression of results throughout the volume. On this account it has been possible to give the solubility of most substances for regular intervals of temperature and in terms of weight of dissolved substance per given weight of solvent or of solution.

Quantitative results alone have been included in this compilation, since it is assumed that qualitative determinations, if desired, can be readily made by simple tests in the laboratory, and therefore the effort necessary to collect such observations from the literature is out of proportion to the value of the information obtained.

In regard to the names and formulas of the compounds included, the author wishes to say that they are, for the most part, given as found in the original papers from which they were taken; and in some cases a lack of uniformity in the manner of their

•

#### PREFACE

expression will be noted. This is especially true of the molecules of water of crystallization in the formulas given in connection with the guide names placed in heavy type at the head of the tables for all substances considered. As is well known, many compounds, besides gaining or losing water in air, also crystallize with different numbers of molecules of water even at the ordinary temperature, and it was therefore thought best to include such information at the proper place in the tables under the heading "Solid Phase" rather than to select in doubtful cases the number of molecules of water which the particular substance was considered to carry under ordinary conditions.

Although the arrangement of the material is alphabetical according to the customary English names, an index has been added which also provides for those cases where there appears a doubt as to which name is preferable, and furnishes cross-references to those tables which contain results upon more than one substance.

A glance through the pages of this book will show the incompleteness of the data for many of the most common chemical compounds. Furthermore many of the results given are of doubtful accuracy, although the best available. It is hoped, therefore, that a realization of the present incomplete state of our information concerning solubilities as evidenced in these pages will stimulate investigations of many of those substances which have hitherto been studied incompletely or not at ail.

This volume went to press January 1st, 1907, and the subject matter is brought up to November, 1906.

In conclusion, the author begs all indulgence for errors and omissions, and will thank any one for calling them to his attention or making suggestions such as would improve a possible future edition of this "Handbook."

A. S.

WASHINGTON, D.C., Feb. 22, 1907.

. . . • · •

.

# **ABBREVIATIONS**

Abs. — Absolute. Abs. Coef. — Absorption Coefficient. Aq. or aq. — Aqueous. At. — Atmosphere. b. pt. — Boiling Point. cc. — Cubic Centimeter. conc. — Concentrated. d. — Dextro. d. — Density. f. pt. — Freezing Point. G., or gm. — Gram. Gms. or gms. — Grams. G.M. or Gm. Mol. — Gram' Molecule. l. — Laevo. m. — Meta. Mg. or mg. — Milligram. Mgs. or mgs. — Milligram. Mgs. or mgs. — Milligram Molecule. Millimols. — Milligram Molecule. Mol. — Molecule. m. pt. — Melting Point. N. or n. — Normal. o. — Ortho. ord. — Ordinary. p. — Para. ppt. — Precipitate. ppt. — Precipitated. pt. — Part. sat. — Saturated. sol. — Solution. Sp. Gr. — Specific Gravity. t<sup>o</sup>. — Temperature in degrees C. temp. — Temperature. vol. — Volume. wt. — Weight.

•

.

# ABBREVIATIONS OF TITLES OF JOURNALS

Am. Ch. J. The American Chemical Journal, Baltimore. Am. J. Sci. American Journal of Science and Arts, New Haven. Analyst. The Analyst, London.

Ann. See Liebig's Ann.

Ann. chim. anal. appl. Annales de chimie analytique appliquée, Paris. Ann. chim. phys. Annales de chimie et de physique, Paris. Ann. Physik. Annalen der Physik und Chemie, Leipzig. See also l See also Pogg. Ann. and Wied. Ann.

Apoth.-Ztg. Apotheker Zeitung, Berlin. Arch. Pharm. Archiv der Pharmacie, Halle.

Ber. Berichte der deutschen chemischen Gesellschaft, Berlin.

Biedermann's Centralblatt für Agrikulturchemie, Biedermann's Centr. u. s. w., Leipzig.

Bull. soc. chim. Bulletin de la société chimique de Paris. Chem. Centralbl. Chemisches Centralblatt, Berlin.

Chem. Ind. Die Chemische Industrie, Berlin.

Chem. News. The Chemical News, London. Chem. Ztg. Chemiker Zeitung, Cöthen. Compt. rend. Comptes rendus hebdomadaires des Seances de l'Academie des Sciences, Paris.

Jahresber, Chem. Jahresbericht über die Fortschritte der Chemie, Giessen. J. Am. Chem. Soc. Journal of the American Chemical Society, Easton. J. Anal. Chem. The Journal of Analytical and Applied Chemistry, Easton. J. Chem. Soc. Journal of the Chemical Society of London

J. Chem. Soc. Journal of the Chemical Society of London. J. pharm. chim. Journal de pharmacie et de chimie, Paris. J. Physic. Chem. Journal of Physical Chemistry, Cornell.

. pr. Chem. Journal für praktische chemie, Leipzig. J. russ. phys. chem. Ges. Journal of the Russian Chemical Society, St. J. russ. phys. chem. Ges.

Petersburg. J. Soc. Chem. Ind. Journal of the Society of Chemical Industry, London. Landw. Vers-Stat. Landwirthschaftlichen Versuchs-Stationen, Berlin. Liebig's Annalen. Justus Liebig's Annalen der Chemie, Leipzig.

Monatsh. Ch. Monatshefte für Chemie, u. s. w., Vienna. Mon. Sci. Le Moniteur Scientifique, Paris. Mulder. Scheikundige Verhandelingen en Onderzoekingen, Vol. 3, Pt. 3. Bijdragen tot de Geschiedenis van Het Scheikungig Gebonden Water by

G. J. Mulder, Rotterdam, 1864.

Pharm. J. Pharmaceutical Journal and Transactions, London.

Phil. Mag. The Philosophical Magazine, London.

Physic. Rev. Physical Review, Cornell. Pogg. Ann. Annalen der Physik und Chemie, edited by Poggendorf. See also Ann. Physik and Wied. Ann.

Proc. Am. Acad. Proceedings of the American Academy of Arts and Sciences, Boston.

Proc. Roy. Soc. Proceedings of the Royal Society of London. Rec. trav. chim. Recueil des travaux chimiques des Pays-Bas, Leiden.

Sitzber, Akad. Wiss. Berlin. Sitzungsberichte der königlichen preussischen Akademie der Wissenschaften zu Berlin.

Sitzber. Akad. Wiss. Wien. Sitzungsberichte der mathematische naturwissenschaftlichen classe der kaiserlichen Akademie der Wissenschaften zu Wien.

U. S. P. Pharmacopœia of the United States, 8th Revision, 1900.

Wied. Ann. Annalen der Physik und Chemie, edited by Wiederman. See also Pogg. Ann. and Ann. Physik.
Wiss. Abh. p. t. Reichanstalt. Wissenschaftlichen Abhandlung der physik-

alische technische Reichstalt, Charlottenburg. alische technische Reichstalt, Charlottenburg. Z. anal. Chem. Zeitschrift für analytische Chemie, Wiesbaden. Z. angew. Chem. Zeitschrift für angewandte Chemie, Berlin. Z. anorg. Chem. Zeitschrift für anorganische Chemie, Hamburg and Leipzig. Z. Elektrochem. Zeitschrift für Elektrochemie, Halle. Z. Krystallogr. Zeitschrift für Krystallographie und Mineralogie, Leipzig. Z. physik. Chem. Zeitschrift für physikalische Chemie, Leipzig. Z. Ver. Zuckerind. Zeitschrift für Rubenzucker-Industrie, Berlin.

The above abbreviations with a few necessary exceptions are taken from the list adopted by the editor of the Journal of the American Chemical Society for the new abstract journal, "Chemical Abstracts," and will in general be familiar to many of those who use this volume. In a large number of instances Chem. has been contracted to Ch., but with this exception, and possibly a few inaccuracies which have slipped in, the abbreviations of journal titles used in this book conform to the above list.

#### ACENAPHTHENE C12H10.

.

#### SOLUBILITY IN SEVERAL ORGANIC SOLVENTS. (Speyers - Am. J. Sci. [4] 14, 294, 1902.)

NOTE. — In the original paper the results are given in terms of gram molecules of acenaphthene, acetamide, acetanilide, etc., per 100 gram molecules of solvent, at temperatures which varied with each solvent and with each weighing of the solutions. The tabulated results here given were obtained by recalculating and reading the figures from curves plotted on cross section paper.

|      | In M               | ethyl Alcol | ol.    | In 1                 | Ethyl Alco | ohol. | In Propyl Alcohol. |         |        |
|------|--------------------|-------------|--------|----------------------|------------|-------|--------------------|---------|--------|
| t •. | (a)*               |             | (c)*   | (a)                  | (b)        | (0)   | (a)                | . (b)   | (c)    |
| 0    | 81 . 33            | 1.80        | 0.39   | 81.1                 | 1.9        | 0.57  | 82.3               | 2.26    | o.88   |
| IO   | 80.40              | I . 70      | 0.38   | 80.3                 | 2.8        | o.84  | 81.8               | 2.40    | I.00   |
| 20   | 79.60              | 2.25        | o.48   | 79.6                 | 4.0        | I.20  | 81.4               | 3.40    | I.35   |
| 30   | <b>79.00</b>       | 3 . 50      | 0.72   | 79 · I               | 5.6        | I.70  | 80.9               | 4.75    | I.90   |
| 40   | 7 <sup>8</sup> .45 | 6.00        | I . 20 | 78.7                 | 8.4        | 2.60  | <b>8o</b> .6       | 7 . IO  | 2.90   |
| 50   | 78.15              | 9.00        | I.77   | 78.8                 | 13.2       | 3.90  | 80.7               | II . IO | 4 · 40 |
| 60   | 78.30              | 11.70       | 2.35   | <b>79</b> · <b>4</b> | 23.2       | 7.00  | 81.5               | 19.60   | 8.20   |
| 70   | 78.60              | 14.30       | 2.90   | 80.75                | 40.5       | 12.50 | 83.9               | 37.00   | 16.20  |

|      | In C    | hloroform | In Toluene. |              |        |                |  |
|------|---------|-----------|-------------|--------------|--------|----------------|--|
| t °. | (a)     | (b)       | (0)         | (a)          | (b)    | (1)            |  |
| 0    | 143.8   | 16.4      | 12.7        | 90.7         | 13.18  | 7.9            |  |
| IO   | 140 · I | 20.6      | 16.0        | 90.8         | 18.0   | 10.7           |  |
| 20   | 136.3   | 27.0      | 19.5        | <b>91</b> .0 | 24 · 5 | 14.5           |  |
| 30   | 132.4   | 34.0      | 25.0        | 91.8         | 33.5   | 20.5           |  |
| 40   | 128.0   | 42.5      | 32.0        | 92.7         | 47 .0  | 28 · O         |  |
| 50   | 123.4   | 51.5      | 40.0        | <b>94</b> .0 | 60.5   | 35 · 7         |  |
| 60   | 119.3   | 62.5      | 50.0        | 95 - 5       | 74.0   | <b>4</b> 3 · 5 |  |
| 70   | •••     | •••       | •••         | 97 . 2       | 89.0   | 52.5           |  |

#### ACETAMIDE CH,CO.NH,.

#### Solubility in Water and in Alcohol.

(Speyers.)

|              | I       | n Water.      |        | In Ethyl Alcohol. |      |       |  |  |
|--------------|---------|---------------|--------|-------------------|------|-------|--|--|
| <b>t °</b> . | (a)     | (b)           | (c)    | (a)               | (b)  | (c)   |  |  |
| 0            | 105.5   | 70. <b>8</b>  | 29.6   | 85.62             | 17.3 | 18.5  |  |  |
| IO           | 104.9   | 0. 18         | 34.0   | 86.2              | 24.0 | 26.0  |  |  |
| 20           | 104.3   | <b>97</b> · 5 | 40.8   | 87.3              | 31.5 | 33.8  |  |  |
| 30           | 103.7   | 114.0         | 47 · 7 | 88.8              | 40.5 | 43 .0 |  |  |
| 40           | 103.0   | 133.0         | 55 · 5 | 90.7              | 50.0 | 53·5  |  |  |
| 50           | 102 . 3 | 154.0         | 64.0   | 93.0              | 61.0 | 64.5  |  |  |
| 60           | 101.6   | 177.5         | 74 0   | 95 · 5            | 72.0 | 76.5  |  |  |

#### **ACETANILIDE** C<sub>6</sub>H<sub>5</sub>NH.COCH<sub>5</sub>.

100 grams H<sub>2</sub>O dissolve 0.55 gram at 25°, and 5.55 grams at b. pt.

(a) Weight of 100 cc. solution in grams.
 (b) Grams dissolved substance per 100 grams solvent.
 (c) Gram molecules of dissolved substance per 100 gram molecules of solvent.

# SOLUBILITY OF ACETANILIDE IN ORGANIC SOLVENTS. (Speyers.)

|     |        |            |       | (-     |                   |      |       |                |       |  |
|-----|--------|------------|-------|--------|-------------------|------|-------|----------------|-------|--|
|     | In     | Methyl Alc | ohol. | In     | In Ethyl Alcohol. |      |       | In Chloroform. |       |  |
| t°. | (a)    | (6)        | (c)   | (a)    | (b)               | (7)  | (a)   | (b)            | (c)   |  |
| 0   | 86.o   | 22.7       | 5 · 4 | 84.2   | 14.7              | 5.0  | 150.3 | 3.66           | 3.24  |  |
| 10  | 86.4   | 30.0       | 7.0   | 84 . 4 | 20.0              | 6.6  | 147.5 | 7.80           | 7.00  |  |
| 20  | 87.5   | 41.0       | 9.8   | 85.0   | 27.0              | 9.0  | 144.0 | 12.00          | 10.50 |  |
| 30  | 89.2   | 54.0       | 13.2  | 86.o   | 36.0              | 12.2 | 139.8 | 17.0           | 15.0  |  |
| 40  | 91 . I | 75·5       | 18.0  | 87.4   | 49 · O            | 16.2 | 135.4 | 23.0           | 20.4  |  |
| 50  | 93.2   | 107.0      | 25.2  | 89.5   | 65.0              | 22.0 | 131.4 | 31.0           | 27.6  |  |
| 60  | 95·7   | 145.0      | 34.0  | 92.0   | 87.0              | 30.0 | 127.2 | 41.0           | 36.0  |  |

SOLUBILITY IN MIXTURES OF ETHYL ALCOHOL AND WATER AT 25<sup>c</sup>. (Holleman and Antusch – Rec. trav. chim 13, 293, 1894.)

| Vol. %<br>Alcohol. | Gms. C <sub>8</sub> H <sub>9</sub> NO per<br>100 Gms. Solvent. | Sp. Gr. | Vol. %<br>Alcohol. | Gms. CeHeNO per<br>100 Gms. Solvent. | Sp. Gr. |
|--------------------|----------------------------------------------------------------|---------|--------------------|--------------------------------------|---------|
| 100                | 32.93                                                          | 0.8512  | 55                 | 13.13                                | o.9335  |
| 95                 | 36.65                                                          | 0.8737  | 50                 | 9·7 <b>4</b>                         | 0.9396  |
| 93                 | 38.04                                                          | 0.8813  | 45                 | 7.25                                 | o.9449  |
| 90                 | 38.20                                                          | 0.8896  | 40                 | 5.10                                 | 0.9508  |
| 87                 | 37.80                                                          | 0.8959  | 35                 | 3.58                                 | 0.9567  |
| 85                 | 36.83                                                          | 0.8996  | 31                 | 2.56                                 | 0.9617  |
| 80                 | 33.62                                                          | 0.9072  | 25                 | I.73                                 | 0.9683  |
| 75                 | 29.25                                                          | 0.9133  | 20                 | I.30                                 | 0.9736  |
| 70                 | 24.73                                                          | 0.9185  | 15                 | I.03                                 | 0.9795  |
| 65                 | 20.42                                                          | 0.9185  | IO                 | 0.94                                 | 0.9845  |
| 60                 | 16.51                                                          | 0.9287  | 0                  | 0.54                                 | 0.9970  |

# ACETIC ACID CH,COOH.

Solubility in WATER.

|       |                                                   | (Dahms — Ann. Phys | 3. [4] 00, | 122, '97.)                                          |                      |
|-------|---------------------------------------------------|--------------------|------------|-----------------------------------------------------|----------------------|
| t°. ( | Gms. CH <sub>3</sub> COOH pe<br>100 Gms. Solution | r Solid<br>Phase.  | t°.        | Gms. CH <sub>3</sub> COOH per<br>100 Gms. Solution. | Solid<br>Phase       |
| - 5   | 15.1                                              | Ice                | - 20       | 66.3                                                | CH <sub>2</sub> COOH |
| - 10  | 28.2                                              | "                  | - 10       | 76.7                                                | "                    |
| -15   | 39 . 5                                            | "                  | — o        | 87.0                                                | "                    |
| - 20  | 49.5                                              | "                  | + 10       | <b>90</b> .8                                        | "                    |
| -25   | 57.0                                              | "                  | 16         | .5 100.0 tr. pt.                                    | "                    |
| - 26  |                                                   | Ice + CH,COOH      |            | 5                                                   |                      |

#### DISTRIBUTION OF ACETIC ACID BETWEEN:

|                                                                          |                     | myl Alcoho<br>er — Ber: 37, 4 |                     | Water and Benzene at 25°.<br>(H. and F. — Ber. 38, 1140, '05.) |                |                                             |                |  |
|--------------------------------------------------------------------------|---------------------|-------------------------------|---------------------|----------------------------------------------------------------|----------------|---------------------------------------------|----------------|--|
| Gms. CH <sub>3</sub> COOH G. M. CH <sub>3</sub> C<br>per 100 cc. per 100 |                     |                               |                     |                                                                |                | I G. M. CH <sub>a</sub> COOH<br>per 100 cc. |                |  |
| HgO<br>Layer.                                                            | Alcoholic<br>Layer. | HrO<br>Layer.                 | Alcoholic<br>Layer. | H2O<br>Layer.                                                  | CeHe<br>Layer. | H <sub>2</sub> O<br>Layer.                  | CeHe<br>Layer. |  |
| I                                                                        | 0.923               | IO.O                          | 0.0095              | 5                                                              | 0.130          | 0.05                                        | 0.0014         |  |
| 2                                                                        | I.847               | 0.03                          | 0.0280              | IO                                                             | 0.417          | 0 · I0                                      | 0.0005         |  |
| 3                                                                        | 2 74I               | 0.05                          | <b>o</b> .0460      | 20                                                             | ī.55           | 0.20                                        | 0.0030         |  |
| 4                                                                        | 3 694               | 0.07                          | 0.0645              | 30                                                             | 3.03           | <b>o</b> .30                                | 0.0290         |  |
| 5<br>6                                                                   | 4 - 587             | · o . og                      | o.0830              | 40                                                             | 4 · 95         | 0.50                                        | 0.051          |  |
| 6                                                                        | 5.475               | 0.11                          | <b>0</b> .1010      | ••                                                             | • • •          | 0.70                                        | 0.090          |  |
| 7                                                                        | 6.434               | 0.13                          | 0.1190              |                                                                |                |                                             |                |  |
| 8                                                                        | 7.328               | •••                           |                     |                                                                |                |                                             |                |  |

#### ACETIC ACID

#### DISTRIBUTION OF ACETIC ACID BETWEEN WATER AND BENZENE. (Waddell - J. Phys. Ch. 2, 237, 1898.)

|     | Res      | ults in terr | ns of grams p | er 100 grams solutio | n.        |                   |
|-----|----------|--------------|---------------|----------------------|-----------|-------------------|
|     | Upper    | Layer.       |               | Lo                   | wer Layer | N                 |
| tº. | CH3COOH. | C6H6.        | H2O.          | CHaCOOH.             |           | H <sub>2</sub> O. |
| 25  | 0.46     | 99.52        | 0.02          | 9.4                  | 0.18      | 90.42             |
| 25  | 3.10     | 96.75        | 0.15          | 28.2                 | 0.53      | 71.27             |
| 25  | 5.20     | 94.55        | 0.25          | 37.7                 | 0.84      | 61.46             |
| 25  | 8.7      | 90.88        | 0.42          | 48.3                 | 1.82      | 49.88             |
| 25  | 16.3     | 82.91        | 0.79          | 61.4                 | 6.I       | 32.5              |
| 25  | 30.5     | 67.37        | 2.13          | 66.0                 | 13.8      | 20.2              |
| 25  | 52.5     | 39.60        | 7.60          | 52.8                 | 39.6      | 7.6               |
| 35  | 1.2      | 98.68        | 0.08          | 16.4                 | 0.62      | 89.98             |
| 35  | 5.7      | 93.97        | 0.33          | 36.8                 | 1.42      | 62.78             |
| 35  | 9.0      | 90.42        | 0.58          | 49.0                 | 2.10      | 48.90             |
| 35  | 45.0     | 49.00        | 6.0           | 61.3                 | 25.5      | 13.2              |
| 35  | 52.2     | 39.4         | 8.4           | 52.2                 | 39.4      | 8.4               |
|     |          |              |               |                      |           |                   |

#### DISTRIBUTION OF ACETIC ACID BETWEEN WATER AND CHLOROFORM:

At Room Temperature. (Wright, Thomson and Leon - Proc. Roy. Soc. 49, 185, 1891.)

At 25°. (Herz and Lewy; Rothmund and Wilsmore.)

|         | ults in pa<br>r Layer. | arts per 1        | oo parts of s<br>Lower | Gms. CH3COOH<br>per 100 cc. |      | G. M. CH <sub>3</sub> COOH<br>per 100 cc. |                 |               |                 |
|---------|------------------------|-------------------|------------------------|-----------------------------|------|-------------------------------------------|-----------------|---------------|-----------------|
| CH3COOH | . CHCl3.               | H <sub>2</sub> O. | СНаСООН.               | CHCl3.                      | H2O. | H <sub>2</sub> O<br>Layer.                | CHCla<br>Layer. | H2O<br>Layer. | CHCla<br>Layer. |
| 0       | 0.84                   | 99.16             | 0                      | 99.01                       | 0.99 | 2                                         | 0.089           | 0.05          | 0.0032          |
| 6.46    | 0.92                   | 92.62             | 1.04                   | 98.24                       | 0.72 | 4                                         | 0.313           | 0.075         | 0.0062          |
| 17.69   | 0.79                   | 81.52             | 3.83                   | 94.98                       | 1.19 | 6                                         | 0.596           | 0.100         | 0.0100          |
| 25.10   | 1.21                   | 73.69             |                        | 91.85                       | 1.38 | 8                                         | 0.974           | 0.150         | 0.0198          |
| 33.71   | 2.97                   | 63.32             | 11.05                  | 87.82                       | 1.13 | IO                                        | 1.430           | 0.175         | 0.0260          |
| 44.12   | 7.30                   | 48.58             | 17.72                  | 80.00                       | 2.28 | 12                                        | 1.982           | 0.200         | 0.0325          |
| 50.18   | 15.11                  | 34.71             | 25-75                  | 70.13                       | 4.12 | 20                                        | 5.10            | 0.30          | 0.070           |
| -       | -                      | -                 |                        |                             |      | 30                                        | 10.2            | 0.50          | 0.170           |
|         |                        |                   |                        |                             |      | 40                                        | 15.3            | 0.70          | 0.275           |
|         |                        |                   |                        |                             |      | 50                                        | 21.9            | 0.80          | 0.335           |
|         |                        |                   |                        |                             |      | 52.3                                      | 39.54           | 0.87          | 0.659           |

The figures in the table for 25° were read from the curve plotted from the results of H. and L., Z. electro. Ch. 11, 818, 1905, and of R. and W., Z. phys. Ch. 40, 623, 1902. The influence of electrolytes upon the distribution of acetic acid between the aqueous and chloroform layers was investigated by Rothmund and Wilsmore, and the following results expressed in gram molecules per liter at 25° were obtained:

| THE PITO | Conc. of<br>Electrolyte |        | CH <sub>3</sub> COOH<br>in | Ch <sub>3</sub> COOH |                   | Conc. of<br>Electrolyte |        | H <sub>3</sub> COOH<br>in C | Conc.*<br>H <sub>3</sub> COOH |
|----------|-------------------------|--------|----------------------------|----------------------|-------------------|-------------------------|--------|-----------------------------|-------------------------------|
| lyte.    | Aq.                     | Aq.    | CHCla                      | H <sub>2</sub> O     | lyte.             | Aq.                     | Aq.    | CHCla                       | H <sub>2</sub> O              |
|          | Layer.                  | Layer. | Layer.                     | Layer.               |                   | Layer.                  | Layer. | Layer.                      | Layer.                        |
| HC1      | 0.463                   | 0.876  | 0.0907                     | 0.946                | 1 H2SO4           | 0.514                   | 1.099  | 0.1315                      | 1.168                         |
|          | 0.463                   | 1.538  | 0.2435                     | 1.680                |                   | 1.029                   | 1.555  | 0.2714                      | 1.787                         |
| **       | 0.926                   | 0.813  | 0.0938                     | 0.966                |                   |                         |        |                             |                               |
| **       | 0.926                   | 1.586  | 0.2902                     | 1.858                | NH,NO             | I.0                     | 1.136  | 0.1313                      | 1.168                         |
| HNO,     | 0.316                   | 0.936  | 0.0927                     | 0.958                |                   | 1.0                     | 1.991  | 0.3481                      | 2.053                         |
|          | 0.316                   | 1.694  | 0.2537                     | 1.720                | LiNO <sub>3</sub> | 1.0                     | 0.892  | 0.1005                      | 1.000                         |
| **       | 0.633                   | 0.965  | 0.0981                     | 0.988                |                   | 1.0                     | 1.513  | 0.2581                      | 1.737                         |
| **       | 0.633                   | 1.631  | 0.2486                     | 1.702                |                   |                         |        |                             |                               |

\* Calculated from table above.

#### ACETIC ACID

## DISTRIBUTION OF ACETIC ACID AT 25° BETWEEN:

|                                                                                 |               |                            |               |                                                                                 | 5              |                            |                            |  |  |
|---------------------------------------------------------------------------------|---------------|----------------------------|---------------|---------------------------------------------------------------------------------|----------------|----------------------------|----------------------------|--|--|
| Water as                                                                        |               | on Bisu<br>1 Lewy.)        | lphide.       | Water and Carbon Tetrachloride.<br>(Herz and Lewy.)                             |                |                            |                            |  |  |
| Gms. CH <sub>2</sub> COOH G. M. CH <sub>2</sub> COOH<br>per 100 cc. per 100 cc. |               |                            |               | Gms. CH <sub>3</sub> COOH G. M. CH <sub>3</sub> COOH<br>per 100 cc. per 100 cc. |                |                            |                            |  |  |
| H <sub>2</sub> O<br>Layer.                                                      | CSa<br>Layer. | H <sub>2</sub> O<br>Layer. | CS:<br>Layer. | H <sub>2</sub> O<br>Layer.                                                      | CCla<br>Layer. | H <sub>2</sub> O<br>Layer. | CCL <sub>4</sub><br>Layer. |  |  |
| 65                                                                              | 2.64          | I.I                        | 0.45          | 30                                                                              | I.8            | 0.5                        | 0.03                       |  |  |
| 70                                                                              | 3.0           | I.2                        | 0.55          | 40                                                                              | 3.0            | 0.7                        | 0.055                      |  |  |
| 75<br>80                                                                        | 3.3           | I.2                        | 0.80          | 50                                                                              | 4.8            | 0.9                        | 0.095                      |  |  |
|                                                                                 | 5 · 4         | I.35                       | 0.97          | бо                                                                              | 5.8            | I.I                        | 0.155                      |  |  |
| 85                                                                              | 6.4           | I.4                        | 1.3           | 70                                                                              | 12.0           | I . 2                      | 0.235                      |  |  |
|                                                                                 |               |                            |               | 76.2                                                                            | 25.2           | I . 27                     | 0.420                      |  |  |

#### DISTRIBUTION OF ACETIC ACID AT 25° BETWEEN:

|                            |                 | Bromof                    |                 | Water and Toluene.<br>(H. and F Ber. 38, 1140, '05.)                            |                                                                                 |  |  |  |
|----------------------------|-----------------|---------------------------|-----------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|
| per 1                      | HOOOH           |                           | 00 CC.          | Gms. CH <sub>s</sub> COOH<br>per 100 cc.                                        | G. M. CH <sub>2</sub> COOH<br>per 100 cc.                                       |  |  |  |
| H <sub>2</sub> O<br>Layer. | CHBra<br>Layer. | H <sub>2</sub> O<br>Layer | CHBra<br>Layer. | H <sub>2</sub> O C <sub>4</sub> H <sub>5</sub> CH <sub>3</sub><br>Layer. Layer. | H <sub>2</sub> O C <sub>6</sub> H <sub>6</sub> CH <sub>3</sub><br>Layer. Layer. |  |  |  |
| 20                         | 1.5             | 0.4                       | 0.035           | 5 0.119                                                                         | O.I O.0025                                                                      |  |  |  |
| 30                         | 3.0             | 0.6                       | 0.070           | IO 0.328                                                                        | 0.2 0.0075                                                                      |  |  |  |
| 40                         | 4.8             | o.8                       | 0.120           | 20 I.132                                                                        | 0.4 0.0260                                                                      |  |  |  |
| 50                         | 7.8             | Ι.Ο                       | 0.20            | 30 2.265                                                                        | 0.6 0.0530                                                                      |  |  |  |
| бо                         | 12.0            | I.I                       | 0.28            | 40 3.725                                                                        | 0.8 0.090                                                                       |  |  |  |
| 65                         | 15.6            | 1.15                      | 0.395           | 50 5.841                                                                        | I.O 0.140                                                                       |  |  |  |
| 70                         | 27.0            |                           | •••             | δo 8.344                                                                        | •••                                                                             |  |  |  |

#### DISTRIBUTION OF ACETIC ACID AT 25° BETWEEN:

| Water and o or p Xylene.<br>(Herz and Fischer.)                              |                            |                            | Water and <i>m</i> Xylene.<br>(Herz and Fischer.) |                                             |                       |                                        |                       |
|------------------------------------------------------------------------------|----------------------------|----------------------------|---------------------------------------------------|---------------------------------------------|-----------------------|----------------------------------------|-----------------------|
| Gms. CH <sub>s</sub> COOH G. M. CH <sub>s</sub> CO<br>per 100 cc. per 100 cc |                            |                            |                                                   | Gms. CH <sub>3</sub> COOH G.<br>per 100 cc. |                       | M. CH <sub>2</sub> COOH<br>per 100 cc. |                       |
| H <sub>2</sub> O<br>Layer.                                                   | o or p<br>Xylene<br>Layer. | H <sub>2</sub> O<br>Layer. | o or p<br>Xylene<br>Layer.                        | H <sub>2</sub> O<br>Layer                   | m<br>Xylene<br>Layer. | H <sub>2</sub> O<br>Layer.             | m<br>Xylene<br>Layer. |
| 5                                                                            | 0.24                       | 0.I                        | 0.004                                             | 5                                           | 0.06                  | 0.I                                    | 0.0015                |
| IO                                                                           | o.48                       | 0.2                        | 0.010                                             | IO                                          | 0.30                  | 0.2                                    | 0.007                 |
| 20                                                                           | 1.13                       | 0.4                        | 0.025                                             | 20                                          | 0.95                  | 0.4                                    | 0.022                 |
| 30                                                                           | 2.15                       | 0.6                        | 0.047                                             | 30                                          | 1.91                  | 0.6                                    | 0.042                 |
| 40                                                                           | 3.40                       | o.8                        | 0.079                                             | 40                                          | 3.04                  | o.8                                    | 0.072                 |
| 50                                                                           | 5.10                       | I.O                        | 0 · I 22                                          | 50                                          | 4.65                  | I.O                                    | 0.111                 |
| δo                                                                           | 7.27                       | I.2                        | 0.230                                             | бо                                          | 6.65                  | I.2                                    | • • •                 |
| 70                                                                           | 12.52                      | • • •                      |                                                   |                                             | -                     |                                        |                       |

NOTE. — The distribution results as presented in the original papers to which references are given in the above tables, are reported in millimolecules per 10 cc. portions of each layer in the several cases. To obtain the figures given in the above tables, the original results before and after calculating to gram quantities were plotted on crosssection paper, and from the curves thus obtained, readings for regular intervals of concentration of acetic acid in the aqueous layer were selected.

# Chlor ACETIC ACID CH,CICOOH.

#### DISTRIBUTION OF CHLORACETIC ACID BETWEEN: (Herz and Fischer.)

| Water and Benzene at 25°.                  |                |                            |                | Water and Toluene at 25°.                                                       |                   |                            |                   |
|--------------------------------------------|----------------|----------------------------|----------------|---------------------------------------------------------------------------------|-------------------|----------------------------|-------------------|
| Gms. CH <sub>2</sub> ClCOOH<br>per 100 cc. |                | G. M. CH                   |                | Gms. CH <sub>2</sub> ClCOOH G. M. CH <sub>2</sub> ClC<br>per 100 cc. per 100 cc |                   |                            |                   |
| H <sub>2</sub> O<br>Layer.                 | CaHa<br>Layer. | H <sub>2</sub> O<br>Layer. | CeHe<br>Layer. | H <sub>2</sub> O<br>Layer.                                                      | CeHsCHs<br>Layer. | H <sub>2</sub> O<br>Layer. | CoHoCHa<br>Layer. |
| 0.25*                                      | 8.69           | 0.0025                     | 0.090          | 0.1*                                                                            | 5.22              | 0.001                      | 0.055             |
| 0.5                                        | 15.59          | 0.005                      | 0.155          | 0.5                                                                             | 20.31             | 0.005                      | 0.20              |
| I.0                                        | 27.87          | 0.010                      | 0.28           | I.0                                                                             | 34 . 87           | 0.010                      | 0.36              |
| I.5                                        | 41.10          | 0.015                      | 0.415          | 1.5                                                                             | 49.14             | 0.015                      | 0.50              |
| 2.0                                        | 52.90          | 0.02                       | 0.54           | 2.0                                                                             | <b>60</b> .46     | 0.02                       | 0.62              |
| 3.0                                        | 68 .oI         | 0.03                       | 0.70           | 3.0                                                                             | 72.28             | 0.03                       | 0.77              |
| 4.0                                        | 76.52          | 0.04                       | 0.79           | 4.0                                                                             | 81.72             | 0.04                       | 0.85              |
|                                            |                |                            |                | 5.0                                                                             | 86.94             | 0.05                       | 0.90              |

#### DISTRIBUTION OF CHLORACETIC ACID BETWEEN:

#### (Herz and Lewy.)

| Water and Chloroform at 25°.     |                 |                            |                 | Water and Bromoform at 25°. |                       |                                               |                 |  |
|----------------------------------|-----------------|----------------------------|-----------------|-----------------------------|-----------------------|-----------------------------------------------|-----------------|--|
| Gma. CH <sub>2</sub> ClCOOH G. M |                 |                            |                 |                             | H <sub>2</sub> ClCOOH | H G. M. CH <sub>2</sub> CICOOH<br>per 100 cc. |                 |  |
| H <sub>2</sub> O<br>Layer.       | CHCls<br>Layer. | H <sub>2</sub> O<br>Layer. | CHCla<br>Layer. | H <sub>2</sub> O<br>Layer.  | CHBra<br>Layer.       | H <sub>2</sub> O<br>Layer.                    | CHBra<br>Layer. |  |
| 5*                               | 0.283           | 0.05                       | 0.0025          | 40*                         | o . 850               | 0.45                                          | 0.011           |  |
| IO                               | 0.614           | 0.10                       | 0.0060          | 50                          | 1.889                 | 0.50                                          | ა. <b>0165</b>  |  |
| 20                               | I .088          | 0.20                       | 0.0135          | δo                          | 2.994                 | 0.60                                          | 0.028           |  |
| <b>4</b> 0 <sup>.</sup>          | 2.948           | 0.40                       | 0.029           | 70                          | 4.241                 | 0.70                                          | 0.040           |  |
| 50                               | 3.684           | 0.60                       | 0.045           | 8o                          | 5.620                 | 0.80                                          | 0.053           |  |
| δο                               | 4.440           | 0.70                       | 0.001           | 90                          | 7.560                 | 0.90                                          | 0.067           |  |
| 70                               | 7.086           | 0.75                       | 0.077           | 91.6                        | 11.340                | 0.97                                          | 0.120           |  |

#### **DISTRIBUTION OF CHLORACETIC** ACID BETWEEN:

|                            |                                                                           |                            | (Herz a                                    | nd Lewy.)                                   |                            |                                             |               |
|----------------------------|---------------------------------------------------------------------------|----------------------------|--------------------------------------------|---------------------------------------------|----------------------------|---------------------------------------------|---------------|
| Water                      | and Car<br>at                                                             | bon Bisu<br>25°.           | llphide                                    | Water and Carbon Tetra-<br>chloride at 25°. |                            |                                             |               |
|                            | Gms. CHgClCOOH<br>per 100 cc. G. M. CH <sub>2</sub> ClCOOH<br>per 100 cc. |                            | Gms. CH <sub>2</sub> ClCOOH<br>per 100 cc. |                                             |                            | G. M. CH <sub>2</sub> ClCOOH<br>per 100 cc. |               |
| H <sub>3</sub> O<br>Layer. | CS <sub>2</sub><br>Layer.                                                 | H <sub>5</sub> O<br>Layer. | Cog<br>Layer.                              | H <sub>9</sub> O<br>Layer.                  | CCl <sub>4</sub><br>Layer. | H <sub>2</sub> O<br>Layer.                  | CCL<br>Layer. |
| бо*                        | 0.426                                                                     | 0.6                        | 0.0042                                     | 90 <b>*</b>                                 | I . 417                    | 0.95                                        | 0.0150        |
| 8o                         | 0.691                                                                     | o.8                        | 0.007                                      | 95                                          | 2.031                      | I.00                                        | 0.0195        |
| 90                         | 0.803                                                                     | I.0                        | 0.009                                      | 100                                         | 2.645                      | I .05                                       | 0.0270        |
| 100                        | I .040                                                                    | I .05                      | 0.0105                                     | 105                                         | 4.26                       | I.IO                                        | 0.0415        |
| 105                        | 1.464                                                                     | I . IO                     | 0.015                                      | 106.7                                       | 5.19                       | 1.13                                        | 0.0550        |
| 106.7                      | 1.890                                                                     | 1.13                       | 0.020                                      |                                             |                            |                                             |               |

\* See Note, page 4-

•

SOLUBILITY OF MONOCHLOR, DICHLOR, AND OF TRICHLORACETIC ESTER IN AQUEOUS ALCOHOL AT ROOM TEMPERATURE.

(Bancroft - Phys. Rev. 3, 193, 1895-96, from results of Pfeiffer, Z. physik. chem. 9, 469, '93.)

| cc. Ethyl<br>Alcohol in | cc. $H_2O$ added to cause separation of a second phase<br>in mixtures of the given ants. of Alcohol and 3 cc. of : |                                       |              |  |  |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|--|--|--|
| Mixtures.               | CH_CICOOC_H.                                                                                                       | CHClgCOOC <sub>2</sub> H <sub>5</sub> | CClaCOOCaHa. |  |  |  |
| 3                       | 1.32                                                                                                               | 0.90                                  | 0.65         |  |  |  |
| 6                       | 4.01                                                                                                               | 2.45                                  | <b>1.80</b>  |  |  |  |
| 9                       | 7.30                                                                                                               | 4.33                                  | 3.02         |  |  |  |
| 12                      | 10.78                                                                                                              | 6.60                                  | 4.50         |  |  |  |
| 15                      | 16.16                                                                                                              | 9.20                                  | 6.50         |  |  |  |
| 18                      | 22.16                                                                                                              | •••                                   |              |  |  |  |
| 21                      | 28.74                                                                                                              | •••                                   | •••          |  |  |  |

#### $\alpha$ **AGETNAPHTHALIDE** C<sub>2</sub>H<sub>2</sub>ONH(C<sub>10</sub>H<sub>2</sub>).

SOLUBILITY IN MIXTURES OF ALCOHOL AND WATER AT 25°. (Holleman and Antusch — Rec. trav. chim. 13, 289, 1894.)

| Vol. %<br>Alcohol. | Gms. per<br>100 Gms.<br>Solvent. | Sp. Gr. of<br>Solutions. | Vol.%<br>Alcohol. | Gms. per<br>100 Gms.<br>Solvent. | Sp. Gr. of<br>Solutions. |
|--------------------|----------------------------------|--------------------------|-------------------|----------------------------------|--------------------------|
| 100                | 4.02                             | 0.7916                   | 65                | I.78                             | 0.8977                   |
| 95                 | 4.3I                             | 0.8150                   | бо                | I.44                             | 0.9091                   |
| 90                 | 4.11                             | 0.8344                   | 55                | I.02                             | 0.9201                   |
| 85                 | 3.69                             | o.8485                   | 50                | 0.71                             | 0.9290                   |
| 80                 | 3 . 18                           | 0.8624                   | 35                | 0.25                             | 0.9537                   |
| 75                 | 2.73                             | 0.8761                   | 20                | 0.09                             | 0.9717                   |
| 70                 | 2.31                             | o.8798                   | IO                | 0.04                             | 0.9841                   |

#### ACETONE (CH,),CO.

#### SOLUBILITY OF ACETONE AT 25° IN AQUEOUS SOLUTIONS OF: Electrolytes. Non-Electrolytes.

(Bell - J. Phys. Ch. 9, 544, 1905; Linebarger - Am. Ch. J. 14, 380, 1892.)

| Gms. Electro-             |       |       | CO per 100<br>Solutions of |       | Electrolyte                   | Solve | Gms. (CH <sub>3</sub> ) <sub>2</sub> CO per 100 Gms.<br>Solvent in Solutions of: |            |  |
|---------------------------|-------|-------|----------------------------|-------|-------------------------------|-------|----------------------------------------------------------------------------------|------------|--|
| 100 Gms. Aq.<br>Solution. | KaCOs | NasCO | (NHa) COs                  | MaCOs | per 100 Gms.<br>Aq. Solution. |       | Anethol.*                                                                        | (C.H.),CO. |  |
| 1.25                      | •••   | • • • | •••                        | 83.5  | 5                             | 92.5  | 103.0                                                                            | 90.0       |  |
| 2.50                      | • • • | 51.0  | 110.0                      | 65.0  | IO                            | 117.0 | 123.0                                                                            | 108.5      |  |
| 5.00                      | 65.0  | 38.0  | 73·5                       | 47.0  | 20                            | 137.0 | 144.5                                                                            | 126.0      |  |
| 7.5                       | 4Ő.5  | 27.5  | 57.0                       | 38.o  | 30                            | 148.5 | 155.0                                                                            | 133.0      |  |
| 10.0                      | 34.5  | 19.5  | 44 5                       | 29.0  | 40                            | 155.5 | 162.0                                                                            | 136.0      |  |
| 12.5                      | 25.5  | 14.0  | 35.0                       | • • • | 50                            | 159.5 | 166.0                                                                            | 135.5      |  |
| 15.0                      | 18.0  | 9.0   | 28.0                       | • • • | 60                            | 160.2 | 165.0                                                                            | 131.5      |  |
| 20.0                      | 8.0   | 2.7   | •••                        | •••   | 70                            | 155.0 | 158.0                                                                            | 123.0      |  |
| 25.0                      | 3.7   |       |                            | •••   | 80                            |       |                                                                                  | 108.5      |  |
| 30.0                      | 1.6   | •••   | •••                        | •••   | 90                            | •••   | •••                                                                              | 82.0       |  |
|                           | _     |       |                            |       |                               |       |                                                                                  |            |  |

• Anethol = / Propenylanisol CH2.CH:CH[4]CeH4OCH2. Naphthalene results at 35°.

.

NOTE. — The original results were recalculated and plotted on crosssection paper. From the curves so obtained the above table was constructed. See also Note, page 7.

#### SOLUBILITY OF ACETONE IN AQUEOUS SOLUTIONS OF CARBOHYDRATES. (Krug and McElroy - J. Anal. Ch. 6, 184, '92; Bell - J. Phys. Ch. 9, 547, '95.)

| Per cent<br>Sugar. | G       | ms. (CH <sub>2</sub> ) <sub>2</sub> C | O per 100 Gn | ns. Sugar Sol | ution at: |       |
|--------------------|---------|---------------------------------------|--------------|---------------|-----------|-------|
|                    | 15°.    | 20 <sup>0</sup> .                     | 25°.         | 30°.          | 35°.      | 40°.  |
| 10                 | 597 . 2 | • • •                                 | 581.8        | • • •         | 574.8     | • • • |
| 20                 | 272.5   | •••                                   | 250.0        | • • •         | 251.8     | • • • |
| 30                 | 172.4   | • • •                                 | 150.0        | •••           | 150.6     | • • • |
| 35                 |         | • • •                                 | • • •        | •••           | •••       | 110   |
| 40                 | •••     | 96.4                                  | 92.8         | 89.8          | • • •     | 85    |
| 45                 | •••     | 71.9                                  | 68.8         | 65.7          | • • •     | 62    |
| 50                 | •••     | 50.8                                  | 48 . I       | 45.9          | • • •     | 42    |
| 55                 | • • •   | 35.8                                  | 33.8         | 32.5          | •••       | 29    |
| 60                 | • • •   | 25.2                                  | 24 . 2       | 23.4          | •••       |       |
| 65                 | •••     | 18.3                                  | 17.7         | 17.0          | •••       | • • • |
| 70                 | •••     | 13.2                                  | 12.8         | 12.5          | •••       | • • • |

In Aqueous Solutions of Cane Sugar.

#### In Aqueous Dextrose Solutions.

In Aqueous Maltose Solutions.

| Per<br>cent<br>Dextrose. | Gms. (C) | Ha)sCO per<br>Solvent at: | 100 Gms. | cent Solveni |       |         | er 100 Gms.<br>at: |  |
|--------------------------|----------|---------------------------|----------|--------------|-------|---------|--------------------|--|
|                          | 15°.     | 25°.                      | 35°.     | Maltose.     | 15°.  | 25°.    | 35°.               |  |
| 10                       | 736.7    | 747 · 9                   | 761.5    | IO           | 353.6 | 348 . 1 | 342.0              |  |
| 20                       | 255:3    | 247.7                     | 240.8    | 20           | 185.4 | 181.2   | 176.9              |  |
| 30                       | 157.5    | 149.8                     | 142.5    | 30           | 119.9 | 116.0   | 112.4              |  |
| 40                       | 86.9     | 79.6                      | 74.0     | 40           | 78.4  | 74.7    | 70.5               |  |
| 50                       | 36.2     | 33.0                      | 31.2     | 50           | 46.2  | 42.9    | 39.8               |  |

NOTE. — The above determinations were made by adding successive small quantities of acetone to mixtures of known amounts of water and the carbohydrate, and noting the point at which a clouding due to the separation of a second phase occurred. This method was also used for the solubility of acetone in the aqueous electrolyte solutions (see previous page). In the case of the aqueous non-electrolyte solutions, however, successive small amounts of water were added to mixtures of known amounts of acetone and the non-electrolyte.

#### DISTRIBUTION OF ACETONE BETWEEN WATER AND BENZENE AT 25°. (Herz and Fischer - Ber. 38, 1142, '05.)

| Gms. (CH <sub>3</sub> ) <sub>3</sub> C | O per 100 cc.  | G. M. (CH <sub>3</sub> ) <sub>2</sub> CO per 100 cc. |                                         |  |
|----------------------------------------|----------------|------------------------------------------------------|-----------------------------------------|--|
| Aq.<br>Layer.                          | CeHe<br>Layer. | Aq.<br>Layer.                                        | C <sub>6</sub> H <sub>6</sub><br>Layer. |  |
| I <b>*</b>                             | I . 20         | 0.025*                                               | 0.025                                   |  |
| 5                                      | 4.17           | 0.05                                                 | 0.047                                   |  |
| 10                                     | 10.15          | 0 · I0                                               | 0.975                                   |  |
| 15                                     | 15.59          | 0.15                                                 | 0.150                                   |  |
| 20                                     | 22.50          | 0.20                                                 | 0.215                                   |  |
|                                        |                | 0.25                                                 | 0.275                                   |  |

\* See Note, page 4.

#### ACET-PHENETIDINE

#### 8

#### ACET-PHENETIDINE p (PHENACETINE) C.H. (OC.H.)NHCH.CO.

#### SOLUBILITY IN WATER, ALCOHOL, BTC.

#### (U. S. P.)

|              | Gms. (            | H4(OC2H5)NH | CH <sub>3</sub> CO per 100 (       | 100 Gms. |  |  |  |
|--------------|-------------------|-------------|------------------------------------|----------|--|--|--|
| t°.          | H <sub>2</sub> O. | C2H5OH.     | (CH <sub>3</sub> ) <sub>2</sub> O. | снсь.    |  |  |  |
| 25           | 0.108             | 8.33        | I.59                               | 5.00     |  |  |  |
| 25<br>b. pt. | I . 43            | 50.0        | • • •                              | •••      |  |  |  |

#### AGET-TOLUIDE p CH,.C,H,NH.C,H,O.

#### SOLUBILITY IN MIXTURES OF ALCOHOL AND WATER AT 25°.

(Holleman and Antusch - Rec. trav. chim. 13, 288, '94.)

| Vol. %<br>Alcohel. | Gms. per<br>100 Gms.<br>Solvent. | Sp. Gr.<br>of<br>Solutions. | Vol. %<br>Alcohol. | Gms. per<br>100 Gms.<br>Solvent. | Sp. Gr.<br>of<br>Solutions. |
|--------------------|----------------------------------|-----------------------------|--------------------|----------------------------------|-----------------------------|
| 100                | 10.18                            | 0.8074                      | 50                 | I.92                             | 0.9306                      |
| 95                 | 10.7 <b>9</b>                    | 0.8276                      | 45                 | 1.41                             | 0.9380                      |
| 90                 | 10.62                            | 0.8440                      | 40                 | o.96                             | 0.9460                      |
| 85                 | 9.62                             | 0.8576                      | 35                 | 0.66                             | 0.9544                      |
| 80                 | 8.43                             | 0.8685                      | 25                 | 0.31                             | 0.9668                      |
| 75                 | 7.04                             | 0.8803                      | 20                 | 0.23                             | 0.9725                      |
| 70                 | 5.81                             | 0.8904                      | 15                 | 0.16                             | 0.9780                      |
| 65                 | 4.39                             | 0.9021                      | 5                  | 0.13                             | 0.9903                      |
| 60                 | 3.59                             | 0.9115                      | ō                  | 0.12                             | 0.9979                      |
| 55                 | 2.69                             | 0.9207                      |                    |                                  |                             |

#### ACETYLENE C,H,.

#### SOLUBILITY IN WATER.

(Winkler; see Landolt and Börnstein's Tabellen, 3d ed. p. 604, '05.)

| t°. | <b>e.</b> | <b>q</b> |
|-----|-----------|----------|
| 0   | I.73      | 0.20     |
| 5   | I.49      | 0.17     |
| IO  | 1.31      | 0.15     |
| 15  | 1.15      | 0.13     |
| 20  | I.03      | 0.12     |
| 25  | 0.93      | 0.11     |
| 30  | 0.84      | 0.09     |

a, "Absorption Coefficient," - the volume of gas (reduced to  $0^{\circ}$  and 760 mm. pressure) taken up by one volume of the liquid at the given temperature when the partial pressure of the gas equals 760 mm. mercury.

q, "Solubility," - the amount of gas in grams which is taken up by 100 grams of the pure solvent at the given temperature if the total pressure, *i.e.*, the partial pressure of the gas plus the vapor pressure of the liquid at the absorption temperature is 760 mm.

#### ACETYLACETONE CH,COCH,COCH.

#### SOLUBILITY IN WATER. (Rothmund - Z. phys. Ch. 26, 475, '98.)

| Gms. CH <sub>3</sub> COCH <sub>5</sub> COCH <sub>5</sub> per 100 Gms. |
|-----------------------------------------------------------------------|
|-----------------------------------------------------------------------|

| t°.         | H <sub>2</sub> O<br>Layer. | Acetyl Acetone<br>Layer. |
|-------------|----------------------------|--------------------------|
| 30          | 15.46                      | 95.02                    |
| 40          | 17.58                      | 93.68                    |
| 50          | 20.22                      | 91.90                    |
| 60          | 23.23                      | 89.41                    |
| 70          | 27.10                      | 85.77                    |
| 80          | 33.92                      | 78.82                    |
| 87.7 (crit. | temp.) 50                  | 5.8                      |

Note. — Weighed amounts of water and acetylacetone were placed in small glass tubes, which were then sealed and slowly heated until the contained mixtures became homogeneous. The temperature was then allowed to fall very gradually and the point noted at which cloudiness appeared. This point was accurately established for each tube by repeated trials. The curve plotted from these determinations shows two percentage amounts of acetylacetone which cause cloudiness at each temperature, one represents the aqueous layer, *i.e.*, the solubility of acetylacetone in water; and the other represents the acetylacetone layer, *i.e.*, the solubility of water in acetylacetone. This method is known as the "Synthetic Method," and yields results in harmony with those obtained by the analytical method, *i.e.*, by analyzing each layer after complete separation occurs.

#### ACONITINE (Amorphous) C14H47NO11.

SOLUBILITY IN SEVERAL SOLVENTS.

(At 25° U.S.P.; at 18°-22°, Müller - Apoth.-Ztg. 18, 2, '03.)

| Solvent.  | Gms. C34H | NO1 per<br>Solvent at; | Gms. C34H47NC<br>Solvent. 100 Gms. Solv | Gms. C34H47NO11 per<br>100 Gms. Solvent at: |  |  |
|-----------|-----------|------------------------|-----------------------------------------|---------------------------------------------|--|--|
|           | 18°-22°.  | 25°.                   | 180-220.                                | 25°.                                        |  |  |
| Water     | . 0.054   | 0.031                  | Benzene , 1                             | 7.85                                        |  |  |
| Alcohol . |           | 4.54                   | Carbon Tetrachloride 1.99               |                                             |  |  |
| Ether     | · I.44    | 2.27                   | Petroleum Ether 0.023 0                 | .028                                        |  |  |

#### ADIPIC ACID (Normal) (CH2)4(COOH)2.

100 grams H<sub>2</sub>O dissolve 1.44 grams adipic acid at 15°. (Henry - Compt. rend. 99, 1157, '84; Lamouroux - *Ibid.* 128, 998, '99.)

9

SOLUBILITY IN WATER. (Winkler - Ber. 34, 1409, '01; see also Peterson and Sondern - Ber. 32, 1439, '80.)

|             |            |                | cc.* of atmospheric O and N per liter of:<br>Dist. H <sub>2</sub> O (at 760 mm.). Sea Water (at 760 mm |           |         |           |
|-------------|------------|----------------|--------------------------------------------------------------------------------------------------------|-----------|---------|-----------|
| <b>t°</b> . | <b>B</b> . | <b>B</b> '.    | Oxygen.                                                                                                | Nitrogen. | Oxygen. | Nitrogen. |
| 0           | 0.02881    | o.o2864        | 10.19                                                                                                  | 18.45     | 7.77    | 14.85     |
| 5           | .02543     | .02521         | 8.91                                                                                                   | 16.30     | 6.93    | 13.32     |
| 10          | .02264     | .02237         | 7 .87                                                                                                  | 14 - 50   | 6.29    | 12.06     |
| 15          | .02045     | ·02011         | 7.04                                                                                                   | 13.07     | 5.70    | 11.05     |
| 20          | .01869     | .018 <b>26</b> | 6.35                                                                                                   | 11.91     | •••     | 10.25     |
| 25          | .01724     | .01671         | 5.75                                                                                                   | 10.96     | • • •   | 9.62      |
| 30          | .01606     | .01539         | 5.24                                                                                                   | 10.15     |         |           |
| 40          | .01418     | .01315         | 4.48                                                                                                   | 8.67      |         |           |
| 50          | .01297     | .01140         | 3.85                                                                                                   | 7.55      |         |           |
| δo          | .01216     | .00978         | 3.25                                                                                                   | 6.50      |         |           |
| <b>8</b> 0  | .01126     | .00000         | I.97                                                                                                   | 4.03      |         |           |
| 100         | .01 105    | .00000         | 0.00                                                                                                   | 0.00      |         |           |

B = "Coefficient of Absorption," *i.e.*, the amount of gas dissolved by the liquid when the pressure of the gas itself without the tension of the liquid amounts to 760 mm.

of the liquid amounts to 760 mm. B' = " Solubility," *i.e.*, the amount of gas, reduced to  $o^{\circ}$  and 760 mm., which is absorbed by one volume of the liquid when the barometer indicates 760 mm. pressure.

#### \* Reduced to o° and 760 mm.

#### SOLUBILITY OF AIR IN AQUEOUS SULPHURIC ACID AT 18° AND 760 MM. (Tower - Z. anorg. Ch. 50, 382, '06.)

| Wt. % H <sub>2</sub> SO <sub>4</sub><br>Solubility Coef. | 98     | 90     | 8o     | <b>7</b> 0 | 60     | 50     |
|----------------------------------------------------------|--------|--------|--------|------------|--------|--------|
| Solubility Coef.                                         | 0.0173 | 0.0107 | 0.0069 | 0.0055     | 0.0059 | 0.0076 |

#### SOLUBILITY OF AIR IN ALCOHOL, ETC.

| (Robinet - Com | pt. rend. 58, | 608, '64.) |
|----------------|---------------|------------|
|----------------|---------------|------------|

|                              | (monute of the second               |                                        |                                     |
|------------------------------|-------------------------------------|----------------------------------------|-------------------------------------|
| Solvent.                     | Vols. Air per 100<br>Vols. Solvent. | Solvent.                               | Vols. Air per 100<br>Vols. Solvent. |
| Alcohol (95.1%)<br>Petroleum | 6.8                                 | Oil of Lavender<br>Oil of Turpentine . |                                     |
| Benzene                      | • • 14.0                            |                                        |                                     |

#### **ALANINE** ( $\alpha$ Aminopropionic Acid) CH<sub>2</sub>CH(NH<sub>2</sub>)COOH.

SOLUBILITY IN MIXTURES OF ALCOHOL AND WATER AT 25°. (Holleman and Antusch — Rec. trav. chim. 13, 297, '94.)

| Vol.%<br>Alcohol. | Gms. per<br>100 Gms.<br>Solvent. | Sp. Gr. of<br>Solutions. | Vol.%<br>Alcohol. | Gms. per<br>100 Gms.<br>Solvent. | Sp. Gr. of<br>Solutions. |
|-------------------|----------------------------------|--------------------------|-------------------|----------------------------------|--------------------------|
| 0                 | 16.47                            | I .042I                  | 35                | 4.91                             | 0. <b>9670</b>           |
| 5                 | 14.37                            | 1.0311                   | 40                | 3.89                             | 0.9577                   |
| IO                | 12.43                            | I .0200                  | 50                | 2.38                             | 0.9355                   |
| 15                | 10.49                            | I .010I                  | 60                | I.57                             | 0.9102                   |
| 20                | 8.48                             | 0.9984                   | 70                | o.85                             | o.8836                   |
| 25                | 7.11                             | o.9886                   | 80                | 0.37                             | o 8556                   |
| 31                | 5 · 53                           | 0.9761                   |                   |                                  |                          |

AIR. AIR

#### ALDEHYDE.

SOLUBILITY OF *p* FORMALDEHYDE (TRIOXYMETHYLENE) IN AQUEOUS SODIUM SULPHITE SOLUTIONS AT 20°. (Lumière and Seyewets – Bull. soc. chim. [3] 27, 1313, '03.)

| Grams Sodium Sulphite per 100 cc. H <sub>2</sub> O | 5  | 10 | 20 | 28 |
|----------------------------------------------------|----|----|----|----|
| Gms. Trioxymethylene per 100 cc. solution          | 22 | 24 | 26 | 27 |

100 gms. H<sub>2</sub>O dissolve 12.5 paraldehyde at 25°, and 6.6 gms. at b. pt.

#### ALCOHOLS.

SOLUBILITY OF AMYL ALCOHOL IN WATER AT 22°. (Herz – Ber. 31, 2671, '98.)

100 cc. water dissolve 3.284 cc. amyl alcohol. Sp. Gr. of solution = 0.9949, Volume = 102.99 cc.

100 cc. amyl alcohol dissolve 2.214 cc. water. Sp. Gr. of solution = 0.8248, Volume = 101.28 cc.

Sp. Gr. of H<sub>2</sub>O at  $22^{\circ} = 0.9980$ ; Sp. Gr. of amyl alcohol at  $22^{\circ} = 0.8133$ .

Solubility of Amyl Alcohol in Water at Different Temperatures, "Synthetic Method" (see Note, page 9).

| ( | Alexej | cw — | Ann. | phys. | Chem. | 28, | 305, | '86.) |  |
|---|--------|------|------|-------|-------|-----|------|-------|--|
|   |        |      |      |       |       |     |      |       |  |

|     | Gms. CsH13OH      | I per 100 Gms.      |      | Gms. CsH11OH per 100 Gms. |                     |  |  |
|-----|-------------------|---------------------|------|---------------------------|---------------------|--|--|
| t°. | Aqueous<br>Layer. | Alcoholic<br>Layer. | t°.  | Aqueous<br>Layer.         | Alcoholic<br>Layer. |  |  |
| 0   | 8                 | 97                  | 100  | 2.0                       | 8o                  |  |  |
| 20  | 6                 | 94                  | I 20 | 4.0                       | 77                  |  |  |
| 40  | 4                 | 90                  | 140  | 7.0                       | 73                  |  |  |
| 60  | 2                 | 87                  | 150  | 9.0                       | 72                  |  |  |
| 8o  | 1.5               | 83                  |      |                           |                     |  |  |

SOLUBILITY OF AMYL ALCOHOL IN AQ. ETHYL ALCOHOL SOLUTIONS. (Bancroft - Phys. Rev. 3, 193, '95-96.)

| cc. Ethyl<br>Alcohol<br>in Mixture. | cc. H <sub>2</sub> O added to cause Separation of a<br>Second Phase in Mixtures of the given<br>Amounts of Ethyl Alcohol and 3 cc.<br>Portions of Amyl Alcohol at: |         |  |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|
|                                     | 9.1°.                                                                                                                                                              | 19. 2°. |  |  |
| 3                                   | 13.21                                                                                                                                                              | 3 . 50  |  |  |
| 6                                   | 10.35                                                                                                                                                              | 10.80   |  |  |
| 9                                   | 18.34                                                                                                                                                              | 19.10   |  |  |
| I 2                                 | 27 · 47                                                                                                                                                            | 29 . 15 |  |  |
| 15                                  | 41 25                                                                                                                                                              | 43.15   |  |  |

NOTE. — The effect of various amounts of a large number of salts upon the temperature  $(39.8^{\circ})$  at which a mixture of 20 cc. of amyl alcohol + 20 cc. of ethyl alcohol + 32.9 cc. of water becomes homogeneous has been investigated by Pfeiffer (Z. phys. Ch. 9, 444, '92). The results are no doubt of interest from a solubility standpoint, but their recalculation to terms suitable for presentation in the present compilation has not been attempted.

SOLUBILITY OF ISOAMYL ALCOHOL IN WATER.

| <b>.</b> . ( | H <sub>2</sub> O Layer. Alcoholic Layer. |                  | Observer.                    |  |  |
|--------------|------------------------------------------|------------------|------------------------------|--|--|
| 6.           | H <sub>2</sub> O Layer.                  | Alcoholic Layer. |                              |  |  |
| 13.7         |                                          | •••              | Balbrano — Ber. 9, 1437, '76 |  |  |
| 16.5         | 2.5                                      | 92.9             | Wittstein — Jahrb. 408, '62  |  |  |
| 22           | 2.61                                     | 97.36            | Herz — Ber. 31, 2669, '98    |  |  |

.

.

| SOLUBILITY ( | of E | BUTYL | ALCOHOLS | IN   | WATER,  | " | Synthetic | Method |  |
|--------------|------|-------|----------|------|---------|---|-----------|--------|--|
|              |      | (4)   | (see Not | e, p | age 9). |   | 94 \      |        |  |

|             | (Alexe)              | jew — Ann. phys. Chem | . 28, 305, '80.)                |                     |  |
|-------------|----------------------|-----------------------|---------------------------------|---------------------|--|
| ;           | Secondary B<br>and W | utyl Alcohol<br>ater. | Iso Butyl Alcohol<br>and Water. |                     |  |
| Gma         | . Secondary Butyl    | Alcohol per 100 Gms.  | Gms. Iso Butyl Al               | cohol per 100 Gms.  |  |
| <b>t°</b> . | Aqueous<br>Layer.    | Alcoholic<br>Layer.   | Aqueous<br>Layer.               | Alcoholic<br>Layer. |  |
| - 20        | 27                   | 6 <b>6</b>            | • • •                           | • • •               |  |
| - 10        | 28                   | 60                    | •••                             | •••                 |  |
| 0           | 27 . 5               | 56                    | 13                              | 85                  |  |
| IO          | 26.0                 | 57                    | • • •                           | • • •               |  |
| 20          | 22.5                 | 60                    | 9                               | 84                  |  |
| 30          | 18                   | 63.5                  | • • •                           | •••                 |  |
| 40          | 16                   | 65.5                  | 7.5                             | 83                  |  |
| 60          | 13                   | 67                    | 7                               | 82                  |  |
| 80          | 15                   | 63                    | 7                               | 77 · S              |  |
| 100         | 20                   | 52                    | 8                               | 72                  |  |
| 107 crit    | . temp. 3            | 3                     |                                 | •••                 |  |
| 120         |                      | -                     | 16                              | 62                  |  |
| 130         |                      |                       | 28                              | 50                  |  |
| 133 crit    | . temp.              |                       | .4                              | 0                   |  |

DISTRIBUTION OF ETHYL ALCOHOL BETWEEN WATER AND BENZENE AT 25°.

| Dhm.     | 25  | ٠. |         |  |
|----------|-----|----|---------|--|
| <br>Dham | Ch. |    | <br>100 |  |

|                                 | (1)               | aylor — J. Phys.                  | C. I. 1, 408, '97.) |                                    |                                   |  |  |
|---------------------------------|-------------------|-----------------------------------|---------------------|------------------------------------|-----------------------------------|--|--|
| Composition                     | of to cc. of      | Upper Layer.                      | Composition         | Composition of 10 cc. Lower Layer. |                                   |  |  |
| C <sub>4</sub> H <sub>4</sub> . | H <sub>2</sub> O. | C <sub>2</sub> H <sub>5</sub> OH. | CeHe.               | H <sub>2</sub> O.                  | C <sub>2</sub> H <sub>4</sub> OH. |  |  |
| 5.92                            | o.60              | 3 · 48                            | <b>4</b> · 37       | I .07                              | 4.56                              |  |  |
| 6.43                            | o · 48            | 3.09                              | 3 · 54              | 1.41                               | 5.05                              |  |  |
| 7.40                            | 0.29              | 2.31                              | 2.04                | 2.27                               | 5.69                              |  |  |
| 8.13                            | 0.17              | I.70                              | I.08                | 3.22                               | 8.70                              |  |  |
| 8.65                            | 0.IO              | I.25                              | 0.59                | 4.06                               | 5.35                              |  |  |
| 9.05                            | 0.06              | 0.89                              | 0.28                | 4 · 99                             | 4.73                              |  |  |

#### ALUMINIUM CHLORIDE AlCl3 · 6 H2O.

SOLUBILITY IN WATER. (Gerlach – Z. anal. Ch. 8, 250, '69.)

100 gms. saturated solution contain 41.13 gms. AlCl, at 15°, Sp. Gr. of solution = 1.354.

## ALUMINIUM SULPHATE Al<sub>2</sub>(SO<sub>4</sub>), · 18 H<sub>2</sub>O.

| SOLUBILITY IN WATER.<br>(Poggiale — Ann. chim. phys. [3] 8, 467, '43.) |             |                  |             |              |                |  |  |  |  |
|------------------------------------------------------------------------|-------------|------------------|-------------|--------------|----------------|--|--|--|--|
|                                                                        | Gms. Alg(SO | 4)s per 100 Gms. | Gn          | as. Alg(SO4) | a per 100 Gms. |  |  |  |  |
| <b>t*</b> .                                                            | Water.      | Solution.        | <b>t°</b> . | Water.       | Solution.      |  |  |  |  |
| 0                                                                      | 31.3        | 23.8             | 60          | 59 · I       | 37 . 2         |  |  |  |  |
| IO                                                                     | 33 - 5      | 25 . I           | 70          | 66.2         | 39.8           |  |  |  |  |
| 20                                                                     | 36.1        | 26.7             | 80          | 73.I         | 42.2           |  |  |  |  |
| 30                                                                     | 40 . 4      | 28.8             | 90          | 80.8         | 44 · 7         |  |  |  |  |
| 40                                                                     | 45 · 7      | 31.4             | 100         | 89.1         | 47 · I         |  |  |  |  |
| 50                                                                     | 52 . I      | 34 · 3 ·         |             |              |                |  |  |  |  |

100 gms. of a saturated solution of aluminium sulphate in glycol con-tain 14.4 gms. Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>. (de Coninck – Bull. acad. roy. Belgique, 359, '05.)

.

٠

ALUMS.

#### SOLUBILITY OF AMMONIUM ALUM AND OF POTASSIUM ALUM IN WATER.

(Mulder; Poggiale — Ann. chim. phys. [3] 8, 467, '43; Locke — Am. Ch. J. 26, 174, '01; Marino — Gazz. chim. ital. 35, II, 351, '05; Berkeley — Trans. Roy. Soc. 203 A, 214, '04.)

|      | Ammonium Alum.                                 |                                                                                                                                               |                                               | Potassium Alum.                                                                                           |                                                                                                                              |                                                                                                            |  |
|------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|
| t°.  | Gms. (NH4)2<br>Al2(SO4)4<br>per 100 g.<br>H2O. | Gms. (NH <sub>4</sub> ) <sub>2</sub><br>Al <sub>2</sub> (SO <sub>4</sub> ) <sub>4</sub> 24H <sub>2</sub> O<br>per 100 g.<br>H <sub>2</sub> O. | G.M.(NH4)2<br>Al2(SO4)4<br>per 100 g.<br>H2O. | Gms. K <sub>2</sub><br>Al <sub>2</sub> (SO <sub>4</sub> ) <sub>4</sub><br>per 100 g.<br>H <sub>2</sub> O. | Gms. K <sub>2</sub><br>Al <sub>2</sub> (SO <sub>4</sub> ) <sub>4</sub> 24H <sub>2</sub> O<br>per 100 g.<br>H <sub>2</sub> O. | G. M. K <sub>2</sub><br>Al <sub>2</sub> (SO <sub>4</sub> ) <sub>4</sub><br>per 100 g.<br>H <sub>2</sub> O. |  |
| 0    | 2.10                                           | 3.90                                                                                                                                          | 0.0044                                        | 3.0                                                                                                       | 5.65                                                                                                                         | 0.0058                                                                                                     |  |
| 5    | 3.50                                           | 6.91                                                                                                                                          | 0.0074                                        | 3.5                                                                                                       | 6.62                                                                                                                         | 0.0068                                                                                                     |  |
| 10   | 4.99                                           | 9.52                                                                                                                                          | 0.0105                                        | 4.0                                                                                                       | 7.60                                                                                                                         | 0.0077                                                                                                     |  |
| 15   | 6.25                                           | 12.66                                                                                                                                         | 0.0132                                        | 5.0                                                                                                       | 9.59                                                                                                                         | 0.0097                                                                                                     |  |
| 20   | 7-74                                           | 15.13                                                                                                                                         | 0.0163                                        | 5.9                                                                                                       | 11.40                                                                                                                        | 0.0114                                                                                                     |  |
| 25   | 9.19                                           | 19.19                                                                                                                                         | 0.0194                                        | 7.23                                                                                                      | 14.14                                                                                                                        | 0.0140                                                                                                     |  |
| 30   | 10.94                                          | 22.OI                                                                                                                                         | 0.0231                                        | 8.39                                                                                                      | 16.58                                                                                                                        | 0.0162                                                                                                     |  |
| 40   | 14.88                                          | 30.92                                                                                                                                         | 0.0314                                        | 11.70                                                                                                     | 23.83                                                                                                                        | 0.0227                                                                                                     |  |
| 50   | 20.10                                          | 44.10                                                                                                                                         | 0.0424                                        | 17.00                                                                                                     | 36.40                                                                                                                        | 0.0329                                                                                                     |  |
| 60   | 26.70                                          | 66.65                                                                                                                                         | 0.0569                                        | 24.75                                                                                                     | 57.35                                                                                                                        | 0.0479                                                                                                     |  |
| 70   |                                                |                                                                                                                                               |                                               | 40.0                                                                                                      | 110.5                                                                                                                        | 0.0774                                                                                                     |  |
| 80   |                                                |                                                                                                                                               |                                               | 71.0                                                                                                      | 321.3                                                                                                                        | 0-1374                                                                                                     |  |
| 90   |                                                |                                                                                                                                               |                                               | 109.0                                                                                                     | 2275.0                                                                                                                       | 0.2110                                                                                                     |  |
| 92.5 |                                                |                                                                                                                                               |                                               | 119.0                                                                                                     | 00                                                                                                                           | 0.2313                                                                                                     |  |
| 95   | 109.7                                          | 00                                                                                                                                            | 0.2312                                        |                                                                                                           |                                                                                                                              |                                                                                                            |  |

Note. — The potassium alum figures in the preceding table were taken from a curve plotted from the closely agreeing determinations of Mulder, Locke, Berkeley, and Marino. For the higher temperatures (above 60°), however, the results of Marino are lower than those of the other investigators, and are omitted from the average curve.

Locke called attention in his paper to the fact that Poggiale's results upon ammonium and potassium alum had evidently become interchanged through some mistake. This explanation is entirely substantiated, not only by Locke's determinations, but also by those of Mulder and Berkeley. The ammonium alum figures given above were therefore read from Poggiale's potassium alum curve, with which Locke's determination of the solubility of ammonium alum at  $25^{\circ}$  is in entire harmony.

SOLUBILITY OF AMMONIUM ALUM IN PRESENCE OF AMMONIUM SUL-PHATE AND IN PRESENCE OF ALUMINIUM SULPHATE IN WATER.

(Rüdorff - Ber. 18, 1160, '85.)

| Mixture Used.                                                                       |       | 100 Gms. Saturated Solution Contain: |                    |  |  |
|-------------------------------------------------------------------------------------|-------|--------------------------------------|--------------------|--|--|
| Mixture Used.                                                                       | Grams | (NH4)2SO4 -                          | + Grams Alg(SO4)8. |  |  |
| Saturated Ammonium Alum at 18.5°                                                    |       |                                      | 3.69               |  |  |
| 20 cc. above sol. + 6 gms. cryst. Al <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> . |       |                                      | 16.09              |  |  |
| 20 cc. above sol. + 4 gms. cryst. (NH4)2SO4.                                        | 1 12  | 20.81                                | 0.29               |  |  |

#### ALUMS

# Solubility of Mixtures of Potassium Alum and Aluminium Sulphate and of Potassium Alum and Potassium Sulphate in Water.

| <b>t°</b> . | Gms. per 1000 Gms. H <sub>3</sub> O. |                                  | Gm. Mols. per 1000 | Mols. HgO.          |                   |  |
|-------------|--------------------------------------|----------------------------------|--------------------|---------------------|-------------------|--|
| U           | Alg(SO4)3-18H2O.                     | K <sub>2</sub> SO <sub>4</sub> . | Alg(SO4)3-18H2O.   | K <sub>2</sub> SO4. | Phase-            |  |
| 0           | 243.73                               | 23.45                            | б. 1               | 2.3                 | K2Al2(SO4)2.24H2O |  |
| 20          | 824 . 25                             | 30.85                            | 15.1               | 3.I                 | $+ Al_2(SO_4)_3$  |  |
| 35          | 911.02                               | 35 - 29                          | 24 · I             | 3.6                 | "                 |  |
| 50          | 1243.21                              | 59·55                            | 33 · 5             | б. 1                | "                 |  |
| 65          | 1598.00                              | 119.43                           | 43 · I             | 12.6                | "                 |  |
| 77          | 1872.11                              | 183.80                           | 50.5               | 18.9                | "                 |  |
| 0           | 5.06                                 | 75.83                            | 0.I                | 7.8                 | K2Al2(SO4)2.24H2O |  |
| 0.5         | 8.66                                 | 75.18                            | 0.2                | 7.7                 | $+ K_2 SO_4$      |  |
| 5.          | 16.07                                | 85.78                            | 0.4                | 8.8                 | - ‹‹              |  |
| 10          | 18.52                                | 96.50                            | 0.5                | 9.9                 | "                 |  |
| 15          | 20.56                                | 109.30                           | 0.55               | II.2                | "                 |  |
| 30          | 39.60                                | 147.8                            | I.0                | 15.2                | "                 |  |
| 40          | 73.88                                | 163.1                            | I.9                | 16.8                | "                 |  |
| 50          | 126.0                                | 195.4                            | 3.4                | 20 · I              | "                 |  |
| δο          | 249 . 7                              | 238.8                            | Ğ.7                | 24.6                | "                 |  |
| 70          | 529.0                                | 323.7                            | 14.2               | 32.6                | "                 |  |
| 8o          | 1044.0                               | 517.27                           | 28.1               | 53.4                | 66                |  |

| (Marino — C | Gazz. chim. | ital. 35, | II, 351, | 'os.) |
|-------------|-------------|-----------|----------|-------|
|-------------|-------------|-----------|----------|-------|

#### Solubility of Mixtures of Potassium Alum and of Thallium Alum in Water at 25°.

(Fock - Z. Kryst. Min. 28, 397, '97.)

| Composition of Solution. |              |                |                 |                                      |                          | Solid Phase            |
|--------------------------|--------------|----------------|-----------------|--------------------------------------|--------------------------|------------------------|
| KAI(SO4)                 | 2 per Liter. | TIAI(SO        | 04)2 per Liter. | Mol. %                               | Sp. Gr. of               | Mol. % of<br>Potassium |
| Grams.                   | Mg. Mols.    | Grams.         | Mg. Mols.       | KAl(SO <sub>4</sub> ) <sub>2</sub> . | Sp. Gr. of<br>Solutions. | Alum.                  |
| 69.90                    | 270.5        | 0.00           | 0.00            | 100                                  | 1.0591                   | 100.0                  |
| 74.56                    | 288.2        | o.48           | 1.13            | <b>9</b> 9.61                        | 1.0001                   | 99.32                  |
| 67.90                    | 262 .8       | I . 72         | 4.07            | 98.48                                | 1.059 <b>8</b>           | 96.84                  |
| 65.30                    | 252.7        | 4.52           | 10.67           | 95.95                                | 1.0603                   | 90.84                  |
| 64.95                    | 251.4        | 9.Čo           | 22.67           | 91.73                                | 1.0605                   | 82.94                  |
| 53.23                    | 205.9        | 18.44          | 43 . 56         | 82.54                                | I.0609                   | 68.24                  |
| 45.32                    | 175.4        | 24.60          | 58 · 10         | 75.12                                | 1.0609                   | 58.23                  |
| 38.02                    | 147.2        | 32.48          | 76.75           | 65.73                                | 1.0011                   | 46.72                  |
| 34.54                    | 133.6        | 35.59          | 84 . 10         | 61.36                                | 1.0611                   | 44 . 23                |
| 28.35                    | 109.7        | 42.99          | 101 . <b>60</b> | 51.93                                | 1.0623                   | 32.07                  |
| 10.94                    | 42 . 4       | 66 . 1 2       | 156.2           | 21.34                                | 1.0654                   | 7.94                   |
| 0.00                     | 0.0          | 75 · <b>46</b> | 178.3           | 0.00                                 | 1.0674                   | 0.00                   |

#### SOLUBILITY OF SODIUM ALUM IN WATER.

#### 100 gms. H<sub>2</sub>O dissolve 51.0 gms. (?anhy.) Al<sub>2</sub>Na<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>.24H<sub>2</sub>O at 16°. (Auge - Compt. rend. 110, 1139, '90.)

100 gms. H<sub>2</sub>O dissolve 110.0 gms. Al<sub>2</sub>Na<sub>2</sub>(SO<sub>4</sub>).24H<sub>2</sub>O at 0°. (Tilden - J. Ch. Soc. (Lond.) 45, 269, '84.)

#### Solubility of Caesium Alum, Rubidium Alum, and of Thallium Alum in Water.

(Setterburg - Liebig's Annalen, 211, 104, '82; Locke - Am. Ch. J. 26, 183, '01; Berkeley - Trans. Roy. Soc. 203 A, 215, '04.)

| <b>t*</b> . | Caesium Alum.<br>Gms. per 100 Gms. H <sub>2</sub> O. |                         | Rubidium Alum.<br>Gms. per 100 Gms. H <sub>2</sub> O. |                         | Thallium Alum.<br>Gms. per 100 Gms. H <sub>2</sub> O. |                                                                                         |
|-------------|------------------------------------------------------|-------------------------|-------------------------------------------------------|-------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------|
| • •         | AlgCag(SO4)4.                                        | AlgCs2(SO4)4<br>.24HgO. | AlaRba(SO4)4.                                         | AlsRbs(SO4)4<br>.24HsO. | Al2TI2(SO4)4.                                         | Al <sub>2</sub> Tl <sub>2</sub> (SO <sub>4</sub> ) <sub>4</sub><br>.24H <sub>2</sub> O. |
| 0           | 0.21                                                 | 0.34                    | 0.72                                                  | 1.21                    | 3.15                                                  | 4.84                                                                                    |
| 5           | 0.25                                                 | 0.40                    | o.86                                                  | 1.48                    | 3.80                                                  | 5.86                                                                                    |
| IO          | 0.30                                                 | o.49                    | I.05                                                  | 1.81                    | 4.60                                                  | 7.12                                                                                    |
| 20          | 0.40                                                 | 0.65                    | I . 50                                                | 2.59                    | 6.40                                                  | 10.00                                                                                   |
| 25          | 0.50                                                 | 0.81                    | I.80                                                  | 3.12                    | 7.60                                                  | 11.95                                                                                   |
| 30          | 0.60                                                 | 0.97                    | 2.20                                                  | 3.82                    | 9.38                                                  | 14.89                                                                                   |
| 40          | 0.85                                                 | 1.38                    | 3.25                                                  | 5.69                    | 14.40                                                 | 23.57                                                                                   |
| 50          | I.30                                                 | 2.11                    | 4.80                                                  | 8.50                    | 22.50                                                 | 38.41                                                                                   |
| δo          | 2.00                                                 | 3.27                    | 7.40                                                  | 13.36                   | 35.36                                                 | 65.19                                                                                   |
| 70          | 3.20                                                 | 5.27                    | 12.40                                                 | 23.25                   | •••                                                   | • • •                                                                                   |
| 80          | 5.40                                                 | 9.01                    | 21.60                                                 | 43.25                   | • • •                                                 |                                                                                         |
| 90          | 10.50                                                | 18.11                   | •••                                                   | • • •                   | • • •                                                 | • • •                                                                                   |
| 100         | 22.70                                                | <b>42</b> · 54          | •••                                                   | •••                     |                                                       | •••                                                                                     |

NOTE. — Curves were plotted from the closely agreeing determinations recorded by the above named investigators and the table constructed from the curves.

#### AMINES.

METHYL AMINE AND TRI METHYL AMINE, DISTRIBUTION BETWEEN:

| Water and Amyl Alcohol. |                                    |               |                                              | Water and Benzene.            |                      |               |                                         |
|-------------------------|------------------------------------|---------------|----------------------------------------------|-------------------------------|----------------------|---------------|-----------------------------------------|
| (He                     | rz and Fische                      | er — Ber. 37. | 4751, '04.)                                  | ) (Herz and Fischer — Ber. 34 |                      |               | 1143, '05.)                             |
|                         | NH <sub>2</sub> (CH <sub>2</sub> ) |               | NH <sub>2</sub> (CH <sub>3</sub> )<br>10 cc. |                               | N(CH <sub>a</sub> )a |               | s N(CH <sub>2</sub> )8<br>10 cc.        |
| Aq.<br>Layer.           | Alcoholic<br>Layer.                | Aq.<br>Layer. | Alcoholic<br>Layer.                          | Aq.<br>Layer.                 | CeHe<br>Layer.       | Aq.<br>Layer. | C <sub>6</sub> H <sub>6</sub><br>Layer. |
| 0.37                    | 0.12                               | 1.155         | 0.3804                                       | 0.345                         | o · 174              | 0.584         | 0.295                                   |
| 0.94                    | 0.33                               | 3.036         | I .070                                       | 0.812                         | 0.396                | I.377         | 0.670                                   |
| I . 57                  | 0.54                               | 5.054         | 1.759                                        | I.075                         | 0.545                | 1.819         | 0.921                                   |
| 1.89                    | 0.69                               | 6.083         | 2.219                                        | 1.462                         | 0.731                | 2.474         | 1.237                                   |
| 2.00                    | 0.72                               | 6.429         | 2.315                                        | 2.139                         | I .077               | 3.619         | 1.823                                   |
| 2.53                    | 0.92                               | 8.126         | 2.981                                        | 2.757                         | 1.376                | 4.663         | 2.328                                   |
| 3.30                    | 1.24                               | 10.613        | 3.974                                        | 3.292                         | 1.683                | 5.568         | 2.847                                   |
|                         |                                    | •             |                                              | 3.996                         | 2.053                | 6.760         | 3.474                                   |
|                         |                                    |               |                                              | 6.582                         | 3.465                | 11.135        | 5.861                                   |

#### AMINES

| Solubilities of Di Ethyl<br>Amine and Water.*<br>(Lattey — Phil. Mag. [6] 10, 398, '05.) |                    |                 | BETWI<br>Alcoh    | EEN WAT             |                       | AMYL                |
|------------------------------------------------------------------------------------------|--------------------|-----------------|-------------------|---------------------|-----------------------|---------------------|
|                                                                                          | Gms. NH<br>per 100 |                 | Gms. N(<br>per 10 |                     | Millimols l<br>per 10 |                     |
| <b>t °</b> .                                                                             | Aqueous<br>Layer.  | Amine<br>Layer. | Aqueous<br>Layer. | Alcoholic<br>Layer. | Aqueous<br>Layer.     | Alcoholic<br>Layer. |
| 155                                                                                      | 21.7               | 59.0            |                   |                     |                       |                     |
| 150                                                                                      | 23.6               | 55.5            | 0.0885            | 2 . 299             | o. <b>08</b> 75       | 2.273               |
| 148                                                                                      | 24.8               | 53.5            | 0.1683            | 4 . 457             | 0.1664                | 4 408               |
| 146                                                                                      | 26.3               | 51.0            | o.1866            | 4.922               | o · 1846              | 4.868               |
| 145                                                                                      | 28.0               | 49.0            | 0.2502            | 6.491               | 0.2474                | 6.418               |
| 144                                                                                      | 31.0               | 45.0            |                   |                     |                       |                     |

143.5 (crit. t.) 37.4

.

# Tri Ethyl **AMINE** N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,

#### SOLUBILITY IN WATER. (Rothmund - Z. phys. Ch. 26, 433, '98.)

| t°.       | Gms. N(C <sub>2</sub> H <sub>8</sub> | t°.          | Gms. N(C <sub>2</sub> H <sub>8</sub> ) <sub>2</sub> per 100 Gms. |            |                |
|-----------|--------------------------------------|--------------|------------------------------------------------------------------|------------|----------------|
| • •       | Aq. Layer.                           | Amine Layer. | • •                                                              | Aq. Layer. | Amine Layer.   |
| 18.6 (cri | it. temp.) 5                         | 1.9          | 40                                                               | 3.65       | 96 <b>. 48</b> |
| 20        | 14.24                                | 72.0         | 50                                                               | 2.87       | 96.4           |
| 25        | 7 . 30                               | 95 18        | 55                                                               | 2.57       | 96.3           |
| 30        | 5.80                                 | 96.60        | 60                                                               | 2.23       | 96.3           |
| 35        | 4 . 58                               | 96.5         | 65                                                               | 1.97       | 96.3           |

# SOLUBILITY OF TRI ETHYL AMINE IN MIXTURES OF WATER AND ETHYL ALCOHOL AT DIFFERENT TEMPERATURES.\* (Meerburg – Z. phys. Ch. 40, 647, '02.)

|             |                                   |        | (meet or                          | ug — 2.     | puys. cu. q                       | 0,047, 0    | 02.)                                                                    |        |                                                                         |
|-------------|-----------------------------------|--------|-----------------------------------|-------------|-----------------------------------|-------------|-------------------------------------------------------------------------|--------|-------------------------------------------------------------------------|
| 0% A        | lcohol.                           | 13.31% | Alcohol.                          |             | Alcohol.                          | 38.84%      | Alcohol.                                                                | 62.16% | Alcohol                                                                 |
| <b>t°</b> . | 5. N(C2H4)3<br>per 100<br>g. sol. | t°.    | G. N(C9H8);<br>per 100<br>g. sol. | <b>t</b> °. | F. N(C2H5)3<br>per 100<br>g. sol. | <b>t</b> °. | G. N(C <sub>2</sub> H <sub>6</sub> ) <sub>8</sub><br>per 100<br>g. sol. | t°.    | G. N(C <sub>2</sub> H <sub>6</sub> ) <sub>2</sub><br>per 100<br>g. sol. |
| 69.2        | I.7                               | 38.3   | 8.2                               | 54.5        | 22.8                              | 73.4        | 31.2                                                                    | 76-77  | 71.2                                                                    |
| 30.8        |                                   | 31.7   | 13.9                              | 45.0        | 29.8                              | 65.4        | 33.3                                                                    | 74-75  | 75 · <b>O</b>                                                           |
| 23 · I      | 8.5                               | 28 · O | 21.6                              | 33.4        | 51.1                              | 51.6        | 40.6                                                                    | 72-73  | 80.0                                                                    |
| 18.7        | 25.8                              | 26.4   | <u>30.6</u>                       | 31.4        | 63.7                              | 42 . I      | 50.6                                                                    |        |                                                                         |
| 18.7        | 37 . 2                            | 24.9   | 40.5                              | 30 · 3      | 68.5                              | 40.9        | 54·7                                                                    |        |                                                                         |
| 19.5        | 51.8                              | 24 2   | 49.8                              | 28.5        | 82.2                              | 34.2        | 70.6                                                                    |        |                                                                         |
| 20.5        | 68.6                              | 24 I   | 60.7                              | 35.0        | 91.8                              | 33.0        | 77 · 5                                                                  |        |                                                                         |
| 20.5        | 84.0                              | 24.0   | 69.7                              |             |                                   | 34.7        | 88.0                                                                    |        |                                                                         |
| 20.5        | 89.7                              | 23.5   | 73.6                              |             |                                   | 40.5        | 91.3                                                                    |        |                                                                         |
| 21.4        | 92 . 4                            | 24.0   | 81.5                              |             |                                   |             |                                                                         |        |                                                                         |
| 25.8        | 95 · 5                            | 24.2   | 87.4                              |             |                                   |             |                                                                         |        |                                                                         |
| 26.5        | 96.1                              | 25.0   | 92.0                              |             |                                   |             |                                                                         |        |                                                                         |
|             |                                   |        |                                   |             |                                   |             |                                                                         |        |                                                                         |

Note. — Results for Tri Ethyl Amine, Water and Ethyl Ether, and for Tri Ethyl Amine, Water and Phenol are also given by Meerburg.

100 gms. abs. methyl alcohol dissolve 57.5 grams  $NH(C_6H_2)$  at 19.5°. 100 gms. abs. ethyl alcohol dissolve 56.0 grams  $NH(C_6H_2)$  at 19.5°. (de Bruyn - Z. phys. Ch. 10, 784, 1892.)

\* Determinations made by "Synthetic Method," see Note, page 9.

#### Solubility of Di Phenyl Amine and also of Tri Phenyl Amine in Carbon Bisulphide.

#### (Arctowski - Compt. rend. 121, 123, '95.)

| NH(C              | Ha)2 in CS2.                   | N(C <sub>6</sub> H <sub>6</sub> ) <sub>3</sub> in CS <sub>2</sub> . |                               |  |
|-------------------|--------------------------------|---------------------------------------------------------------------|-------------------------------|--|
| <b>t</b> *.       | Gms. per 100<br>Gms. Solution. | <b>t</b> °.                                                         | Gms per 100<br>Gms. Solution. |  |
| - 88 <del>]</del> | o.87                           | -83                                                                 | 1.91                          |  |
| -117              | 0.37                           | -91                                                                 | I.56                          |  |
|                   |                                | - 102                                                               | I.24                          |  |
|                   |                                | -1131                                                               | · 0.98                        |  |

# Solubility of Di Phenyl Amine in Hexane and in Carbon Bisulphide.

#### (Etard - Ann. chim. phys. [7] 2, 570, '94.)

| <b>t *</b> . | Gms. NH(C <sub>6</sub> H <sub>6</sub> ) <sub>2</sub><br>per 100 Gms. Sol. in : |                   | t°.  | Gms. NH(CeHs)s<br>per 100 Gms. Sol. in ; |                   |
|--------------|--------------------------------------------------------------------------------|-------------------|------|------------------------------------------|-------------------|
| • •          | Hexane.                                                                        | CS <sub>2</sub> . |      | Hexane.                                  | CS <sub>2</sub> . |
| - 60         | • • •                                                                          | I . 3             | 0    | 2.6                                      | 33·7              |
| - 50         | • • •                                                                          | 2.2               | + 10 | 3.8                                      | 46.8              |
| -40          | • • •                                                                          | 3.8               | 20   | Ğ.7                                      | 60.9              |
| - 30         | 0.5                                                                            | 7.2               | 30   | 13.8                                     | 76.0              |
| - 20         | o.8                                                                            | 12.5              | 40   | 47.0                                     |                   |
| - 10         | I.4                                                                            | 21.6              | 50   | 94.0                                     | · •••             |

## AMMONIA NH,

#### SOLUBILITY OF AMMONIA IN WATER.

(Roscoe and Dittmar - Liebig's Annalen, 112, 334, '59; Raoult - Ann. chim. [5] 1, 263, '74; Mallet --Am. Ch. J. 19, 807, '97.)

| At 760 mm. Pressure. |                                                       |                              |     | At 760 mm. Pressure.        |                                                       |  |  |
|----------------------|-------------------------------------------------------|------------------------------|-----|-----------------------------|-------------------------------------------------------|--|--|
| t*.                  | G. NH <sub>3</sub><br>per 100 g.<br>H <sub>2</sub> O. | Vol. NH3<br>per 1 g.<br>H3O. | t°. | G.NH3<br>per 100 g.<br>H2O. | Vol. NH <sub>3</sub><br>per 1 g.<br>H <sub>2</sub> O. |  |  |
| - 40                 | 294.6                                                 |                              | 20  | 52.6                        | 710                                                   |  |  |
| - 30                 | 278.1                                                 | •••                          | 25  | 46.0                        | 635                                                   |  |  |
| -20                  | 176.8                                                 | • • •                        | 30  | 40.3                        | 595 (28°)                                             |  |  |
| - 10                 | 111.5                                                 | •••                          | 35  | 35.5                        | •••                                                   |  |  |
| 0                    | 87.5                                                  | 1299                         | 40  | 30.7                        | •••                                                   |  |  |
| 5                    | 77 · 5                                                | 1019                         | 45  | 27.0                        | •••                                                   |  |  |
| IO                   | 67.9                                                  | 910                          | 50  | 22.9                        | •••                                                   |  |  |
| 15                   | 60.0                                                  | 802                          | 56  | 18.5                        | •••                                                   |  |  |

# SOLUBILITY OF AMMONIA IN AQUEOUS SALT SOLUTIONS. (Resoult.)

| In Calcium Nitrate Solutions<br>Gms. NH2 per 100<br>Gms. Solvent in: |                                               |                        | In Potassium Hydroxide Solutions<br>Gms. NHa per 100<br>Gms. Solvent in: |                |  |
|----------------------------------------------------------------------|-----------------------------------------------|------------------------|--------------------------------------------------------------------------|----------------|--|
| <b>t°</b> .                                                          | 28.38%<br>Ca(NO <sub>2</sub> ) <sub>2</sub> . | In 50.03%<br>Ca(NO3)2. | 11.25%<br>КОН.                                                           | 25.25%<br>KOH. |  |
| 0                                                                    | 96.25                                         | 104 . 5                | 72.0                                                                     | <b>49</b> · 5  |  |
| 8                                                                    | 78.50                                         | 84.75                  | 57.0                                                                     | 37 . 5         |  |
| 16                                                                   | 65.00                                         | 70.5                   | 46.0                                                                     | 28.5           |  |
| 24                                                                   |                                               | ••••                   | 37 . 3                                                                   | 21.8           |  |

#### MUTUAL SOLUBILITY OF AQUEOUS AMMONIA AND POTASSIUM CARBON-ATE SOLUTIONS.

(Newth - J. Chem. Soc. 77, 776, 1900.)

The solutions used were: Potassium Carbonate saturated at  $15^{\circ}$  (contained 57.2 grams K<sub>2</sub>CO<sub>2</sub> per 100 cc.). Aqueous Ammonia of 0.885 Sp. Gr. (contained about 33 per cent ammonia). The determinations were made by adding successive small quantities of one of the solutions to a measured volume of the other, and observing the point at which opalescence appeared.

|             | Saturated K <sub>2</sub> CO <sub>2</sub> in Aq. Ammonia.   |                                | Aq. Ammonia in Saturated K2CO                              |                                                         |  |
|-------------|------------------------------------------------------------|--------------------------------|------------------------------------------------------------|---------------------------------------------------------|--|
| <b>t°</b> . | cc. K <sub>2</sub> CO <sub>2</sub> per<br>100 cc. Ammonia. | %K.CO. Solution<br>in Mixture. | cc. Ammonia<br>in 100 cc. K <sub>2</sub> CO <sub>3</sub> . | %K <sub>2</sub> CO <sub>2</sub> Solution<br>in Mixture. |  |
| I           | 2.0                                                        | 2.0                            | 37 · 5                                                     | 72.7                                                    |  |
| 6           | 3.0                                                        | 3.0                            | <b>4</b> 7 · 5                                             | 67 . <b>6</b>                                           |  |
| II          | 5.0                                                        | 4.7                            | 52.5                                                       | 65.0                                                    |  |
| 16          | Ğ.5                                                        | б. 1                           | 60.0                                                       | 63.0                                                    |  |
| 21          | 8.5                                                        | 8.0                            | 77 - 5                                                     | 56.3                                                    |  |
| 26          | 10.5                                                       | 9.5                            | 105.0                                                      | 49.0                                                    |  |
| 31          | 12 5                                                       | II.I                           | 152.5                                                      | 39.0                                                    |  |
| 38          | 20.0                                                       | 16.6                           | 195.0                                                      | 33.0                                                    |  |
| 39          | 2I .O                                                      | 17.0                           | 220.0                                                      | 31.0                                                    |  |
| 42          | 25.0                                                       | 20.0                           | 250.0                                                      | 28.5                                                    |  |
| 43          | 35.0                                                       | 26.0                           | 285.0                                                      | 26.5                                                    |  |

Above  $43^{\circ}$  the solutions are completely miscible. If 10 per cent of water is added to each solution the temperature of complete miscibility is lowered to  $25^{\circ}$ . The mutual solubilities are:

|                | Per cent K <sub>2</sub> CO <sub>3</sub> Solution in: |                      |  |  |
|----------------|------------------------------------------------------|----------------------|--|--|
| <b>t°</b> .    | Ammonia<br>Layer.                                    | K2CO2 Sol.<br>Layer. |  |  |
| 0              | 8                                                    | 62                   |  |  |
| IO             | II                                                   | 52                   |  |  |
| 20             | 15                                                   | 38                   |  |  |
| 25 (crit. pt.) | 2                                                    | 5                    |  |  |

With the addition of 12.9 per cent of water to each solution the temperature of complete miscibility (crit. pt.) is lowered to  $10^{\circ}$ . With the addition of 18.1 per cent water this temperature becomes  $0^{\circ}$ .

SOLUBILITY OF AMMONIA IN ABSOLUTE ETHYL ALCOHOL. (Delepine - J. pharm. chim. [5] 25, 496, 1892; de Bruyn - Rec. trav. chim. 11, 112, '92.)

|     |          | Gms. NH3                 | Gms. NHa per 10 | o Gms. Solution. | Gms. NH3 per 100 Gms. Alcohol |             |  |
|-----|----------|--------------------------|-----------------|------------------|-------------------------------|-------------|--|
| t°. | Density. | per 100 cc.<br>Solution. | (Delepine.)     | (de Bruyn.)      | (Delepine.)                   | (de Bruyn.) |  |
| 0   | 0.782    | 13.05                    | 20.95           | 19.7             | 26.5                          | 24.5        |  |
| 5   | 0.784    | 12.00                    | 19.00           | 17.5             | 23.0                          | 21.2        |  |
| 10  | 0.787    | 10.85                    | 16.43           | 15.0             | 19.6                          | 17.8        |  |
| 15  | 0.789    | 9.20                     | 13.00           | 13.2             | 15.0                          | 15.2        |  |
| 20  | 0.791    | 7 . 50                   | 10. <b>66</b>   | II . 5           | 11.9                          | 13.2        |  |
| 25  | 0.794    | 6.00                     | 10.0            | IO.0             | 0.11                          | II.2        |  |
| 30  | 0.798    | 5.15                     | 9·7             | 8.8              | 10.7                          | 9·5         |  |

#### SOLUBILITY OF AMMONIA IN AQUEOUS ETHYL ALCOHOL. (Delepine.)

|     |                      |                                         | • •                  | •                                       |                      |                                         |  |
|-----|----------------------|-----------------------------------------|----------------------|-----------------------------------------|----------------------|-----------------------------------------|--|
|     | In 969               | % Alcohol.                              | In 90                | % Alcohol.                              | In 80% Alcohol.      |                                         |  |
| t*. | Sp. Gr.<br>Solution. | G. NH <sub>3</sub> per<br>100 Gms. Sol. | Sp. Gr.<br>Solution. | G. NH <sub>3</sub> per<br>100 Gms. Sol. | Sp. Gr.<br>Solution. | G. NH <sub>2</sub> per<br>100 Gms. Sol. |  |
| 0   | 0.783                | 24.5                                    | 0.800                | 30.25                                   | o.808                | 39 · O                                  |  |
| IO  | 0.803                | 18.6                                    | o.794                | 28.8                                    | 0.800                | 28.8                                    |  |
| 20  | o.788                | 14.8                                    | 0.795                | 15.8                                    | 0.821                | 19.I                                    |  |
| 30  | 0.791                | 10.7                                    | 0.796                | 11.4                                    | 0.826                | 12.2                                    |  |

|     | In 60                | % Alcohol.                              | In 50% Alcohol.      |                                         |  |  |
|-----|----------------------|-----------------------------------------|----------------------|-----------------------------------------|--|--|
| t°. | Sp. Gr.<br>Solution. | G. NH <sub>2</sub> per<br>100 Gms. Sol. | Sp. Gr.<br>Solution. | G. NH <sub>3</sub> per<br>100 Gms. Sol. |  |  |
| ο   | 0.830                | 50.45                                   | o.835                | 69.7 <b>7</b>                           |  |  |
| 10  | 0.831                | 37 . 3                                  | 0.850                | 43.86                                   |  |  |
| 20  | 0.842                | 26 . I                                  | 0.869                | 33.8                                    |  |  |
| 30  | o.846                | 21.2                                    | 0.883                | 25.2                                    |  |  |

#### SOLUBILITY OF AMMONIA IN ABSOLUTE METHYL ALCOHOL. (de Bruyn - Rec. trav. chim. 11, 112, '92.)

| <b>t°</b> . | G. NHa per | 100 Grams. | <b>t°</b> . | G. NH <sub>3</sub> per 100 Grams. |          |  |
|-------------|------------|------------|-------------|-----------------------------------|----------|--|
|             | Solution.  | Alcohol.   | • •         | Solution.                         | Alcohol. |  |
| 0           | 29.3       | 41.5       | 20          | 19.2                              | 23.8     |  |
| 5           | 26.5       | 36.4       | 25          | 16.5                              | 20.0     |  |
| IO          | 24.2       | 31.8       | 30          | I4.0                              | 16.0     |  |
| 15          | 21.6       | 27.8       |             |                                   |          |  |

#### DISTRIBUTION OF AMMONIA BETWEEN:

| Water and Amyl Alcohol at 20°.<br>(Herz and Fischer — Ber. 37,<br>4747. '04.) |                     |               |                            | Water and Chloroform at 20°.<br>(Dawson and McCrae – J. Ch. Soc. 79, 496, '01; see<br>also Hantsch and Sebaldt – Z. phys. Ch. 30, 258, '99.) |                             |               |                            |  |
|-------------------------------------------------------------------------------|---------------------|---------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------|----------------------------|--|
| Gms.NF                                                                        | Is per 100 cc.      | G.M.N         | H <sub>4</sub> per 100 cc. | Gms. NH                                                                                                                                      | per 100 cc.                 |               | H <sub>3</sub> per 100 cc. |  |
| Aq.<br>Layer.                                                                 | Alcoholic<br>Layer. | Aq.<br>Layer. | Alcoholic<br>Layer         | Aq.<br>Layer.                                                                                                                                | CHCl <sub>3</sub><br>Layer. | Aq.<br>Layer. | CHCla<br>Layer.            |  |
| 0.5                                                                           | 0.072               | 0.25          | 0.0035                     | 0.2                                                                                                                                          | 0.007                       | 10.0          | 0.00038                    |  |
| I.O                                                                           | 0.147               | 0.50          | 0.0073                     | 0.4                                                                                                                                          | 0.015                       | 0.02          | 0.00073                    |  |
| 2.0                                                                           | 0.272               | I .00         | 0.0148                     | 0.6                                                                                                                                          | 0.023                       | 0.03          | 0.00114                    |  |
| 3.0                                                                           | 0.438               | 2.00          | 0.0295                     | o.8                                                                                                                                          | 0.031                       | 0.04          | 0.00152                    |  |
| 4.0                                                                           | 0.595               | 3.00          | 0.0460                     | I.O                                                                                                                                          | 0.039                       | 0.05          | 0.00193                    |  |
| 5.0                                                                           | 0.756               | -             |                            | I . 2                                                                                                                                        | 0.046                       | 0.06          | 0.00232                    |  |
| •                                                                             |                     |               |                            | I.4.                                                                                                                                         | 0.055                       | o.o8          | 0.00311                    |  |
|                                                                               |                     |               |                            | 1.6                                                                                                                                          | 0.063                       | <b>0</b> .I0  | 0.00396                    |  |

NOTE. — The influence of a large number of electrolytes upon the distribution of ammonia between water and chloroform was also investigated. For calculations of above distribution results, see Note, page 4.

#### AMMONIUM ARSENATES 20

#### SOLUBILITY OF AMMONIUM CALCIUM ARSENATE AND AMMONIUM MAGNESIUM ARSENATE IN WATER, ETC. (Field - J. Ch. Soc. 11, 6, '73.)

| Solvent.                                              | Grams per 100 Grams Solvent.            |  |  |
|-------------------------------------------------------|-----------------------------------------|--|--|
|                                                       | NH4CaAsO4H2O. NH4MgAsO4H3O.             |  |  |
| Water                                                 | ••••••••••••••••••••••••••••••••••••••• |  |  |
| Aq. Ammonia 10% (Sp. Gr. 0.88)                        | · · 0.001 0.007                         |  |  |
| Aq. NH,Cl 5%                                          | 0.415                                   |  |  |
| Aq. $NH_4$ Cl 10% $\cdots$ $\cdots$ $\cdots$ $\cdots$ | · · · · · · • • • • • • • • • • • • • • |  |  |

#### AMMONIUM BENZOATE NH,C,H,O,.

SOLUBILITY IN WATER AND IN ALCOHOL.

|        | Gms. NH4C7H4O2 per | 100 Gms. Solvent in : |
|--------|--------------------|-----------------------|
| t°.    | Water.             | Alcohol.              |
| 25     | 9.52               | 4.0                   |
| b. pt. | 83.33              | 13.2                  |

#### AMMONIUM BROMO PLATINATE (NH4)2PtBre.

100 gms. sat. aq. solution contain 0.59 gm. (NH4)2PtBre at 20°. (Halberstadt – Ber. 17, 2965, '84.)

#### **AMMONIUM BROMIDE** NH,Br.

Solubility in Water.

|     | (Eder — Abh. K. Akad. Wiss. (Berlin) 82 ii, 1284, '80.) |               |                                            |           |                |  |  |  |
|-----|---------------------------------------------------------|---------------|--------------------------------------------|-----------|----------------|--|--|--|
|     | Gms. NH <sub>4</sub> Br. J                              | er 100 Grams. | s. Gms. NH <sub>4</sub> Br. per 100 Grams. |           |                |  |  |  |
| t°. | Solution.                                               | Water.        | t°.                                        | Solution. | Water.         |  |  |  |
| 10  | 39.8                                                    | 66.2          | 50                                         | 48.5      | 94·3           |  |  |  |
| 20  | 42.5                                                    | 74.0          | 60                                         | 50.2      | 101 . <b>0</b> |  |  |  |
| 30  | 44.8                                                    | 81.3          | . <mark>8</mark> 0                         | 53·5      | 115.0 .        |  |  |  |
| 40  | 46.7                                                    | 87.5          | 100                                        | 56.I      | 128.2          |  |  |  |

SOLUBILITY OF AMMONIUM BROMIDE IN ABSOLUTE ETHYL ALCOHOL, METHYL ALCOHOL, AND IN ETHER. (Eder; de Bruyn - Z. phys. Ch. 10, 783, '92.)

|     |                                | ·                 |                                 |                   |                                                          |  |
|-----|--------------------------------|-------------------|---------------------------------|-------------------|----------------------------------------------------------|--|
|     | In Ethyl<br>Gms. Ni<br>per 100 | H <sub>4</sub> Br | In Methyl<br>Gms. Ni<br>per 100 | H <sub>4</sub> Br | In Ether (0.750 Sp. Gr.)<br>Gms. NH4Br<br>per 100 Grams. |  |
| t°. | Solution.                      | Alcohol.          | Solution.                       | Alcohol.          | Ether.                                                   |  |
| 15  | 2.97                           | 3.06              | ••••                            |                   | 0.123                                                    |  |
| 19  | 3.12                           | 3.22              | 11.1                            | 12.5              | • • • •                                                  |  |
| 78  | 9.50                           | 10.50             | ••••                            |                   | • • • •                                                  |  |

Solubility of Tetra Ethyl **AMMONIUM BROMIDE** N(C<sub>2</sub>H<sub>4</sub>)<sub>4</sub>Br, and of Tetra Methyl Ammonium Bromide N(CH<sub>4</sub>)<sub>4</sub>Br in Acetonitril. (Walden - Z. phys. Ch. 55, 712, '06.)

(Walden - 2. phys. Cl. 35, 712, 00.)

100 cc. sat. solution in CH<sub>2</sub>CN contain 9.59 gms. N(C<sub>2</sub>H<sub>2</sub>)<sub>4</sub>Br at 25°. 100 cc. sat. solution in CH<sub>2</sub>CN contain 0.17 gm. N(CH<sub>2</sub>)<sub>4</sub>Br at 25°.

#### AMMONIUM CADMIUM BROMIDE NH,Br.CdBr,.1H,O.

100 parts of water dissolve 137.0 parts NH4Br.CdBr3.3H3O. 100 parts of alcohol dissolve 18.8 parts NH4Br.CdBr3.3H3O. 100 parts of ether dissolve 0.36 part NH4Br.CdBr3.3H3O. (Eder -- Dingler polyt. J. 221, 89, '76.)

.

#### AMMONIUM CARBONATE (NH,),CO,

100 grams H<sub>4</sub>O dissolve 100 grams  $(NH_4)_2CO_3H_2O$  at 15°. 100 grams glycerine dissolve 20 grams  $(NH_4)_2CO_3$  at 15°. (Divers - J. Ch. Soc. 23, 171, '70.)

#### AMMONIUM BICARBONATE NH.HCO,

# SOLUBILITY IN WATER.

(Dibbits - J. pr. Ch. [2] 10, 417, '74.)

| t°. | Gms. NH, HCO, 1 | er 100 Grams. | <b>ė</b> •. | Grams NH4NCO <sub>2</sub> per 100 Grams. |        |  |
|-----|-----------------|---------------|-------------|------------------------------------------|--------|--|
|     | Solution.       | Water.        | • •         | Solution.                                | Water. |  |
| 0   | 10.6            | 11.9          | 20          | 17.4                                     | 21.0   |  |
| 5   | I2.I            | 13.7          | 25          | 19.3                                     | 23.9   |  |
| 10  | 13.7            | 15.8          | 30          | 21.3                                     | 27.0   |  |
| 15  | 15.5            | 18.3          |             |                                          |        |  |

# SOLUBILITY OF AMMONIUM BICARBONATE IN AQUEOUS SOLUTIONS OF AMMONIUM CHLORIDE SATURATED WITH CO<sub>2</sub>. (Fedotieff - Z. phys. Ch. 49, 168, '04.)

| (re | edonen | - 2. | pays. | Cn. | 49, | 108, |
|-----|--------|------|-------|-----|-----|------|
|-----|--------|------|-------|-----|-----|------|

|             | The of               |               | Per 1000 C                               | . Solution                    | ı.               | _                           | Per 1000       | Grams H        | <b>.</b> 0.      |
|-------------|----------------------|---------------|------------------------------------------|-------------------------------|------------------|-----------------------------|----------------|----------------|------------------|
| <b>t°</b> . | Wt. of<br>1 cc. Sol. | G.M.<br>NHCI. | G.M.<br>NH <sub>4</sub> HCO <sub>2</sub> | Gms.<br>. NH <sub>4</sub> Cl. | Gms.<br>NH4HCO3. | G.M.<br>NH <sub>4</sub> Ci. | G.M.<br>NH HCO | Gms.<br>NH₄Cl. | Gms.<br>NH4HCO3. |
| 0           | • • •                | • • •         | •••                                      | • • •                         | •••              | 0.0                         | I.22           | 0.0            | 119.0            |
| ο           | 1.077                | 4.4I          | 0.37                                     | 235.9                         | 29.2             | 5.42                        | 0.46           | 290.8          | 36.0             |
| 15          | 1.064                | 0.0           | 2.12                                     | 0.0                           | 167.2            | 0.0                         | 2.36           | 0.0            | 186.4            |
| 15          | 1.063                | 0.5           | I.84                                     | 26.8                          | 145.2            | 0.56                        | 2.06           | 29.9           | 162.9            |
| 15          | 1.062                | I.0           | I.59                                     | 53.5                          | 125.5            | 1.13                        | 1.80           | 60.6           | 142.2            |
| 15          | 1.062                | I.4I          | I.42                                     | 75.4                          | 112.2            | I.59                        | I.60           | 85.1           | 126.9            |
| 15          | 1.065                | 1.89          | 4.28                                     | 100.8                         | I0I . I          | 2.18                        | 1.48           | 110.8          | 116.8            |
| 15          | 1.000                | 2.87          | 0.99                                     | 153.3                         | 78.2             | 3.42                        | 1.18           | 183.0          | 93·3             |
| 15          | 1.076                | 3.84          | 0.79                                     | 205.2                         | 62.5             | 5.03                        | o.98           | 269.3          |                  |
| 15          | 1.085                | 4.82          | 0.65                                     | 257.9                         | 51.4             | 6.21                        | 0.84           | 332.5          | 66.4             |
| 15          | 1.085                | 4.95          | 0.62                                     | 264.8                         | 48.9             | 6.40                        | 0.81           | 343.5          | 64.2             |
| 30          | •••                  |               | • • •                                    |                               | •••              | 0.0                         | 3.42           | 0.0            | 270.0            |
| 30          | •••                  | •••           | •••                                      | •••                           | •••              | <b>7</b> · 4                | 1.15           | 397 .0         | 91 .0            |

#### SOLUBILITY OF AMMONIUM BICARBONATE IN AQUEOUS SOLUTIONS OF SODIUM BICARBONATE SATURATED WITH CO.

(Fedotieff.)

|              | Per 1000 cc. Solution. |                  |                   |               |                  |                 | Per 1000 Grams H <sub>2</sub> O. |                 |                 |  |
|--------------|------------------------|------------------|-------------------|---------------|------------------|-----------------|----------------------------------|-----------------|-----------------|--|
| <b>\$*</b> . | Wt. of<br>1 cc. Sol.   | G. M.<br>NaHCO3. | G. M.<br>NH4HCO3. | Gms.<br>NaHCO | Gms.<br>NH4HCO3. | G. M.<br>NaHCOp | G.M.<br>NH HCO                   | Gms.<br>NaHCO3. | Gms.<br>NH4HCOa |  |
| 0            | • • •                  | •••              | • • •             | • • •         | •••              | 0.0             | 1.51                             | 0.0             | 119.0           |  |
| 0            | 1.072                  | 0.53             | I . 28            | 44.6          | 101.4            | o.58            | 1.39                             | 48.2            | 109.4           |  |
| 15           | 1.064                  | 0.0              | 2.12              | 0.0           | 167.2            | 0.0             | 2.36                             | 0.0             | 186.4           |  |
| 15           | I.090                  | 0.63             | 1.92              | 52.5          | 151.3            | 0.71            | 2.16                             | 59.2            | 170.6           |  |
| 30           | • • •                  | • • •            |                   | •••           | •••              | 0.0             | 3.42                             | 0.0             | 270.0           |  |
| 30           | • • •                  | • • •            | • • •             | •••           | •••              | o.83            | 2.91                             | 70.0            | 230.0           |  |

.

.

#### AMMONIUM BICARBONATE 22

#### SOLUBILITY OF MIXTURES OF AMMONIUM BICARBONATE, SODIUM BICARBONATE, AND AMMONIUM CHLORIDE IN WATER SATURATED WITH CO<sub>2</sub>. (Fedotieff.)

| <b>t°</b> . | Wt. of<br>1 cc. Sol.     | Gram Mols. per 1000<br>Gms. H <sub>2</sub> O. |       |                     | Gms. per 1000 Gms. HgO. |               |                     | Solid        |
|-------------|--------------------------|-----------------------------------------------|-------|---------------------|-------------------------|---------------|---------------------|--------------|
|             |                          | NaHCO3.                                       | NaCl. | NH <sub>4</sub> Cl. | NaHCO <sub>3</sub> .    | NaCl.         | NH <sub>4</sub> Cl. | Phase.       |
| ο           | 1.114                    | o.59                                          | 0.96  | 4 92                | 49.61                   | 56.16         | 263.4               | a+b+c        |
| ο           | 1.187                    | 0.12                                          | 4.83  | 2.74                | 10.09                   | 282.6         | 146.7               | "            |
| 15          | 1.110                    | 0.93                                          | 0.51  | 6.28                | 78.18                   | 29.84         | 336.2               | "            |
| 15          | 1.178                    | 0.18                                          | 4.44  | 3.73                | 15.13                   | 259.8         | 199.6               | "            |
| 15          | 1.151                    | 0.30                                          | 3.09  | 4.56                | 25.22                   | 180.8         | 244 . I             | a + c        |
| 15          | 1.128                    | 0.51                                          | 1.68  | 5.45                | 42.87                   | 98. <b>28</b> | 291.7               | ."           |
| 15          | 1.112                    | 0.99                                          | 0.35  | 5.65                | 83.22                   | 20.47         | 302.4               | <b>a</b> + b |
| 15          | 1.108                    | 1.07                                          | 0.20  | 5.21                | 89.95                   | 11.70         | 278.9               | 66           |
| 15          | 1.106                    | 1.12                                          | 0.11  | 4.92                | 94.14                   | 6.44          | 263.4               | "            |
| 15          | I . IOI                  | 1.16                                          | 0.14  | 4.00                | 97 . 52                 | 8.19          | 214.1               | "            |
| 15          | 1.090                    | 0.93                                          | 0.95  | 2.03                | 78.18                   | 55.58         | 108.6               | "            |
| -           | a – NaHCO <sub>s</sub> , |                                               |       | b =                 | - NH,HC                 |               | $c = NH_{4}Cl.$     |              |

# AMMONIUM URANYL CARBONATE 2(NH4),CO,UO,CO3.

(Ebelmen.)

100 grams H<sub>2</sub>O dissolve 5 grams of the salt at 15°.

### AMMONIUM LEAD COBALTICYANIDE NH,PbCo(CN),.3H,O.

(Schuler - Sitz. Ber. K. Akad. W. (Berlin) 79, 302.)

100 grams H<sub>2</sub>O dissolve 12.0 grams of the salt at 18°.

#### AMMONIUM CHLORIDE NH,C1.

#### SOLUBILITY IN WATER. (Mulder; below o°, Meerburg – Z. anorg. Ch. 37, 203, 1003.)

|        | (Mulder, below 0, Meerburg - 2. allorg. Cu. 37, 203, 1903.) |              |            |                         |        |  |  |  |  |
|--------|-------------------------------------------------------------|--------------|------------|-------------------------|--------|--|--|--|--|
| t°.    | Gms. NH <sub>4</sub> Cl                                     | per 100 Gms. | t°.        | Gms. NH4Cl per 100 Gms. |        |  |  |  |  |
| • ·    | Solution.                                                   | Water.       | • •        | Solution.               | Water. |  |  |  |  |
| - 15   | 19.7                                                        | 24 · 5       | 40         | 31.4                    | 45 . 8 |  |  |  |  |
| - 10.9 | 20.3                                                        | 25.5         | 50         | 33 · 5                  | 50.4   |  |  |  |  |
| -5.7   | 21.7                                                        | 27.7         | 60         | 35.6                    | 55.2   |  |  |  |  |
| 0      | 22.7                                                        | 29.4         | 70         | 37.6                    | 60.2   |  |  |  |  |
| + 5    | 23.8                                                        | 31.2         | 8 <b>o</b> | 39.6                    | 65.6   |  |  |  |  |
| IO     | 24.9                                                        | 33.3         | 90         | 41.6                    | 71.3   |  |  |  |  |
| 15     | 26.0                                                        | 35.2         | 100        | 43.6                    | 77 · 3 |  |  |  |  |
| 20     | 27 · I                                                      | 37.2         | 110        | 45.6                    | 83.8   |  |  |  |  |
| 25     | 28.2                                                        | 39.3         | 115.6      | 46.6                    | 87.3   |  |  |  |  |
| 30     | <b>2</b> 9 · 3                                              | 41.4         |            |                         |        |  |  |  |  |

Density of saturated solution at  $0^{\circ} = 1.088$ , at  $15^{\circ} = 1.077$ , at  $19^{\circ} = 1.075$ .

SOLUBILITY OF AMMONIUM CHLORIDE IN AQUEOUS AMMONIUM BI-CARBONATE SOLUTIONS SATURATED WITH CO<sub>2</sub>. (Fedotieff - Z. phys. Ch. 49, 169, 1994.)

23

|     | <b>T</b> V4 - 6      | P              | er 1000 C                  | . Solution     |                   | Per 1000 Gms. H <sub>2</sub> O. |                             |               |                   |
|-----|----------------------|----------------|----------------------------|----------------|-------------------|---------------------------------|-----------------------------|---------------|-------------------|
| t*. | Wt. of<br>1 cc. Sol. | G.M.<br>NHLHCO | G.M.<br>NH <sub>4</sub> CL | Gms.<br>NH4HCO | Gms.<br>9. NH4Cl. | G.M.<br>NH HCO                  | G.M.<br>NH <sub>4</sub> Cl. | Gms.<br>NH4HC | Gms.<br>I. NH4Cl. |
| 0   | 1.069                | 0.0            | 4.60                       | o.o            | 246 . I           | 0.0                             | 5 · 57                      | 0.0           | 298.o             |
| 0   | I .077               | 0.37           | 4.41                       | 29.2           | 235.9             | o.46                            | 5.42                        | 36.0          | 290.8             |
| 15  | I .077               | 0.0            | 5.29                       | 0.0            | 283 . I           |                                 |                             |               | 355.0             |
| 15  | 1.085                | 0.62           | 4.95                       | 48.9           | 264.8             | 0.81                            | 6.40                        | 64.2          | 343 · 5           |
| 30  | •••                  | •••            | •••                        | •••            | •••               | 0.0                             | 7 . 78                      | 0.0           | 416.4             |
| 30  | •••                  | •••            | •••                        | •••            | •••               | 1.15                            | 7 . 40                      | 91 ·O         | 397 .0            |

#### Solubility of Ammonium Chloride in Aqueous Solutions of Sodium Chloride Saturated with CO<sub>2</sub>. (Fedoleff.)

|              |                      |                | Per 1000                    | cc. Solution  | <b>1</b> .                  | Per 1000 Gms. H <sub>2</sub> O. |                |               |                             |
|--------------|----------------------|----------------|-----------------------------|---------------|-----------------------------|---------------------------------|----------------|---------------|-----------------------------|
| <b>t *</b> . | Wt. of<br>1 cc. Sol. | G. M.<br>NaCl. | G.M.<br>NH <sub>4</sub> Cl. | Gms.<br>NaCl. | Gms.<br>NH <sub>4</sub> Cl. | G. M.<br>NaCl.                  | G.M.<br>NH4Cl. | Gms.<br>NaCl. | Gms.<br>NH <sub>4</sub> Cl. |
| 0            | 1.069                | 0.0            | 4.60                        | 0.0           | 246.1                       | 0.0                             | 5.57           | 0.0           | 298.0                       |
| ο            | 1.085                | 4.04           | 2.26                        | 236.5         | 121.0                       | 4.89                            | 2.73           | 286.4         | 146.1                       |
| 15           | I .077               | 0.0            | 5.29                        | 0.0           | 283 . 1                     | 0.0                             | 6.64           | 0.0           | 355.0                       |
| 15           | I .097               | 0.81           | 4.71                        | 47 · 5        | 252.I                       | I .02                           | 5.91           | 59.8          | 316.4                       |
| 15           | 1.120                | 1.68           | 4.13                        | 98.0          | 221.7                       | 2.09                            | 5.18           | 122.4         | 277.0                       |
| 15           | 1.153                | 2.87           | 3.38                        | 168 ·o        | 180.7                       | 3 · 57                          | 4.20           | 208.9         | 224.7                       |
| 15           | 1.175                | 3.65           | 2.98                        | 213.5         | 159.4                       | 4.55                            | 3.72           | 266.8         | 198.8                       |
| 30           |                      | •••            | •••                         |               | • • •                       | 0.0                             | 7.78           | 0.0           | 416.4                       |
| 30           | 1.166                | 3.30           | 3.70                        | 193.0         | 198.0                       | 4.26                            | 4.77           | 249.0         | 255.4                       |
| 45           |                      | •••            | • • •                       |               | • • •                       | 0.0                             | 9.03           | 0.0           | 483.7                       |
| 45           | •••                  | •••            | •••                         | •••           | •••                         | 4.0                             | 6.02           | 233.9         | 322 . I                     |

#### SOLUBILITY OF AMMONIUM CHLORIDE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID AT 0°. (Engel — Ann. chim. phys. [6] 13, 379, '88.)

| Sp. Gr. of<br>Solutions. | Milligram 1<br>10 cc- | Molecules per<br>Solution. | r Grams per 100 cc.<br>Solution |                     |  |  |
|--------------------------|-----------------------|----------------------------|---------------------------------|---------------------|--|--|
| Solutions.               | HCI.                  | NH <sub>4</sub> Cl.        | HCl.                            | NH <sub>4</sub> Cl. |  |  |
| 1.076                    | 0.0                   | 46.12                      | 0.0                             | 24.61               |  |  |
| 1.069                    | 2.9                   | 43.6                       | I.05                            | 23.16               |  |  |
| I.070                    | 5.5                   | 41.0                       | I.99                            | 21.78               |  |  |
| 1.071                    | 7.85                  | 39.15                      | 2.84                            | 20.79               |  |  |
| 1.073                    | 10.85                 | 36.45                      | 3.93                            | 19.36               |  |  |
| 1.078                    | 21.4                  | 27.37                      | 7.74                            | 14.54               |  |  |
| 1 106                    | 53.0                  | 10.87                      | 19.18                           | 5 . 78              |  |  |
| 1.114                    | 0.10                  | 8.8                        | 22.07                           | 4.67                |  |  |
|                          |                       |                            | Sat. HClat 12°                  | 3.7 at 17°          |  |  |

.

| Sp. Gr. of<br>Solutions. |              | Molecules<br>Solution. | Grams per 100 cc.<br>Solution. |        |  |
|--------------------------|--------------|------------------------|--------------------------------|--------|--|
|                          | NH3.         | NH <sub>4</sub> Cl.    | NH <sub>6</sub> OH.            | NHLCI. |  |
| 1.067                    | 5.37         | 45.8                   | 0.92                           | 24.52  |  |
| I .054                   | 12.02        | 45·5                   | 2.05                           | 24.35  |  |
| 1.031                    | 38.o         | 44.5                   | 6.48                           | 23.82  |  |
| 1.025                    | 47.0         | 44.0                   | 8.02                           | 23.56  |  |
| 1.017                    | 54·5         | 43.63                  | 9.30                           | 23.35  |  |
| 0.993                    | 8o.o         | 43.12                  | 13.66                          | 23.09  |  |
| 0.992                    | <u>9</u> 0.0 | 44.0                   | 15.36                          | 23.56  |  |
| 0.983                    | 95.5         | <b>44</b> · 37         | 16.29                          | 23.75  |  |
| 0.953                    | 130.0        | 49·75                  | 22 . 18                        | 26.63  |  |
| 0.931                    | 169.75       | 60.0                   | 28.97                          | 32.14  |  |

#### SOLUBILITY IN AQUEOUS AMMONIA SOLUTIONS AT 0°. (Engel – Bull. soc. chim. [3] 6, 17, 1891.)

#### SOLUBILITIES OF MIXTURES OF AMMONIUM CHLORIDE AND OTHER SALTS IN WATER. (Rüdorff, Karsten, Mulder.)

Both salts present in solid phase.

| t°.  | Gram    | s per 100 G    | rams H <sub>2</sub> O.                |      | t°.    | Gran  | ns per 1 | oo Grams H <sub>2</sub> O. |            |
|------|---------|----------------|---------------------------------------|------|--------|-------|----------|----------------------------|------------|
| 19.5 | 29.2 NH | Cl+ 174        | .o NH,NO,                             | R    | b. pt. | 67.71 | NH,CI    | + 21.9 KCl                 | <b>ั</b> м |
| 21.5 | 2Ó.8 "  | + 46           | .5 (NH <sub>4</sub> ) <sub>2</sub> SC | D₄ R | 14.8   | 38.8  | "        | + 34. 2 KNO                | ,K         |
| 20.0 | 33.8 "  | + 11.          | 6 BaCl,                               | R    | 18.5   | 39.8  | "        | + 38.6 KNO                 | K          |
| 18.5 | 39.2 "  | ' + 17.        | $o Ba(NO_a)$                          | , K  | 14.0   | 36.8  | "        | + 14.1 K <sub>2</sub> SO   | R          |
| 15.0 | 28.9 "  | ' + 1 <b>6</b> | .9 KCl                                | R    | 18.7   | 37.9  | "        | + 13.3 K,SO                | K          |
| 22.0 | 30.4 "  | + 19           | I KCl                                 | R    | 18.7   | 22.9  | "        | + 23.9 NaCl                | R          |

#### Solubility of Ammonium Chloride in Absolute Ethyl and Methyl Alcohol at 19° and in Aqueous Ethyl Alcohol Solutions.

100 grams absolute ethyl alcohol dissolve 0.62 grams NH Cl. 100 grams absolute methyl alcohol dissolve 3.35 grams NH Cl.

(de Bruyn - Rec. trav. chim. 11, 156, '92.)

G. NH4Cl per 100 g. Alcohol. II.2 I2.6 I9.4 23.6 30.1

In Aqueous Alcohol at 30°. (Bathrick – J. Physic. Chem. 1, 159, '96.)

In Aq. Alcohol of 45 Wt. %. (Gerardin — Ann. chim. phys. [4] 5, 147, '65.)

| Wt. per cent<br>Alcohol. | G. NH4Cl<br>per 100 g.<br>Alcohol. | Wt. per cent<br>Alcohol. | G. NH4Cl<br>per 100 g.<br>Alcohol. | <b>t</b> °. |
|--------------------------|------------------------------------|--------------------------|------------------------------------|-------------|
| o                        | 40.4                               | 45.9                     | 17.0                               | 4           |
| 8.3                      | 35 · 3                             | 54 · 3                   | 14.0                               | 8           |
| 16.9                     | 31.8                               | 65.o                     | 9.6                                | 27          |
| 25.9                     | 27.5                               | 75.6                     | 6.4                                | 38          |
| 34 · 4                   | 21.7                               | 87.9                     | 2.9                                | 56          |

#### AMMONIUM CHLORIDE

#### SOLUBILITY OF AMMONIUM CHLORIDE IN AQUEOUS GLYCERINE SOLU-TIONS AND IN AQUEOUS ACETONE SOLUTIONS AT 25°. (Herz and Knoch - Z. anorg. Chem. 45, 263, 267, '05.)

25

|                         | Clycerine 1.4 |                                                | ty about 1.5% | ,        |                                | In A       | queous                                         | Acetone. |
|-------------------------|---------------|------------------------------------------------|---------------|----------|--------------------------------|------------|------------------------------------------------|----------|
| Wt. % NH4Cl per 100 cc. |               | Sp. Gr.<br>at $\frac{25^{\circ}}{4^{\circ}}$ . | Sp. Gr.       |          | NH4Cl per 100 cc.<br>Solution. |            | Sp. Gr.<br>at $\frac{25^{\circ}}{4^{\circ}}$ . |          |
| Glycerine.              | Millimols.    | Grams.                                         | 4°            | Acctone. | M                              | fillimols. | Grams.                                         | at 40    |
| 0.                      | 585.1         | 31.32                                          | 1.0793        | 0        | 5                              | \$85.1     | 31.32                                          | 1.0793   |
| 13.28                   | 544.6         | 29.16                                          | 1.0947        | IO       | 5                              | 34.1       | 28.59                                          | 1.0618   |
| 25.98                   | 502.9         | 26.93                                          | I.1127        | 20       | 4                              | 164.6      | 24.87                                          | 1.0451   |
| 45.36                   | 434.4         | 23.26                                          | I.1452        | 30       | 3                              | 396.7      | 21.23                                          | 1.0263   |
| 54-23                   | 403.5         | 21.60                                          | 1.1606        | 40       | 3                              | 128.5      | 17.59                                          | 0.9998   |
| 83.84                   | 291.4         | 15.60                                          | 1.2225        | *46.5    | L                              | 83.7       | 15.19                                          | 0.9800   |
| 100.00                  | 228.4         | 12.23                                          | 1.2617        | *85.7    | U                              | 18.9       | I.OI                                           | 0.8390   |
|                         |               |                                                |               | 90       |                                | 9.4        | 0.50                                           | 0.8274   |

\* Between these two concentrations of acetone, the solution separates into two layers. L indicates lower layer, U indicates upper layer.

Solubility of Tetra Ethyl AMMONIUM CHLORIDE N(C<sub>2</sub>H<sub>s</sub>),Cl, and also of Tetra Methyl Ammonium Chloride N(CH<sub>3</sub>),Cl in Acetonitril.

100 cc. sat. solution in CH<sub>3</sub>CN contain 29.31 gms. N(C<sub>2</sub>H<sub>3</sub>),Cl at 25°. 100 cc. sat. solution in CH<sub>3</sub>CN contain 0.265 gms. N(CH<sub>3</sub>),Cl at 25°. (Walden - Z. physik. Chem. 55, 712, '06.)

#### AMMONIUM CHROMATES.

SOLUBILITY IN WATER AT 30°. (Schreinemaker – Z. physic. Chem. 55, 89, '06.)

| osition in V | Wt. per cent                                                                                                                                                                                              | of:                                                  |                                                                |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|
| olution.     |                                                                                                                                                                                                           |                                                      | Solid Phase.                                                   |
|              | 70 CIO3.                                                                                                                                                                                                  | 70 14113.                                            | (NH <sub>4</sub> ) <sub>2</sub> CrO <sub>4</sub>               |
|              | 47.59                                                                                                                                                                                                     | 20.44                                                | , <i>n</i>                                                     |
|              |                                                                                                                                                                                                           |                                                      | **                                                             |
|              | 38.03                                                                                                                                                                                                     | 12.15                                                | "                                                              |
| 6.87         | 48.02                                                                                                                                                                                                     | 12.0I                                                | $(NH_4)_2CrO_4 + (NH_4)_2Cr_2O_7$                              |
| 5.70         | 47.38                                                                                                                                                                                                     | 8.81                                                 | (NH <sub>4</sub> ) <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> |
| 5.10         | 41.56                                                                                                                                                                                                     | 7.58                                                 | "                                                              |
| 3.50         |                                                                                                                                                                                                           |                                                      | "                                                              |
| 3.10         | 61.08                                                                                                                                                                                                     | 8.80                                                 | "                                                              |
| 3.15         | 59.72                                                                                                                                                                                                     | 6.75                                                 | $(NH_4)_2Cr_2O_7 + (NH_4)_2Cr_3O_{10}$                         |
| 2.27         | 54.90                                                                                                                                                                                                     | 4.14                                                 | (NH4)2Cr3O10                                                   |
| 1.11         | 60.88                                                                                                                                                                                                     | 3.09                                                 | "                                                              |
| 1.03         | 63.07                                                                                                                                                                                                     | 3.09                                                 | $(NH_4)_2Cr_3O_{10} + (NH_4)_2Cr_4O_{13}$                      |
| 0.97         | 65.70                                                                                                                                                                                                     | 2.95                                                 | (NH <sub>4</sub> ) <sub>2</sub> Cr <sub>4</sub> O <sub>3</sub> |
|              | 69.74                                                                                                                                                                                                     | 3.24                                                 |                                                                |
| 0.46         | 71.93                                                                                                                                                                                                     |                                                      |                                                                |
| 0.40         |                                                                                                                                                                                                           |                                                      | $(NH_4)_2Cr_4O_{12}+CrO_3$                                     |
|              | 71.47                                                                                                                                                                                                     | 2.07                                                 |                                                                |
| 0.21         | ***                                                                                                                                                                                                       | ***                                                  | CrO,                                                           |
| 0.0          |                                                                                                                                                                                                           |                                                      | CrO3                                                           |
|              | Nution.<br>% NH <sub>3</sub> .<br>22 · 23<br>16 · 53<br>8 · 20<br>6 · 37<br>6 · 87<br>5 · 70<br>5 · 10<br>3 · 15<br>2 · 27<br>1 · 11<br>1 · 03<br>0 · 97<br>0 · 65<br>0 · 40<br>0 · 41<br>0 · 21<br>0 · 0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |                                                                |

100 gms. of the sat. aq. solution contain 28.80 gms. (NH<sub>4</sub>)<sub>2</sub>CrO<sub>4</sub> at 30°. 100 gms. of the sat. aq. solution contain 32.05 gms. (NH<sub>4</sub>)<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> at 30°.

#### AMMONIUM FLUOBORIDE 26

# AMMONIUM FLUOBORIDE NH43BF.

100 parts of water dissolve 25 parts salt at 16°, and about 97 parts at b. pt. (Stolba - Chem. Techn. Cent. Anz. 7, 450.)

**AMMONIUM FORMATE** HCOONH, and also Ammonium Acid Formate.

#### SOLUBILITY IN WATER. (Groschuff – Ber. 36, 4351, '03.)

| t°.  | Gms. HCC<br>per 100 | Gms.   | Solid.<br>Phase. | <b>t°</b> | Gms. per<br>Solut | ion.   | Solid.                          |
|------|---------------------|--------|------------------|-----------|-------------------|--------|---------------------------------|
|      | Solution.           | Water. |                  |           | ICOONH2           | + нсос |                                 |
| - 20 | 41.9                | 72     | HCOONH,          | - 6.5     | 46.7              | 34. I  | HCOONH, HCOOH                   |
| 0    | 50.5                | 102    | "                | + 1.5     | 49.6              | 36.2   | 16                              |
| 20   | 58.9                | 143    | "                | 6.0       | 51.3              | 37.4   | 6.6                             |
| 40   | 67.1                | 204    | "                | 8.5       | 52. I             | 38.0   | "                               |
| 60   | 75.7                | 311    | "                | - 7       | 49.6              | 36.2   | HCOONH, labil.                  |
| 80   | 84.2                | 531    | "                | +13       | 53.0              | 38.6   | " stabil.                       |
| II   | 6 f. pt.            |        |                  | 29        | 55.8              | 40.7   | 66 66                           |
|      | -                   |        |                  | 39        | 57.8              | 42.2   | H <sub>2</sub> O free solution. |

SOLUBILITY OF AMMONIUM FORMATE IN FORMIC ACID SOLUTIONS. (Groschuff.)

30 grams of HCOONH, dissolved in weighed amounts of formic acid and cooled to the point at which a solid phase separated.

| t°.           | Gms.<br>HCOONH4<br>per<br>100 Gms.<br>Solution. | per<br>100 G. M. | Phase.           | <b>\$°</b> . | Gms.<br>HCOONH <sub>4</sub><br>per<br>100 Gms.<br>Solution. | per<br>100 G. I | H <sub>4</sub> Solid<br>M. Phase. |                   |
|---------------|-------------------------------------------------|------------------|------------------|--------------|-------------------------------------------------------------|-----------------|-----------------------------------|-------------------|
| - 3           | 35.3                                            | 39.9             | HCOONH,<br>HCOOH | . 11<br>39   | 50.0<br>57.8                                                | 73.0<br>100.0   | HCOONH.                           | labil.<br>stabil. |
| + 8.5<br>21.5 |                                                 | 49•9<br>73.0     | **               | 78           | 73.1<br>.pt. 100.0                                          | 199.0<br>∞      | 44<br>46                          | 6.<br>66          |

#### **AMMONIUM IODATE NH.IO.**

100 parts H<sub>2</sub>O dissolve 2.6 parts salt at 15° and 14.5 parts at 100°. (Rammelsberg – Pogg. Ann. 44, 555, 1838.)

#### Tetra Methyl **AMMONIUM IODIDE** N(CH<sub>3</sub>)<sub>4</sub>I.

SOLUBILITY IN SEVERAL SOLVENTS. (Walden - Z. physik. Chem. 55, 708, '06.)

| (Walden — Z. physi                 | k. Chem. 55.                                                                                                                                                                                                                                                                                                                                                                | 708, '06.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             | _                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Formula.                           | t°.                                                                                                                                                                                                                                                                                                                                                                         | Sp. Gr. of<br>Solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\underbrace{\text{Gms. N(CH_3)_4}}_{\text{cc. Solution.}}$ | Gms.<br>Solution.                                                                                                                                                                                                                                                                                                                   |
| H,O                                | 0                                                                                                                                                                                                                                                                                                                                                                           | 1.0188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.01                                                        | I .97                                                                                                                                                                                                                                                                                                                               |
| H <sub>2</sub> O                   | 25                                                                                                                                                                                                                                                                                                                                                                          | 1.0155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.31-5.89                                                   | 5.22                                                                                                                                                                                                                                                                                                                                |
| CH <sub>1</sub> OH                 | ō                                                                                                                                                                                                                                                                                                                                                                           | 0.8025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.18-0.22                                                   | 0.22                                                                                                                                                                                                                                                                                                                                |
| CH.OH                              | 25                                                                                                                                                                                                                                                                                                                                                                          | 0.7920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.38-0.42                                                   | o.48                                                                                                                                                                                                                                                                                                                                |
| C,H,OH                             | 25                                                                                                                                                                                                                                                                                                                                                                          | 0.7894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.09                                                        |                                                                                                                                                                                                                                                                                                                                     |
| (CH <sub>2</sub> OH) <sub>2</sub>  | ō                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.014                                                       | • • •                                                                                                                                                                                                                                                                                                                               |
| (CH2OH)2                           | 25                                                                                                                                                                                                                                                                                                                                                                          | 1.0678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.240                                                       | 0.224                                                                                                                                                                                                                                                                                                                               |
| CH <sub>3</sub> CN                 | 25                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.650                                                       | • • •                                                                                                                                                                                                                                                                                                                               |
| CH,NO,                             | ō                                                                                                                                                                                                                                                                                                                                                                           | 1.1387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.25-0.32                                                   | 0.22                                                                                                                                                                                                                                                                                                                                |
| CH,NO,                             | 25                                                                                                                                                                                                                                                                                                                                                                          | 1.1285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.34-0.38                                                   | 0.21                                                                                                                                                                                                                                                                                                                                |
| (CH <sub>2</sub> ) <sub>2</sub> CO | ō                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.118                                                       |                                                                                                                                                                                                                                                                                                                                     |
| (CH <sub>3</sub> ) <sub>2</sub> CO | 25                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.187                                                       |                                                                                                                                                                                                                                                                                                                                     |
| C.H.OH.COH                         | ō                                                                                                                                                                                                                                                                                                                                                                           | 1.1492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.302                                                       | 0.263                                                                                                                                                                                                                                                                                                                               |
| C.H.OH.COH                         | 25                                                                                                                                                                                                                                                                                                                                                                          | 1.1379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.510                                                       | 0.484                                                                                                                                                                                                                                                                                                                               |
|                                    | Formula.<br>H <sub>4</sub> O<br>H <sub>5</sub> O<br>CH <sub>5</sub> OH<br>CH <sub>5</sub> OH<br>(CH <sub>5</sub> OH)<br>(CH <sub>5</sub> OH) <sub>2</sub><br>(CH <sub>5</sub> OH) <sub>2</sub><br>CH <sub>5</sub> CN<br>CH <sub>5</sub> NO <sub>2</sub><br>(CH <sub>5</sub> ) <sub>2</sub> CO<br>(CH <sub>5</sub> ) <sub>2</sub> CO<br>C <sub>5</sub> H <sub>5</sub> OH.COH | Formula.         t°.           H <sub>4</sub> O         0           H <sub>4</sub> O         25           CH <sub>4</sub> OH         0           CH <sub>4</sub> OH         25           CH <sub>4</sub> OH) <sub>2</sub> 0           (CH <sub>4</sub> OH) <sub>2</sub> 0           CH <sub>4</sub> NO <sub>2</sub> 0           CH <sub>4</sub> NO <sub>5</sub> 25           (CH <sub>4</sub> ) <sub>2</sub> CO         0           (CH <sub>4</sub> ) <sub>2</sub> CO         25           C <sub>4</sub> H <sub>4</sub> OH,COH         0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$        | Formula. $t^{\circ}$ .Sp. Gr. of<br>Solution. $\frac{Gms. N(CH_3)_4}{cc. Solution.}$ H_4O0I.01882.01H_2O25I.0155 $5.31-5.89$ CH_4OH00.80250.18-0.22CH_4OH250.79200.38-0.42C_H_6OH251.06780.240CH_4OH)_20I.014(CH+0H)_325I.06780.240CH_4NO_20I.13870.25-0.32CH_4NO_20I.13870.25-0.32CH_3CO00.118(CH_3)_2CO250.187C_H_0OH0I.14920.302 |

.

## AMMONIUM IODIDE

# Tetra Ethyl AMMONIUM IODIDE N(C2H3)4I.

SOLUBILITY IN SEVERAL SOLVENTS. (Walden - Z. physik. Chem. 55, 698, 'o6.)

27

|  |                       |                                                      |     | Sp.Gr.of  | Gms. N(C2H5), I per 100. |                   |  |
|--|-----------------------|------------------------------------------------------|-----|-----------|--------------------------|-------------------|--|
|  | Solvent.              | Formula.                                             | t°. | Solution. | cc. Solution.            | Gms.<br>Solution. |  |
|  | Water                 | H <sub>2</sub> O                                     | 0   | 1.0470    | 16.31                    | 15.58             |  |
|  | Water                 | H <sub>2</sub> O                                     | 25  |           | 36.33(35.5)              | 13.44             |  |
|  | Methyl Alcohol        | CH <sub>3</sub> OH                                   | 0   | A 1       | 3.7-4.3                  | 4.44              |  |
|  | Methyl Alcohol        | CH <sub>3</sub> OH                                   | 25  | 0.8463    | 10.5 (10.7)              | 12.29             |  |
|  | Ethyl Alcohol         | C2H3OH                                               | 0   |           |                          | 0.439             |  |
|  | Ethyl Alcohol         | C <sub>2</sub> H <sub>5</sub> OH                     | 25  |           |                          | 1.249             |  |
|  | Glycol                | (CH2OH)2                                             | 0   |           |                          | 2.97              |  |
|  | Glycol                | $(CH_2OH)_2$                                         | 25  | 1.0004    |                          | 7.00              |  |
|  | Acetonitril           | CH <sub>3</sub> CN                                   | 0   | 0.8163    |                          | 2.74              |  |
|  | Acetonitril           | CH <sub>3</sub> CN                                   | 25  | 0.7929    | 3.04 (3.54)              | 3.83              |  |
|  | Propionitril          | CH <sub>3</sub> CH <sub>2</sub> CN                   | 0   | 0.8059    |                          | 0.767             |  |
|  | Propionitril          | CH <sub>3</sub> CH <sub>2</sub> CN                   |     | 0.7830    | 0.81-1.0I                | 1.29              |  |
|  | Benzonitril           | C <sub>a</sub> H <sub>5</sub> CN                     | 25  |           | 0.467                    |                   |  |
|  | Methyl Sulphocyanide  | CH <sub>3</sub> SCN                                  | 25  | 1.0828    | 4.40                     | 4.06              |  |
|  | Ethyl Sulphocyanide   | C2HSCN                                               | 25  | 1.0012    | 0.475                    | 0.47              |  |
|  | Nitro Methane         | CH <sub>3</sub> NO <sub>2</sub>                      | 0   |           | 3.59                     | 3.004             |  |
|  | Nitro Methane         | CH <sub>3</sub> NO <sub>2</sub>                      | 25  | 1.1476    | 5.61-6.27                | 5.61              |  |
|  | Nitroso Dimethylin    | (CH <sub>3</sub> ) <sub>2</sub> N.NO                 | 25  | I.0059    | 2.67                     | 2.66              |  |
|  | Acetyl Acetone        | CH <sub>3</sub> COCH <sub>2</sub> COOCH <sub>3</sub> | 25  |           | 0.268                    |                   |  |
|  | Furfurol              | C4H3O.COH                                            | 0   | 1.1738    | 3.9I                     | 3.33              |  |
|  | Furfurol              | C4H3O.COH                                            | 25  |           | 5.33                     | 4.55              |  |
|  | Benzaldehyde          | C <sub>6</sub> H <sub>5</sub> COH                    | 25  |           | 0.43                     |                   |  |
|  | Salicylaldehyde       | C.H.OH.COH                                           | 25  |           | change-                  | 1.1-              |  |
|  |                       |                                                      |     |           | able-17.7                |                   |  |
|  | Anisaldehyde          | C.H.OCH.COH                                          | 25  |           | 0.59                     |                   |  |
|  | Acetone               | (CH <sub>3</sub> ) <sub>2</sub> CO                   | 0   | 0.7991    | 0.174                    | 0.218             |  |
|  | Acetone               | (CH <sub>a</sub> ) <sub>2</sub> CO                   | 25  |           | 0.249                    | 0.218             |  |
|  | Ethyl Acetate         | CH <sub>3</sub> COOC <sub>2</sub> H <sub>5</sub>     | 25  | * * *     | 0.00039                  | ***               |  |
|  | Ethyl Nitrate         | C2H3ONO2                                             | 25  | 1.0984    | 0.062                    | 0.056             |  |
|  | Benzoyl Ethyl Acetate | C.H.COCH2COOC2H                                      | 25  | 1.1303    | 0.321                    | 0.284             |  |
|  | Di-Methyl Malonate    | CH <sub>2</sub> (COOCH <sub>a</sub> ) <sub>2</sub>   | 25  | 1,1335    | 0.040                    | 0.035             |  |
|  | Methyl Cyan Acetate   | CH <sub>2</sub> CNCOOCH <sub>3</sub>                 | 0   | 1.1341    | 1.82                     | 1.605             |  |
|  | Methyl Cyan Acetate   | CH <sub>2</sub> CNCOOCH <sub>3</sub>                 | 25  |           | 2.83                     |                   |  |
|  | Ethyl Cyan Acetate    | CH2CNCOOC2H5                                         | 0   | 1.0760    | 1.057                    | 0.981             |  |
|  | Ethyl Cyan Acetate    | CH2CNCOOC2H5                                         | 25  | 1.0607    | 1.71                     | 1.41              |  |
|  |                       |                                                      |     |           |                          |                   |  |

# Tetra Propyl **AMMONIUM IODIDE** N(C<sub>2</sub>H<sub>7</sub>)<sub>4</sub>I.

SOLUBILITY IN SEVERAL SOLVENTS. (Walden - Z. physik. Chem. 55, 709, '06.)

|                    | • • • • • •                                        | •   |                         | Gme N(Calle) T                                               |                   |
|--------------------|----------------------------------------------------|-----|-------------------------|--------------------------------------------------------------|-------------------|
| Solvent.           | Formula.                                           | t°. | Sp. Gr. of<br>Solution. | Gms. N(C <sub>8</sub> H <sub>7</sub> ), I ;<br>cc. Solution. | Gms.<br>Solution. |
| Methyl Alcohol     | CHJOH                                              | ο   | 0.9756                  | 40.92                                                        | 41.94             |
| Methyl Alcohol     | CH <sub>3</sub> OH                                 | 25  | 1.0187                  | 56.42                                                        | 55.37             |
| Ethyl Alcohol      | С,Н,ОН                                             | ō   | 0.8349                  | 6.5-6.8                                                      | 8.14              |
| Ethyl Alcohol      | C,H,OH                                             | 25  | 0.8716                  | 19.88-20.29                                                  | 23.28             |
| Acetonitril        | CH <sub>5</sub> CN                                 | ō   | 0.8553                  | 13.03                                                        | 15.24             |
| Acetonitril        | CH <sub>s</sub> CN                                 | 25  | 0.8584                  | 18.69                                                        | 21.77             |
| Propionitril       | C,H,CN                                             | ō   | 0.8280                  | 6.37                                                         | 7.66              |
| Propionitril       | C,H,CN                                             | 25  | 0.8191                  | 9.65                                                         | 11.76             |
| Benzonitril        | C <sub>6</sub> H <sub>6</sub> CN                   | 25  | 1.0199                  | 8.44                                                         | 8.35              |
| Nitro Methane      | CH,NO,                                             | Ō   | 1.181                   | 14.79                                                        | 12.52             |
| Nitro Methane      | CH,NO,                                             | 25  | 1.158                   | 22.24                                                        | 19.21             |
| Nitro Benzol       | C,H,NO,                                            | 25  | 1.193                   | 5.71                                                         | 4.79              |
| Benzaldehyde       | C,H,COH                                            | ō   | 1.0581                  | 7.06                                                         | 6.67              |
| Benzaldehyde       | C•H•COH                                            | 25  | 1.0549                  | 9.87                                                         | 9.35              |
| Anisaldehyde       | C,H,OCH,COH                                        | ō   | 1.1114                  | 5.60                                                         | 5.04              |
| Anisaldehyde       | C,H.OCH.COH                                        | 25  | 1.1004                  | 6.75                                                         | 6.14              |
| Salicylaldehyde    | C,H.OH.COH                                         | 52  | • • •                   | 39.28                                                        | •••               |
| Ethylnitrite       | C.H.ONO,                                           | 0   | 1.1207                  | 0.522                                                        | o.466             |
| Ethylnitrite       | C <sub>6</sub> H <sub>5</sub> ONO <sub>3</sub>     | 25  | 1.1025                  | 0.653                                                        | 0.592             |
| Di-Methyl Malonate |                                                    | 0   | 1.1532                  | 0.298                                                        | 0.259             |
| Di-Methyl Malonate | CH <sub>2</sub> (COOCH <sub>3</sub> ) <sub>3</sub> | 25  | 1.1345                  | 0.320                                                        | 0.282             |
| Acetone            | (CH <sub>a</sub> ),C                               | Ō   | 0.8259                  | 2.692                                                        | 3.26              |
| Acetone            | (CH <sub>a</sub> ),CO                              | 25  | 0.8049                  | 3.944                                                        | 4.90              |
| Ethyl Acetate      | ĊH,COOC,H,                                         | 25  | 0.8975                  | 0.0063                                                       | 0.007             |

# AMMONIUM NITRATE NH,NO,.

1

SOLUBILITY IN WATER.

(Schwarz - Ostwald's Lehrbuch, 2d ed. p. 425; Muller and Kaufmann - Z. physik. Chem.

|  | °oı−'o₂.) |  |
|--|-----------|--|
|  |           |  |
|  |           |  |
|  |           |  |

| <b>t°</b> . | Sp. Gr.<br>Solution. | G. Mols.<br>NH4NO3 per<br>100 Mols. H3O. |         | LNO <sub>2</sub> per<br>Gms.<br>Water. | Solid<br>Phase.                               |
|-------------|----------------------|------------------------------------------|---------|----------------------------------------|-----------------------------------------------|
| ο           |                      | 26.63                                    | 54.19   | 118.3                                  | $NH_{1}NO_{3}$ rhomb. $\beta$                 |
| 12.2        | 1.2945               | 34.50                                    | 60.53   | 153.4                                  | "                                             |
| 20.2        | 1.3116               | 43.30                                    | 65.80   | 192.4                                  | 66                                            |
| 25.0        | 1.3197               | 48.19                                    | 68.17   | 214.2                                  | 66                                            |
| 30.0        | 1.3200               | 54 40                                    | 70.73   | 241.8                                  | "                                             |
| 32.1        | 1.3344               | 57.60                                    | 71.97   | 256.9                                  | $NH_NO_1$ rhomb. $\beta$ + rhomb. a           |
| 35.0        | 1.3394               | 59.80                                    | 72.64   | 265.8                                  | NH,NO, rhomb. a                               |
| 40.0        | 1.3464               | ŏố.80                                    | 74.82   | 207.0                                  | • • •                                         |
| 50.0        |                      | 77 · 4I                                  | 77 · 49 | 344.0                                  | <b>66</b>                                     |
| 60.0        |                      | 94.73                                    | 80.81   | 421.0                                  | "                                             |
| 70.0        |                      | 112.30                                   | 83.32   | 499.0                                  | "                                             |
| 80.0        |                      | 130.50                                   | 85.25   | 580.0                                  | "                                             |
| 00.0        |                      | 166.50                                   | 88.08   |                                        | NH <sub>4</sub> NO <sub>3</sub> rhombohedral? |
| 100.0       | •••                  | 196.00                                   | 89.71   | 871.0                                  | "                                             |

AMMONIUM NITRATE

Solubilities of Mixtures of Ammonium Nitrate and Other Salts. (Rudorff - Mulder.)

20

100 gms. H<sub>2</sub>O dissolve 162.9 gms. NH<sub>4</sub>NO<sub>3</sub> + 77.1 gms. NaNO<sub>3</sub> at 16° R. 100 gms. H<sub>2</sub>O dissolve 88.8 gms. NH<sub>4</sub>NO<sub>3</sub> + 40.6 gms. KNO<sub>3</sub> at 9° M. 100 gms. H<sub>2</sub>O dissolve 101.3 gms. NH<sub>4</sub>NO<sub>3</sub> + 6.2 gms. Ba(NO<sub>3</sub>)<sub>2</sub> at

9° M.

#### SOLUBILITY OF AMMONIUM NITRATE IN AMMONIA. (Kuriloff – Z. physik. Chem. 25, 109, '98.)

| ŧ°.   | Gms.<br>NH <sub>4</sub> NO <sub>3</sub> . | Gms.<br>NH3. | Mols. NH4NO2<br>per 100 Mols.<br>NH4NO3<br>+ NH3. |       | Gms.<br>NH4NO3. | Gms.<br>NH3. | Mols. NH4NO3<br>per 100 Mols.<br>NH4NO3<br>+ NH3. |
|-------|-------------------------------------------|--------------|---------------------------------------------------|-------|-----------------|--------------|---------------------------------------------------|
| -80   | 0                                         | 100          | 0.0                                               | 33.3  | 0.9358          | 0.2352       |                                                   |
| -60   | 1.3918                                    | 4.4327       | 6.25                                              | 35.9  | 0.7746          | 0.1857       | 47.0                                              |
| -44.5 | 0.9526                                    | 1.2457       | 13.9                                              |       | 4.2615          | 0.7747       | 53.8                                              |
| -30   | 0.8308                                    | 0.3700       | 32.3                                              | 94.0  | 0.6439          | 0.0665       | 67.3                                              |
| -10.5 | 0.9675                                    | 0.3515       | 36.9                                              | 190.8 | 0.7578          | 0.0588       | 74.2                                              |
| 0     | 0.7600                                    | 0.2607       | 38.3                                              | 168.0 |                 |              | 100.0                                             |
| +0    |                                           |              |                                                   | 1     |                 | 4            |                                                   |

t° = temperature of equilibrium between solution and solid phase.

SOLUBILITY OF AMMONIUM NITRATE IN NITRIC ACID. (Groschuff - Ber. 37, 1488, '04.)

Determinations by the "Synthetic Method," see Note, page 9.

| t°.   | Gms.<br>NH4NO3<br>per 100<br>Gms. Sol. | Mols.<br>NH4NO3<br>per 100<br>Mols. HNO | Solid<br>Phase.      | t°.   | Gms.<br>NH <sub>4</sub> NO <sub>3</sub><br>per 100<br>Gms. Sol. | Mols.<br>NH,NO3<br>per 100<br>Mols. HNO | Solic<br>Phase |                  |
|-------|----------------------------------------|-----------------------------------------|----------------------|-------|-----------------------------------------------------------------|-----------------------------------------|----------------|------------------|
| 8     | 21.1                                   | 21.1                                    | NH4NO3.2HNO3         | 11.0  | 51.7                                                            | 84.3                                    | NH,NO3.        | HNO <sub>3</sub> |
| 23    | 28.7                                   | 31.6                                    | " a                  | 12.0  | 54.7                                                            | 95.I                                    |                | labil.           |
| 29.5m | .pt. 38.8                              | 50.0                                    |                      | 11.5  | 57.6                                                            | 108.0                                   | **             | Ь                |
| 27.5  | 44.6                                   | 63.4                                    | ч b                  | 11.5  | 54.0                                                            | 92.4                                    | NH4NO8         | labil.           |
| 23.5  | 49.4                                   | 76.8                                    | "                    | 17.0  | 54.7                                                            | 95.I                                    |                | stabil.          |
| 17.5  | 54.0                                   | 92.4                                    | **                   | 27.0  | 56.2                                                            | IOI.O                                   |                |                  |
| 16.5  | 54.3                                   | 93.5                                    | NIL NO IDIO          | 49.0  |                                                                 | 120.0                                   | **             |                  |
| 4.0   | 45.8                                   | 66.7                                    | NH4NO3.HNO3<br>labil | 79.0  | 68.I                                                            | 168.0                                   |                |                  |
|       | a=                                     | solution                                | n in HNO.            | b = s | olution                                                         | in NH.                                  | NO.            |                  |

#### SOLUBILITY OF AMMONIUM TRI-NITRATE IN WATER. (Groschuff.)

| ŧ*.       | Gms. NH <sub>4</sub> NO <sub>3</sub><br>per 100<br>Gms.<br>Solution. | Gms. HNOg<br>per 100<br>Gms.<br>Solution. | Mols. NH4NO3*<br>per 100<br>Mols.<br>H2O. | Mols. NH4N<br>per 100<br>total Mols.<br>Solution. | Solid        |
|-----------|----------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------------------|--------------|
| -8        | 34.2                                                                 | 53.9                                      | 64.3                                      | 22.0                                              | NH4NO3.2HNO3 |
| -2.5      | 34.8                                                                 | 54.8                                      | 75.I                                      | 23.I                                              | "            |
| +3.0      | 35.4                                                                 | 55.8                                      | 90.0                                      | 24.3                                              | **           |
| 8.5       | 36.6                                                                 | 56.9                                      | 113.0                                     | 25.7                                              | "            |
| 19.5      | 37.4                                                                 | 58.9                                      | 225.0                                     | 29.0                                              | "            |
| 25.0      | 38.1                                                                 | 60.0                                      | 450.0                                     | 31.0                                              | "            |
| 29.5 m. p | t. 38.8                                                              | 61.2                                      | 0.0                                       | 00                                                |              |
|           |                                                                      | • or NE                                   | LNO3.2HNO3.                               |                                                   |              |

#### AMMONIUM NITRATE

#### SOLUBILITY OF AMMONIUM NITRATE IN AQUEOUS ETHYL ALCOHOL. (Fleckenstein - Physic. Z. 6, 419, '05.)

30

|     | Grams of NH <sub>4</sub> NO <sub>5</sub> Dissolved per 100 Grams Aq. Alcohol of (Wt.%). |              |         |              |         |       |  |
|-----|-----------------------------------------------------------------------------------------|--------------|---------|--------------|---------|-------|--|
| t°. | 100%.                                                                                   | 86.77%.      | 76.12%. | 51.65%.      | 25.81%. | o%.   |  |
| 20  | 2.5                                                                                     | <b>II</b> .0 | 23.0    | 70.0         | 140     | 195   |  |
| 30  | 4.0                                                                                     | 14.0         | 32.0    | <u>9</u> 0.0 | 165     | 230   |  |
| 40  | 5.0                                                                                     | 18.0         | 43.0    | 115.0'       | 196     | 277   |  |
| 50  | ō.o                                                                                     | 24.0         | 55.0    | 144.0        | 244     | 365   |  |
| δo  | 7.5                                                                                     | 30.0         | 70.0    | 183.0        | 320     |       |  |
| 70  | 9.0                                                                                     | 41.0         | 93.0    | 230.0        | •••     | •••   |  |
| 8o  | 10.5                                                                                    | 56.0         | •••     |              | • • •   | • • • |  |

Note. — The figures in the preceding table were read from curves shown in the abridged report of the work, and are therefore only approximately correct. Determinations of the solubility in methyl alcohol solutions were also made but not quoted in the abstract. The "Synthetic Method" (see Note, page 9) was used.

100 grams absolute ethyl alcohol dissolve 4.6 grams NH<sub>4</sub>NO<sub>3</sub> at 14° and 3.8 grams at 20.5°. 100 grams absolute methyl alcohol dissolve 14.6 grams NH<sub>4</sub>NO<sub>3</sub> at

14° and 17.1 grams at 20.5°.

(Schiff and Monsacchi - Z. physik. Chem. 21, 277, '96; at 20.5° de Bruyn - Ibid., 10, 783, '92.)

#### AMMONIUM MAGNESIUM NITRATE 2NH,NO,Mg(NO).

100 parts water dissolve 10 parts salt at 12.5°. (Foucroy.)

#### AMMONIUM MANGANIC MOLYBDATE 5(NH4), MOO4. Mn2(MO3O7)3. 12H,O.

100 parts water dissolve 0.98 parts salt at 17°.

(Struve - J. pr. Chem. 61, 460, '54.)

#### AMMONIUM OXALATE (NH4),C2O4.

100 grams H<sub>2</sub>O dissolve 2.215 grams (NH<sub>4</sub>)<sub>2</sub>C<sub>2</sub>O<sub>4</sub> at 0° Sp. Gr. of solution = 1.0105.

(Engel - Ann. chim. phys. [6] 13, 350, '88.)

### SOLUBILITY OF NEUTRAL AMMONIUM OXALATE IN AQUEOUS SOLU-TIONS OF ACID AMMONIUM OXALATE.

(Engel.)

| Milligram Mols. per 10<br>cc. Solution. |                  | Grams per 100 cc.<br>Solution. |                     |  |
|-----------------------------------------|------------------|--------------------------------|---------------------|--|
| (NH4)2C2O4                              | NH4HC2O4         | (NH4)2C2O4                     | NH HC.O.            |  |
| 3.54                                    | 0.0              | 2.19                           | 0.0                 |  |
| 2.65                                    | 1.45             | 1.63                           | 0.77                |  |
| 2.475                                   | 2.525            | I.52                           | τ.34                |  |
| 2.38                                    | 2.90             | I · 47                         | I • 54 <sup>≢</sup> |  |
|                                         | Both salts press | nt in solid phase              |                     |  |

Both salts present in solid p

#### AMMONIUM OXALATE

#### SOLUBILITY OF AMMONIUM OXALATE AND OXALIC ACID IN WATER AT 25°. (Walden — Am. Ch. J. 34, 149, '05.)

31

Mixtures of the two substances were dissolved in warm water and the solutions allowed to cool in a thermostadt held at 25°.

| (               | Composition | of Solution.                     |         |    |
|-----------------|-------------|----------------------------------|---------|----|
| Grams per solut | ion.        | Mols. per 10<br>H <sub>2</sub> O |         |    |
| (NH4)2C2O4      | H2C2O4.     | (NH4)2C2O4.                      | H2C2O4. |    |
| 0.28            | 10.20       | 0.045                            | 2.281   | 1  |
| 0.46            | 7.24        | 0.072                            | 1.570)  |    |
| 2.44            | 2.59        | 0.372                            | 0.546   |    |
| 3.65            | 2.80        | 0.566                            | 0.599   |    |
| 4.99            | 3.41        | 0.791                            | 0.745)  | -  |
| 5.20            | 3.55        | 0.824                            | 0.781   | -  |
| 5.36            | 3.38        | 0.853                            | 0.741)  |    |
| 6.27            | 3.04        | I.00                             | 0.671 { | 1  |
| 7.03            | 2.90        | 1.13                             | 0.645)  |    |
| 7.08            | 2.70        | 1.14                             | 0.599   | 1  |
| 6.92            |             | 0.775                            |         | 13 |
|                 |             |                                  |         |    |

Solid Phase.

H2C2O4.2H2O and (NH4)2C2O4.3H2C2O4.4H2O

Double salt, (NH4)2C2O4.3H2C2O4.4H2O

(NH4)2C2O4.3H2C2O4.4H2O and (NH4)2C2O4.H2C2O4.H2O

Double salt, (NH4)2.C2O4.H2C2O4.H2O

(NH<sub>4</sub>)<sub>2</sub>C<sub>2</sub>O<sub>4</sub>.H<sub>3</sub>C<sub>2</sub>O<sub>4</sub>.H<sub>2</sub>O and (NH<sub>4</sub>)<sub>2</sub>C<sub>2</sub>O<sub>4</sub> (NH<sub>4</sub>)<sub>2</sub>C<sub>2</sub>O<sub>4</sub>

#### AMMONIUM HYDROGEN PHOSPHITE (NH,H)HPO3.

100 grams water dissolve 171 grams (NH4H)HPO3 at 0°, 190 grams at 14.5° and 260 grams at 31°.

(Amat. - Compt. rend. 105, 809, '87.)

#### AMMONIUM PERMANGANATE NH,MnO,.

100 parts water dissolve approximately 8 parts of NH<sub>4</sub>MnO<sub>4</sub> at 15°. (Aschoff.)

#### AMMONIUM FLUO SILICATE (NH4)2SiF6.

100 parts water dissolve 18.5 parts (NH<sub>4</sub>)<sub>2</sub>SiF<sub>8</sub> at 17.5°, Sp. Gr. 1.096. (Stolba - Chem. Centr. 418, 1877.)

#### AMMONIUM SALICYLATE C.H.(OH)COONH.

100 parts  $H_2O$  dissolve 111.1 parts  $C_6H_4(OH)COONH_4$  at 25°; 100 parts alcohol dissolve 43.5 parts at 25° and 100 parts at the b. pt. (U. S. P.)

#### AMMONIUM SULPHATE (NH.),SO.

Sp

#### SOLUBILITY IN WATER. (Mulder.)

| t°. G | Grams (NH4)2SO | rams (NH4)2SO4 per 100 Grams. |           | Grams (NH4)2SO4 per 100 Grams. |           |
|-------|----------------|-------------------------------|-----------|--------------------------------|-----------|
|       | Water.         | Solution.                     | t°.       | Water.                         | Solution. |
| 0     | 70.6           | 41.4                          | 30        | 78.0                           | 43.8      |
| 5     | 71.8           | 41.8                          | 40        | 81.0                           | 44.8      |
| IO    | 73.0           | 42.2                          | 60        | 88.0                           | 46.8      |
| 15    | 74.2           | 42.6                          | 80        | 95.3                           | 48.8      |
| 20    | 75-4           | 43.0                          | 100       | 103.3                          | 50 8      |
| 25    | 76.7           | 43.4                          | 108.9     | 107.5                          | 51.8      |
| Gr.   | of saturated   | solution at                   | t 15° = 1 | .248: at 10                    | = 1.241.  |

#### AMMONIUM SULPHATE 32

SOLUBILITY OF MIXTURES OF AMMONIUM SULPHATE AND COPPER SULPHATE AT 16°, AND OF AMMONIUM SULPHATE AND POTASSIUM SULPHATE AT 19.1°.

#### (Rüdorff - Ber. 6, 482, '73.)

| $(NH_4)_2SO_4 + CuSO_4.$                                   | (NH4)2SO4 + K2SO4.                                         |  |  |  |
|------------------------------------------------------------|------------------------------------------------------------|--|--|--|
| Preparation of Solution. G. per 100 g. Solution.           | Preparation of Solution. G.per 100 g.Solution              |  |  |  |
| CuSO4 (NH4)2SO4.                                           | K2SO4. (NH4)2SO4.                                          |  |  |  |
| Both salts in excess 8.55 7.12                             | Both salts in excess 39.3 37.97                            |  |  |  |
| 15 cc. sat. sol. + 3 gms.                                  | 15 cc. sat. sol. + 4 g.                                    |  |  |  |
| (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> 1.77 18.16 | K2SO4 4.94 33.26                                           |  |  |  |
| 15 cc. sat. sol. + 3 gms.                                  | 15 cc. sat. sol.+4 g.                                      |  |  |  |
| CuSO <sub>4</sub> .5H <sub>2</sub> O 15.85 5.65            | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> 2.05 40.80 |  |  |  |

#### SOLUBILITY OF AMMONIUM SULPHATE IN AQUEOUS ETHYL ALCOHOL SOLUTIONS.

(Traube and Neuberg – Z. physik. Chem. 1, 510, '87; Bodländer – Ibid. 7, 318, '91; Schreinemaker – Ibid. 23, 657, '97; de Bruyn – Ibid. 32, 68, '00; Linebarger – Am. Ch. J. 14, 380, '92.)

| Upper Layer Results.                         |            | Lower Layer Results.                                  |                                                                                 |      |      |  |
|----------------------------------------------|------------|-------------------------------------------------------|---------------------------------------------------------------------------------|------|------|--|
| Grams per 100 Gms. Solu-<br>tion at 10°-40°. |            | Gms. C <sub>2</sub> H <sub>5</sub> OH<br>per 100 Gms. | Gms. (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> per 100 g.<br>Solution at: |      |      |  |
| C2H5OH.                                      | (NH4)2SO4. | Solution.                                             | 6.5°.                                                                           | 15°. | 33°. |  |
| IOO                                          | 0.0        | 0                                                     | 42.0                                                                            | 42.6 | 44   |  |
| 80                                           | 0.1        | 2.5                                                   | 39.0                                                                            | 40.2 | 5    |  |
| 70                                           | 0.3        | 5.0                                                   | 36.2                                                                            | 37.2 | ?    |  |
| 60                                           | I.4        | 7.5                                                   | 33.2                                                                            | 34.5 | 42   |  |
| 50                                           | 3.2        | 10.0                                                  | 30.0                                                                            | 31.0 | 35   |  |
| 45                                           | 4.8        | 12.5                                                  | 27.2                                                                            | 28.0 | 5    |  |
| 40                                           | 6.6        | 15.0                                                  | 24.6                                                                            | 25.2 | 3    |  |
| 35                                           | 9.2        | 17 5                                                  | 22.0                                                                            | 22.4 | 2    |  |
| 30                                           | 12.2       | 20.0                                                  | 20.0                                                                            | 20.0 | 2    |  |
| 25                                           | 14.6       |                                                       |                                                                                 |      |      |  |

NOTE. — When ammonium sulphate is added to aqueous solutions of alcohol, it is found that for certain concentrations and temperatures the solutions separate into two liquid layers, the upper of which contains the larger percentage of alcohol. Most of the determinations which have been made upon this system,

Most of the determinations which have been made upon this system, as contained in the papers referred to above, are given in terms of grams of ammonium sulphate, of alcohol and of water per 100 grams of these three components taken together. Those results which are given in other terms can be readily calculated to this basis, and it is therefore possible to make a comparison of the several sets of determinations by plotting on cross-section paper and drawing curves through the points. In the present case the grams of alcohol per 100 grams of solution were taken as ordinates, and the grams of ammonium sulphate in the same quantity of each solution taken as abscissæ. It was found that a single curve could be drawn through practically all the points representing the upper layer solutions at the several temperatures, but the points for the solutions containing the larger amounts of water gave curves which diverged with increase of temperature. The results given for  $33^{\circ}$  in the above table are not to be accepted as correct until further work has been done.

#### AMMONIUM SULPHATE

SOLUBILITY OF AMMONIUM SULPHATE IN AQUEOUS PROPYL ALCOHOL SOLUTIONS AT 20° (Linebarger - Am. Ch. J. 14, 380, '92.)

33

|         | ution.     | Gms. per 100 Gms.<br>Solution. |            |  |
|---------|------------|--------------------------------|------------|--|
| CaH7OH. | (NH4)2SO4. | C3H7OH.                        | (NH4)2SO4. |  |
| 70      | 0.4        | 40                             | 3.2        |  |
| 60      | 1.0        | 30                             | 4.8        |  |
| 50      | 2.0        | 20                             | 6.7        |  |

#### AMMONIUM JADIIIUM SULPHATE (NH4)2Cd(SO4)26H2O.

100 cc. H<sub>2</sub>C dissolve 72.3 grams (NH<sub>4</sub>)<sub>2</sub>Cd(SO<sub>4</sub>)<sub>2</sub> at 25°.

(Locke - Am. Ch. J. 27, 459, 'or.)

#### AMMONIUM CHROMIUM SULPHATE (Alum) (NH,)2Cr2(SO,)4. 24H.O.

100 cc. H<sub>2</sub>O dissolve 10.78 grams anhydrous or 21.21 grams hydrated salt at 25°.

(Locke - Am. Ch. J. 26, 174, 'or.)

#### AMMONIUM COBALT SULPHATE (NH4)2Co(SO4)2.6H2O. SOLUBILITY IN WATER.

(Tobler - Liebig's Annalen 95, 193, '55; v. Hauer - J. pr. Chem. 74, 433, '58; at 25°, Locke - Am. Ch. J. 27, 459, '01.)

| t°. |        | 4)2Co(SO4)2<br>o Gms. | t°. | Gms. (NH4)2Co(SO4)2<br>per 100 Gms. |           |  |
|-----|--------|-----------------------|-----|-------------------------------------|-----------|--|
|     | Water. | Solution.             |     | Water.                              | Solution. |  |
| 0   | 6.0    | 5-7                   | 40  | 22.0                                | 18.0      |  |
| IO  | 9.5    | 8.7                   | 50  | 27.0                                | 21.3      |  |
| 20  | 13.0   | 11.5                  | 60  | 33.5                                | 25.I      |  |
| 25  | 14.72  | 12.8                  | 70  | 40.0                                | 28.6      |  |
| 30  | 17.0   | 14.5                  | 80  | 49.0                                | 32.9      |  |

NOTE. - The determinations reported by the above named investigators were plotted on cross-section paper and although considerable variations were noted, an average curve which probably represents very nearly the true conditions was drawn through them, and the above table made from this curve.

# AMMONIUM COPPER SULPHATE (NH4)2Cu(SO4)2.6H2O.

100 grams H<sub>2</sub>O dissolve 26.6 grams salt at 19°, Sp. Gr. of sol. = 1.1336 (Schiff - Liebig's Ann. 109, 326, '59.)

AMMONIUM IRON SULPHATE (Alum) (NH4)2Fe2(SO4)4.24H2O. 100 cc. H2O dissolve 44.15 gms. anhydrous or 124.40 gms. hydrated salt at  $25^{\circ}$ . Sp. Gr. of saturated solution at  $15^{\circ} = 1.203$ . (Locke – Am. Ch. J. 26, 174, 'or.)

AMMONIUM IRON SULPHATE (ferrous) (NH4)2Fe(SO4)2.6H2O.

# SOLUBILITY IN WATER. (Tobler; at 25°, Locke – Am. Ch. J. 27, 459, 'or.)

| \$°. | G. (NH <sub>4</sub> ) <sub>2</sub> Fe(SO <sub>4</sub> ) <sub>2</sub><br>per 100 g. H <sub>2</sub> O. | tº. | G. (NH <sub>4</sub> ) <sub>2</sub> Fe(SO <sub>4</sub> ) <sub>2</sub><br>per 100 g. H <sub>2</sub> O. | t°. | G. (NH <sub>4</sub> ) <sub>2</sub> Fe(SO <sub>4</sub> ) <sub>2</sub><br>per 100 g. H <sub>2</sub> O. |
|------|------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------|
| 0    | 12.5                                                                                                 | 25  | 25.0 (T)                                                                                             | 50  | 40                                                                                                   |
| 15   | 20.0                                                                                                 | 25  | 35.1 (L)                                                                                             | 70  | 52                                                                                                   |
|      |                                                                                                      | 40  | 33.0                                                                                                 |     |                                                                                                      |

#### AMMONIUM INDIUM 34 SULPHATE

# AMMONIUM INDIUM SULPHATE (NH4)3In3(SO4)4.24H3O.

100 g.  $H_2O$  dissolve 200 gms. salt at 16° and 400 gms. at 30°. (Rössler – J. pr. Chem. [2] 7, 14, '73.)

# AMMONIUM MAGNESIUM SULPHATE (NH4)2Mg(SO4)2.6H2O.

SOLUBILITY IN WATER.

(Average curve, from results of Mulder, Tobler, Locke, at 25°.)

| t°. | G. (NH4)3Mg(SO4)3<br>per 100 Gms. |              | <b>t°</b> . | G. (NH4)2Mg(SO4)2<br>per 100 Gms. |           |
|-----|-----------------------------------|--------------|-------------|-----------------------------------|-----------|
|     | Water.                            | Solution.    |             | Water.                            | Solution. |
| ο   | 9.0                               | 8.8          | 40          | 27.0                              | 21.3      |
| 10  | 13.0                              | 11.5         | 50          | 32.0                              | 24 . 4    |
| 20  | 18.0                              | 15.3         | 60          | 37.0                              | 27 .0     |
| 25  | 19.9                              | 16. <b>6</b> | 70          | 42.0                              | 29.6      |
| 30  | 22.0                              | 18.0         | 80          | 47 .0                             | 32.0      |

# AMMONIUM MANGANESE SULPHATE (NH4),Mn(SO4),.6H,O.

100 cc. water dissolve 37.2 gms. (NH<sub>4</sub>)<sub>2</sub>Mn(SO<sub>4</sub>)<sub>3</sub> at 25°. (Locke - Am. Ch. J. 27, 459, '01.)

# AMMONIUM NICKEL SULPHATE (NH4), Ni(SO4), 6H3O.

SOLUBILITY IN WATER.

(Average curve from Tobler, Locke, at 25°.)

| t°. | G. (NH <sub>4</sub> ) <sub>2</sub> Ni(SO <sub>4</sub> ) <sub>2</sub><br>per 100 Gms. |           | t°. | G. (NH <sub>4</sub> ) <sub>2</sub> Ni(SO <sub>4</sub> ) <sub>2</sub><br>per 100 Gms. |           |
|-----|--------------------------------------------------------------------------------------|-----------|-----|--------------------------------------------------------------------------------------|-----------|
|     | Water.                                                                               | Solution. |     | Water.                                                                               | Solution. |
| 0   | I.O                                                                                  | 0.99      | 40  | 12.0                                                                                 | 10.72     |
| 10  | 4.0                                                                                  | 3.85      | 50  | 14.5                                                                                 | 12.96     |
| 20  | 6.5                                                                                  | 6.10      | бo  | 17.0                                                                                 | 14.53     |
| 25  | 7 · 57                                                                               | 7.04      | 70  | 20.0                                                                                 | 16.66     |
| 30  | 9.0                                                                                  | 8.45      | •   |                                                                                      |           |

#### AMMONIUM SODIUM SULPHATE NH, NaSO, 2H,O.

100 gms. water dissolve 46.6 gms.  $NH_4$ .  $NaSO_4.2H_3O$  at 15°, Sp. Gr. Sol. = 1.1749.

#### AMMONIUM VANADIUM SULPHATE (Alum) (NH<sub>4</sub>)<sub>3</sub>V<sub>3</sub>(SO<sub>4</sub>)<sub>4</sub>. 24H<sub>2</sub>O.

100 cc.  $H_2O$  dissolve 31.69 gms. anhydrous or 78.50 gms. hydrated salt at 25°. (Locke.)

# AMMONIUM ZINC SULPHATE (NH4)2Zn(SO4)2.6H2O.

.

SOLUBILITY IN WATER.

(Average curve, see Note, p. 33, Tobler, Locke, at 25°.)

| t°. | G. (NH <sub>4</sub> ) <sub>9</sub> Zn(SO <sub>4</sub> ) <sub>2</sub><br>per 100 Gms. |        | <b>t°</b> . | G. (NH <sub>4</sub> ) <sub>3</sub> Zn(SO <sub>4</sub> ) <sub>3</sub><br>per 100 Gms. |        |
|-----|--------------------------------------------------------------------------------------|--------|-------------|--------------------------------------------------------------------------------------|--------|
|     | Solution.                                                                            | Water. |             | Solution.                                                                            | Water. |
| ο   | 6.54                                                                                 | 7.0    | 40          | 16.6 <b>6</b>                                                                        | 20     |
| 10  | 8.67                                                                                 | 9.5    | 50          | 20.0                                                                                 | 25     |
| 20  | II . II                                                                              | 12.5   | 60          | 23.I                                                                                 | 30     |
| 25  | 12.36                                                                                | 14.1   | 70          | 25.9                                                                                 | 35     |
| 30  | 13.79                                                                                | 16.0   | 80          | 29.6                                                                                 | 42     |

-

#### 35 AMMONIUM PERSULPHATE

#### AMMONIUM PERSULPHATE (NH4)2StO8.

100 parts H2O dissolve 58.2 parts (NH4)2S2O, at o°.

(Marshall - J. Chem. Soc. 59, 771, '91.)

#### AMMONIUM SODIUM HYDROGEN SULPHITE (NH4)Na2H(SO3)2 4H2O.

100 gms. H<sub>2</sub>O dissolve 42.3 gms. salt at 12.4° and 48.5° gms. at 15°. (Schwincker – Ber. 22, 1732, '89.)

#### AMMONIUM SULPHOCYANIDE NH,SCN.

100 parts water dissolve 128.1 parts NH<sub>4</sub>SCN at 0° and 162.2 parts at 20°. (Clowes - Z. Ch. 100, 1866.)

# AMYL ACETATE BUTYRATE, FORMATE, etc.

Solubility in Water and in Aqueous Alcohol at 20°.

(Bancroft - Phys. Rev. 3, 131, 196, 205, '95-'96; Traube. - Ber. 17, 2304, '84.)

| Ester.                                            | cc. Ester per<br>100 cc. H <sub>2</sub> O. | Sp. Gr.<br>of Ester. |                                     | cc. Ester per<br>100 cc. H <sub>2</sub> O. | Sp. Gr.<br>of Ester. |
|---------------------------------------------------|--------------------------------------------|----------------------|-------------------------------------|--------------------------------------------|----------------------|
| Amyl acetate<br>Iso amyl acetate<br>Amyl butyrate |                                            |                      | Amyl propionate<br>Iso amyl formate |                                            | 0.88<br>. at 22°)    |

Solubility of Iso Amyl Acetate Solubility of Amyl Acetate and Amyl in Aq. Alcohol Mixtures. Formate in Aq. Alcohol Mixtures.

| Per 5 cc. C2H5OH. |                       | c. C2H5OH.               | cc. C <sub>2</sub> H <sub>6</sub> OH<br>in Mixture. | cc. H <sub>2</sub> O added to cause separation<br>of second phase in mixtures of the<br>given amounts of alcohol and 3 cc.<br>portions of : |                  |  |
|-------------------|-----------------------|--------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|
|                   | cc. H <sub>2</sub> O. | cc. Iso Amyl<br>acetate. | , in manufer                                        | Amyl<br>Formate.                                                                                                                            | Amyl<br>Acetate. |  |
|                   | 7                     | 0.41                     | 3                                                   | 1.80                                                                                                                                        | I.76             |  |
|                   | 6                     | 0.7                      | 9                                                   | 8.77                                                                                                                                        | 9.03             |  |
|                   | 5                     | 1.31                     | 15                                                  | 17.01                                                                                                                                       | 17.52            |  |
|                   | 3.61                  | 3.0                      | 21                                                  | 27.06                                                                                                                                       | 26.99            |  |
|                   | 3.01                  | 4.0                      | 27                                                  | 38.31                                                                                                                                       | 37.23            |  |
|                   | 2.60                  | 5.0                      | 33                                                  | 50.71                                                                                                                                       | 48.41            |  |
|                   |                       |                          | 39                                                  | 65.21                                                                                                                                       |                  |  |
|                   |                       |                          | 45                                                  | 85.10                                                                                                                                       |                  |  |
|                   |                       |                          | 45<br>48                                            | 94.20                                                                                                                                       |                  |  |
|                   |                       |                          |                                                     |                                                                                                                                             |                  |  |

# ANETHOL (p Propylanisol) CH3CHCH[4]C6H4OCH3.

SOLUBILITY IN AQ. ALCOHOL AT 20°.

(Schimmel and Co. Reports, Oct 1895, p. 6.)

| Vol. per cent alcohol =        | 20       | 25   | 30   | 40   | 50   |
|--------------------------------|----------|------|------|------|------|
| Gm. Anethol per liter aq. alco | hol=0.12 | 0.20 | 0.32 | 0.86 | 2.30 |

# ANILINE C.H.(NH2).

(Herz — Ber. 31, 2671, '98; see also Vaubel — J. pr. Chem. [3] 52, 72, '95; Aignan and Dugas — Compt. read. 229, 643, 99.)

100 cc. H<sub>2</sub>O dissolve 3.481 cc. C<sub>3</sub>H<sub>3</sub>(NH<sub>3</sub>) — Vol. of Sol. = 103.48,

Sp. Gr. = 0.9986. 100 cc. C<sub>6</sub>H<sub>4</sub>(NH<sub>2</sub>) dissolve 5.22 cc. H<sub>3</sub>O — Vol. of Sol. = 104.96, Sp. Gr. = 1.0175.

Solubility of Aniline in Water at Different Temperatures.

(Alexejew — Ann. Physik. Chem. 28, 305, '86; calc. by Rothmund — Z. physic. Chem. 26, 475, '98.) Determinations by "Synthetic Method " see Note, p. 9. Figures read from curve.

| t°.  | Gms. C. Ho(NH2) per 100 Grams. |                | ŧ°.                      | Gms. CeHaNI | Gms. CeHaNH2 per 100 Grams. |  |  |
|------|--------------------------------|----------------|--------------------------|-------------|-----------------------------|--|--|
|      | Aq. Layer.                     | Aniline Layer. | υ.                       | Aq. Layer.  | Aniline Layer.              |  |  |
| 20   | 3.2                            | 95 · 5         | 140                      | 13.0        | 83. <b>5</b>                |  |  |
| 40   | 3.5                            | 95.0           | 150                      | 18.0        | 79.0                        |  |  |
| 60   | 3.8                            | 94.7           | 160                      | 27.5        | 71.0                        |  |  |
| 80   | 4.5                            | 93 · 5         | 165                      | 36.0        | 63.0                        |  |  |
| 100  | 6.0                            | 92 0           | 167.5 (crit. temp.) 48.6 |             |                             |  |  |
| I 20 | 8.5                            | 88.5           |                          |             |                             |  |  |

SOLUBILITY OF ANILINE IN AQUEOUS SALT SOLUTIONS AT 18°. (Euler – Z. physik. Chem. 49, 307, '04.)

| •  | Solution.<br>Dalone | Gms. Salt<br>per liter.<br>O | Gms. C <sub>6</sub> H <sub>5</sub> (NH <sub>2</sub> )<br>per 100 g. solvent.<br>3.61 | N | Aq.<br>Solution.<br>NaOH | Gms. Salt<br>per liter.<br>40.06 | Gms. C <sub>6</sub> H <sub>6</sub> (NH <sub>2</sub> )<br>per 100 g. solvent.<br>I . QO |
|----|---------------------|------------------------------|--------------------------------------------------------------------------------------|---|--------------------------|----------------------------------|----------------------------------------------------------------------------------------|
| ξN | KCl                 | 37.3                         | 3.15                                                                                 | N | LiCl                     | 42.48                            | 2.80                                                                                   |
| Ν  | KCI                 | 74.6                         | 2.68                                                                                 | Ν | CuCl <sub>2</sub>        | 67.25                            | 3.00                                                                                   |
| Ν  | NaCl                | 58.5                         | 2.55                                                                                 |   | -                        |                                  | -                                                                                      |

#### SOLUBILITY OF ANILINE IN AQUEOUS ANILINE HYDROCHLORIDE SOLUTIONS AT 18°.

| (Lidow — J. russ. phys. chem. Ges. 15, 420, '83; Ber. 16, 2297, '83.)    |                     |                                                                            |                                                                           |  |  |  |  |  |
|--------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|--|--|
| Per cent C <sub>6</sub> H <sub>8</sub> NH <sub>2</sub> HCl<br>in Solvent | per 100 g. Solvent. | Per cent C <sub>6</sub> H <sub>5</sub> NH <sub>2</sub> .HCl<br>in Solvent. | Gms. C <sub>6</sub> H <sub>6</sub> NH <sub>2</sub><br>per 100 g. Solvent. |  |  |  |  |  |
| 5                                                                        | 3.8                 | 30                                                                         | 39.2                                                                      |  |  |  |  |  |
| 12                                                                       | 5.3                 | 35                                                                         | 50.4                                                                      |  |  |  |  |  |
| 25                                                                       | 18.3                |                                                                            |                                                                           |  |  |  |  |  |

#### DISTRIBUTION OF ANILINE BETWEEN: (Vaubel – J. pr. Chem. [2] 67, 477, '03.)

| Water and Ether.<br>Composition of Solutions. Gms. CoHaNHain: |                                                    |               |                 | nd Carbon '          |                                                                                 |               |                            |
|---------------------------------------------------------------|----------------------------------------------------|---------------|-----------------|----------------------|---------------------------------------------------------------------------------|---------------|----------------------------|
| G. CeHaNI<br>Used<br>1.2478                                   | H <sub>2</sub> Solvent.<br>50 cc. H <sub>2</sub> O | Aq.<br>Layer. | Ether<br>Layer. | Used.                | Solvent.<br>50 cc. H.O                                                          | Aq.<br>Layer. | CCl <sub>4</sub><br>Layer. |
| 1.2478                                                        | + 20 cc. Ether<br>50 cc. H.O                       | 0.1671        | 1.0807          | 0.3478               | + 20 cc. CCl                                                                    |               |                            |
| 1.2478                                                        | + 50 cc. Êther<br>50 cc. H <sub>2</sub> O          |               |                 |                      | 50 cc. H <sub>2</sub> O<br>+ 50 cc. CCl <sub>4</sub><br>50 cc. H <sub>2</sub> O | •••           |                            |
|                                                               | + 100 cc. Ether<br>Sol                             |               | •               | 1.2478<br>Iline in ( | + 100 cc. CCl<br>Sulphur.                                                       | 0.1845        | 1.06 <b>3</b>              |

## (Alexejew — Ann. Physik. Chem. 28, 305, '86.)

| <b>t°</b> . | Gms. C6H8NH2 per 100 g. |               | <b>t</b> °. | Gms. CoHaNH2 per 100 g. |               |  |
|-------------|-------------------------|---------------|-------------|-------------------------|---------------|--|
|             | S. Layer.               | Anilin Layer. | 6.          | S. Layer.               | Anilin Layer. |  |
| 100         | 4                       | 75            | 130         | 15                      | 58            |  |
| 110         | 6                       | 70            | 135         | 17.5                    | 47            |  |
| 120         | το                      | 64            | 138 (crit   | . temp.)                | 23            |  |

#### ANILINE

# DISTRIBUTION OF ANILINE BETWEEN WATER AND TOLUENE AND BETWEEN AQUEOUS SALT SOLUTIONS AND TOLUENE AT 25°

(Ried. 1 - Z. physik. Chem. 56, 243, 'o6.)

NOTE. — Mixtures of Aniline and Toluene were shaken with water or with aqueous salt solutions, and after separation of the two layers the Sp. Gr. of the A: T mixture (layer) was determined and also the amount of Aniline in each layer.

| Solution Shaken with                 | Vol. per cent S<br>Aniline : Toluene   | Sp. Gr. of A : T             | Gms. C.H.N | H <sub>2</sub> in 100 cc. of: |
|--------------------------------------|----------------------------------------|------------------------------|------------|-------------------------------|
| A: T Mixture.                        | Aniline : Toluene<br>in Mixtures Used. | Mixture after<br>Separation. | A:T Layer. | Aq. Layer.                    |
| HJO                                  | 50:50                                  | 0.9257                       | 41.5       | 2.14                          |
| - 66                                 | 25:75                                  | 0.8928                       | 20.7       | 1.5                           |
| 44                                   | 12.5:87.5                              | 0.8737                       | 8.62       | o.86                          |
| 66                                   | 5.5:94.5                               | 0.8661                       | 3.87       | 0.45                          |
| "                                    | 2.5:97.5                               | 0.8627                       | ī.68       | 0.21                          |
| $o.1N \frac{K_sO_4}{2}$              | 50: 50                                 | 0.9297                       | 44.0       | 2.09                          |
| "                                    | 25:75                                  | 0.8001                       | 19.03      | 1.38                          |
| "                                    | 12.5:87.5                              | 0.8739                       | 8.77       | 0.81                          |
| "                                    | 5.5:94.5                               | 0.8663                       | 3.94       | 0.42                          |
| "                                    | 2.5:97.5                               | 0.8620                       | 1.81       | 0.21                          |
| O.IN KBO.                            | 50:50                                  | 0.9257                       | 41.61      | 2.11                          |
|                                      | 25:75                                  | 0.8870                       | 17.08      | I.34                          |
| "                                    | 12.5:87.5                              | 0.8748                       | 9 34       | 0.02                          |
|                                      | 5.5:94.5                               | 0.8661                       | 3.85       | 0.44                          |
| "                                    | 2.5:97.5                               | 0.8627                       | 1.72       | 0.21                          |
| Ba(OH)                               | )                                      | •                            |            |                               |
| 0.01094N <u>Da(011</u><br>2          | <b>4</b> 50:50                         | o.9334                       | 46.52      | 2.10                          |
| "                                    | 25:75                                  | 0.8929                       | 20.78      | I.46                          |
| 66                                   | 12.5:87.5                              | 0.8749                       | 9.41       | o.88                          |
| 66                                   | 5.5:94.5                               | 0.8663                       | 3.96       | 0.43                          |
| "                                    | 2.5:97.5                               | 0.8628                       | 1.72       | 0.20                          |
| $o \cdot 104 N = \frac{Sr(OH)_2}{2}$ | 50:50                                  | 0.9333                       | 46.45      | 2.13                          |
| "                                    | 25:75                                  | o .8929                      | 20 . 78    | 1.46                          |
| $0.1044N \frac{Sr(OH)}{2}$           | 2 12 . 5 : 87 . 5                      | 0.8750                       | 9.46       | o.88                          |
| "<br>5-(OH)                          | 5.5:94.5                               | o.8662                       | 3.96       | 0.43                          |
| 0.1063N <u>Sr(OH)</u><br>2           | 2.5:97.5                               | o.8628                       | 1.75       | O · 20                        |
| $o.04N \frac{Ca(OH)_2}{2}$           | 50:50                                  | 0.9333                       | 46 . 18    | 2.20                          |
| 46                                   | 25:75                                  | o.8925                       | 20 . 59    | 1.51                          |
| "                                    | 12.5:87.5                              | 0.8749                       | 9.43       | 0.91                          |
| "                                    | 5.5:94.5                               | 0.8662                       | 3.89       | 0.44                          |
| 66                                   | 2.5:97.5                               | 0.8627                       | I.70       | 0.21                          |
|                                      |                                        | •                            | •          |                               |

100 cc. aqueous solution contain 3.607 gms. Aniline at 25°.

# SOLUBILITY OF ANILINE, PHENOL MIXTURES IN WATER. (Schreinemaker – Z. physik. Chem. 29, 584; 30, 460, '00.)

| <b>5°</b> .       | + 74 6     | = 25.4 Mols. Anil<br>Mols. Phenol<br>ture per 100 Gms. |                | + 50 1             | Mixture used — 50 Mols. Aniline<br>+ 50 Mols. Phenol<br>Gms. of Mixture per 100 Gms. |  |  |
|-------------------|------------|--------------------------------------------------------|----------------|--------------------|--------------------------------------------------------------------------------------|--|--|
|                   | Aq. Layer. | A. + P. Layer.                                         |                | Aq. Layer.         | A. + P. Layer.                                                                       |  |  |
| 40                | 5.0        | 86.o                                                   | 40             | 4.0                | 91.5                                                                                 |  |  |
| 40<br>60          | 5.5        | 82.0                                                   | 80             | 5.5                | 85.5                                                                                 |  |  |
| 80                | 8.0        | 77.0                                                   | 100            | 8.0                | 82.0                                                                                 |  |  |
| 100               | 12.5       | 67.0                                                   | 120            | 13.5               | 73 · 5                                                                               |  |  |
| 110               | 19.0       | 56.5                                                   | 130            | 19.0               | 66.0                                                                                 |  |  |
| 104 (c <b>r</b> i | t. temp.)  | 33                                                     | 135<br>140 (cr | 23.5<br>it. temp.) | 58.0<br>35                                                                           |  |  |

Determinations in above table by "Synthetic Method," see Nore, p. 9. Schreinemaker gives results for several other mixtures of Aniline and Phenol which yield curves entirely similar to those for the two mixtures here shown.

# Nitr**ANILINES** $C_6H_4NH_3NO_2$ . o, m, and p.

(Carnelly and Thomson – J. Chem. Soc. 53, 768, '88' Vaubel – J. pr. Chem. [2] 52, 73, '95; above so<sup>9</sup>, Löwenherz – Z. physik. Chem. 25, 407, '98.)

| <b>t*</b> . | Grams Nitraniline per Liter of Solution. |                   |                   |  |  |  |
|-------------|------------------------------------------|-------------------|-------------------|--|--|--|
|             | Ortho Nitraniline.                       | Meta Nitraniline. | Para Nitraniline. |  |  |  |
| 20          | • • •                                    | 1 . 14–1 . 67     | 0.77-0.80         |  |  |  |
| 24 . 2      | 1.25 (25°)                               | I . 205           | •••               |  |  |  |
| 27.3        | • • •                                    | I.422             | • • •             |  |  |  |

SOLUBILITY OF ORTHO AND OF META NITRANILINE IN HYDROCHLORIC ACID.

(Lowenherz.)

| C      | ortho Nitr           | aniline    | at 25°.            |         | 1        | Meta Nitra                                                             | aniline | •                               |
|--------|----------------------|------------|--------------------|---------|----------|------------------------------------------------------------------------|---------|---------------------------------|
| G. Mo  | ls. per Liter.       | Grams      | per Liter.         |         | G. Mols. | per Liter.                                                             | Grams   | per Liter.                      |
| HCI    | C.H.N.H.2.<br>NO2(0) | <b>HCI</b> | C6H5NH2.<br>NO2(0) |         | HCI      | C <sub>6</sub> H <sub>5</sub> NH <sub>2</sub> .<br>NO <sub>2</sub> (m) | HCI     | CaHaNHa.<br>NO <sub>3</sub> (m) |
| 0.0    | 0.0091               | 0.0        | I.25               | (25°)   | 0.0      | 0.0091                                                                 | 0.0     | I.20                            |
| o.63   | 0.0143               | 22.97      | I.97               | (26.5°) | 0.0125   | 0.0183                                                                 | 0.46    | 2.53                            |
| 0.95   | 0.0174               | 34.63      | 2.40               | (23.3°) | 0.0247   | 0.0274                                                                 | 0.90    | 3.85                            |
| I . 26 | 0.0215               | 45 · 94    | 2.97               |         |          |                                                                        |         |                                 |

# SOLUBILITY OF META AND OF PARA NITRANILINE IN ORGANIC SOLVENTS AT 20°. (Carnelly and Thomson.)

| Solvent.          |      | Para. | Solvent.              |      | er Liter.<br>Para. |
|-------------------|------|-------|-----------------------|------|--------------------|
| Methyl Alcohol    |      | 95.9  | Benzene               | 24.5 | 19.8               |
| Ethyl Alcohol     | 70.5 | 58.4  | Toluene               | 17.1 | 13.1               |
| Propyl Alcohol    | 56.5 | 43.5  | Cumene                | 11.5 | 9.0                |
| Iso Butyl Alcohol | 26.4 | 19.1  | Chloroform            | 30.1 | 23.1               |
| Iso Amyl Alcohol  | 85.1 | 62.9  | Carbon Tetra Chloride | 2.I  | 1.7                |
| Ethyl Ether       | 78.9 | 0. IÒ | Carbon Bisulphide     | 3.3  | 2.6                |

ANISIC ACID (p-Methoxybenzoic acid) CH<sub>3</sub>O.C<sub>6</sub>H<sub>4</sub>.COOH. See also p. 61. 100 cc. sat. aq. solution contain 0.2263 gm. Anisic acid at 25°.

(Paul - Z. physik. Chem. 14, 111, '94.)

#### ANTHRACENE C14H10.

SOLUBILITY IN LIQUID SULPHUR DIOXIDE IN THE CRITICAL REGION. (Centnerswer and Teletow - Z. Electrochem. 9, 799, '03.)

Weighed amounts of anthracene and liquid SO, were placed in glass tubes which were then sealed, rotated at a gradually increasing temperature and the point at which the solid disappeared, observed.

| <b>t°</b> . | Gms. C <sub>16</sub> H <sub>10</sub><br>per 100 g.<br>Solution. | t°.    | Grns. C <sub>14</sub> H <sub>30</sub><br>per 100 g.<br>Solution. | t°.   | Gms. C <sub>14</sub> H <sub>10</sub><br>per 100 g.<br>Solution. |
|-------------|-----------------------------------------------------------------|--------|------------------------------------------------------------------|-------|-----------------------------------------------------------------|
| 40 . I      | <b>2</b> .II                                                    | 65 . O | 4.0                                                              | 98.o  | 9.36                                                            |
| 45.8        | 2.48                                                            | 78.2   | 5.66                                                             | 99.I  | 9.95                                                            |
| 47 · 9      | 2.65                                                            | 88.o   | 7.14                                                             | 106.5 | 12.78                                                           |

SOLUBILITY OF ANTHRACENE IN ABSOLUTE ETHYL AND METHYL Alcohols.

(v. Becchi; at 19.5°, de Bruyn — Z. physik. Chem. 10, 784, '92)

|                   | Grams C14 H10 per 100 Grams Alcohol at: |        |        |  |  |
|-------------------|-----------------------------------------|--------|--------|--|--|
|                   | 16°.                                    | 19.5°. | b. pt. |  |  |
| In Ethyl Alcohol  | <b>o</b> .076                           | 1.90   | o.83   |  |  |
| In Methyl Alcohol | •••                                     | 1.80   | •••    |  |  |

#### SOLUBILITY OF ANTHRACENE IN BENZENE. (Findlay – J. Chem. Soc. 81, 1221, '02.)

| t°.  | Gms. C <sub>14</sub> H <sub>10</sub><br>per 100 Gms.<br>C <sub>6</sub> H <sub>6</sub> . | Mols. C <sub>14</sub> H <sub>10</sub><br>per 100 Mols.<br>CeHe. | t°.   | Gms. C <sub>16</sub> H <sub>10</sub><br>per 100 Gms.<br>C <sub>6</sub> H <sub>6</sub> . | Mols. C <sub>14</sub> H <sub>38</sub><br>per 100 Mols.<br>C <sub>6</sub> H <sub>6</sub> . |
|------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 5    | 0.979                                                                                   | 0.429                                                           | 38.4  | 2.773                                                                                   | I.213                                                                                     |
| IO   | 1.118                                                                                   | 0.491                                                           | .40.0 | 2.987                                                                                   | 1.312                                                                                     |
| 15   | 1.296                                                                                   | 0.567                                                           | 44.6  | 3.368                                                                                   | I.473                                                                                     |
| 20   | 1.532                                                                                   | 0.673                                                           | 50    | 3.928                                                                                   | I.727                                                                                     |
| 25   | 1.830                                                                                   | 0.803                                                           | 60    | 4.941                                                                                   | 2 . 164                                                                                   |
| 26.5 | 1.951                                                                                   | 0.856                                                           | 70    | 6.041                                                                                   | 2.649                                                                                     |
| 30   | 2.175                                                                                   | 0.954                                                           | 8o    | 7.175                                                                                   | 3.143                                                                                     |

100 parts of toluene dissolve 0.92 parts anthracene at  $16.5^{\circ}$  and 12.94 parts at 100° (v. Becchi).

SOLUBILITY OF ANTHRACENE IN ALCOHOLIC PICRIC ACID SOLUTIONS AT 25°.

#### (Behrend - Z. physik. Chem. 15, 187, '94.)

| Grams per 100 Grams<br>Solution. |             | Solid Phase.                         | Grams per 100 Gms.<br>Solution |             | Solid Phase.                        |  |
|----------------------------------|-------------|--------------------------------------|--------------------------------|-------------|-------------------------------------|--|
| Picric<br>Acid                   | Anthracene. | Soud rune.                           | Picric<br>Acid.                | Anthracene. | Solid Phase.                        |  |
| 0                                | 0.176       | Anthracene                           | 3.999                          | 0.202       | Anthracene Picrate                  |  |
| I.017                            | 0.100       | "                                    | 5.087                          |             | **                                  |  |
| 2.071                            | 0.206       | "                                    | 5.843                          | 0.162       | 66                                  |  |
| 2.673                            | 0.215       | <b>66</b>                            | 6.727                          |             | 66                                  |  |
| 3 · 233                          | 0.228       | **                                   | 7.511                          | •           | Anthracene Picrate<br>+ Picric Acid |  |
| 3.469                            | 0.236       | Anthracene and<br>Anthracene Picrate | 7 · 452                        | 0           | Picric Acid                         |  |

#### 40

#### ANTHRAQUINONE (C,H,),(CO),.

SOLUBILITY IN LIQUID SULPHUR DIOXIDE IN THE CRITICAL REGION.

(Centnerswer and Teletow - Z. Electrochem. 9, 799, 'o8.) (See Anthracene, page 39).

| t*.  | Gms. C <sub>16</sub> H <sub>8</sub> O <sub>3</sub><br>per 100 g.<br>Solution. | t°.    | Gms. C <sub>16</sub> H <sub>8</sub> O <sub>2</sub><br>per 100 g.<br>Solution. | ť°.   | Gms. C <sub>14</sub> H <sub>8</sub> O <sub>2</sub><br>per 100 g.<br>Solution. |
|------|-------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------|
| 39.6 | 0.64                                                                          | 92 · I | 2.81                                                                          | 118.5 | 5.60                                                                          |
| 51.5 | o.88                                                                          | 101.4  | 3.67                                                                          | 141.6 | 7.53                                                                          |
| 67.9 | 1.73                                                                          | 106.3  | 4 - 23                                                                        | 160.0 | 9.60                                                                          |
| 82.4 | 2.24                                                                          | 108.7  | 4 · <b>40</b>                                                                 | 179.O | 12.70                                                                         |
|      |                                                                               |        |                                                                               | 183.7 | 18.30                                                                         |

100 parts of absolute ethyl alcohol dissolve 0.05 part anthroquinone at 18° and 2.249 parts at b. pt. (v. Becchi).

#### SOLUBILITY OF ANTHRAQUINONE IN ETHER.

#### (Smits - Z. Electrochem. 9, 663, '03.)

Weighed amounts of ether and anthraquinone were placed in glass tubes which were then sealed. The temperature noted at which the anthraquinone disappeared and also at which the liquid phase disappeared (critical temp.). The two curves cross at  $195^{\circ}$  and again at  $241^{\circ}$ . Between these two temperatures the critical curve lies below the solubility curve, hence for this range of temperature no solubility curve is shown. The following figures were read from the curves, and are therefore only approximately correct.

| <b>t°</b> . | Gms. C <sub>M</sub> H <sub>8</sub> O <sub>2</sub><br>per 100 g.<br>Solution. | <b>t°</b> . | Gms. C <sub>14</sub> H <sub>8</sub> O <sub>2</sub><br>per 100 g.<br>Solution. | <b>t °</b> . | Gms. C <sub>14</sub> HgO <sub>2</sub><br>per 100 g.<br>Solution. |
|-------------|------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------|--------------|------------------------------------------------------------------|
| 130         | 3                                                                            | 241         | 30                                                                            | 260          | 80                                                               |
| 150         | 4                                                                            | 245         | 40                                                                            | 270          | 90                                                               |
| 170         | 4.5                                                                          | 247         | 50                                                                            | 275          | 100                                                              |
| 195         | 5.0                                                                          | 250         | 60                                                                            |              |                                                                  |

100 parts of toluene dissolve 0.19 part anthraquinone at 15° and 5.56 parts at 100° (v. Becchi).

#### ANTIMONY TRICHLORIDE SbCl.

SOLUBILITY IN WATER. SOLID PHASE SbCl.

(Meerburg - Z. anorg. Chem. 33, 299, 1903.)

| <b>t *</b> . | Mols. SbCla<br>per 100<br>Mols. HgO. | Gms. SbCla<br>per 100<br>g. HgO. | <b>t °</b> . | Mols. SbCla<br>per 100<br>Mols. HgO. | Gms. SbCla<br>per 100<br>g. HgO. |
|--------------|--------------------------------------|----------------------------------|--------------|--------------------------------------|----------------------------------|
| ο            | 47 . 9                               | 601.6                            | 35           | <b>91</b> .6                         | 1152.0                           |
| 15           | 64.9                                 | 815. <b>8</b>                    | 40           | 108.8                                | 1368.0                           |
| -            | \$ 72.4                              | 910 · I                          | 50           | 152.5                                | 1917.0                           |
| 20           | 74.1                                 | 931.5                            | δο           | 360.4                                | 4531.0                           |
| 25           | 78.6                                 | 988 . I                          | 72           | ັວວ່                                 | 00                               |
| 30           | 84.9                                 | 1068.0                           | •            |                                      |                                  |

#### 41 ANTIMONY TRICHLORIDE

#### Solubility of Antimony Trichloride in Aqueous Hydrochloric Acid. Solid Phase SbCl<sub>2</sub>. Temp. 20°.

(Meerburg.)

| Mols<br>100 Mo | per<br>ls. H <sub>2</sub> O. | Gms<br>100 g | . per<br>H <sub>2</sub> O. | Mol<br>100 M | ls. per<br>ols. H <sub>2</sub> O. | Gr 100 | ns. per<br>g. H <sub>2</sub> O. |
|----------------|------------------------------|--------------|----------------------------|--------------|-----------------------------------|--------|---------------------------------|
| HCl.           | SbCla.                       | HCI.         | SbCla.                     | HCl.         | SbCla.                            | HCl.   | SbCla.                          |
| 0              | 72.4                         | 0.0          | Q10.I                      | 9.I          | 68.9                              | 18.41  | 866.4                           |
| 2.4            | 71.2                         | 4.86         | 895.4                      | 11.7         | 68.I                              | 23.68  | 856.3                           |
| 6.1            | 69.9                         | 12.34        | 879.0                      | 28.7         | 62.8                              | 58.08  | 789.8                           |
| 8.3            | 68.2                         |              | 857.6                      |              |                                   | -      |                                 |

100 grams absolute acetone dissolve 537.6 grams SbCl<sub>3</sub> at 18°. (Naumann – Ber. 37, 4332, '04.)

#### ANTIMONY TRI IODIDE Sbl.

SOLUBILITY IN METHYLENE IODIDE AT 12°. (Retgers – Z. anorg. Ch. 3, 344, '93.)

100 parts CH<sub>2</sub>I<sub>2</sub> dissolve 11.3 parts SbI<sub>2</sub>. Sp. Gr. of solution = 3.453.

# ANTIMONY POTASSIUM TARTRATE K(SbO)C,H,O.,H10.

100 grams glycerine dissolve 5.5 grams of the tartrate at 15.5°.

#### ARGON, A.

# SOLUBILITY IN WATER.

|     |                        | (L'sureic                 | ner – L. physik. C      | nem. 31, 184, 9 | 9.)            |             |
|-----|------------------------|---------------------------|-------------------------|-----------------|----------------|-------------|
| t*. | Cor. Bar.<br>Pressure. | Vol.<br>H <sub>3</sub> O. | Vol. Absorbed<br>Argon. | Absorption C    | coefficients.* | Solubility. |
|     | Flessure.              | дзо,                      | Argon.                  | a.              | 1.             | q.          |
| 0   |                        |                           |                         |                 | 0 0578         | 0.0102      |
| I   | 764.9                  | 77.40                     | 4.34                    | 0.0561          | 0.0561         | 0.0099      |
| 5   | 765.0                  | 77.39                     | 3.92                    | 0.0507          | 0.0508         | 0.0090      |
| 10  | 765.3                  | 77.41                     | 3.49                    | 0.0450          | 0.0453         | 0.0079      |
| 15  | 762.4                  | 77.46                     | 3.13                    | 0.0404          | 0.0410         | 0.0072      |
| 20  | 757.6                  | 77.53                     | 2.86                    | 0.0369          | 0.0379         | 0.0066      |
| 25  | 766.7                  | 77.62                     | 2.64                    | 0.0339          | 0.0347         | 0.0060      |
| 30  | 760.6                  | 77.73                     | 2.43                    | 0.0312          | 0.0326         | 0.0056      |
| 35  | 757.1                  | 77.86                     | 2.24                    | 0.0288          | 0.0305         | 0.0052      |
| 40  | 758.3                  | 77.99                     | 2.07                    | 0.0265          | 0.0286         | 0.0048      |
| 45  | 756.4                  | 78.15                     | 1.92                    | 0.0246          | 0.0273         | 0.0045      |
| 50  | 747.6                  | 78.31                     | 1.73                    | 0.0221          | 0.0257         | 0.0041      |

a = under barometric pressure minus tension of H<sub>2</sub>O vapor.

l = under 760 mm. pressure.

q =grams argon per 100 g.H<sub>2</sub>O when total pressure is equal to 760 mm.

\* See Acetylene, page 8.

#### ARSENIC PENTOXIDE As<sub>2</sub>O<sub>5</sub>.

100 parts H<sub>2</sub>O dissolve 244.8 parts As<sub>2</sub>O<sub>4</sub> = 302.3 parts H<sub>3</sub>AsO<sub>4</sub> at 12.5°. Sp. Gr. of solution = 2.18 at 15°.

(Vogel.)

# ARSENIC IODIDE AsI3.

SOLUBILITY IN METHYLENE IODIDE AT 12°. (Retgers – Z. anorg. Chem. 3, 344, 1893.)

100 grams CH<sub>2</sub>I<sub>2</sub> dissolve 17.4 gms. AsI<sub>2</sub>. Sp. Gr. of solution = 3.449.

# ARSENIC TRIOXIDE As,O.

|                          | SOLUBILITY O                                                         | F THE:                                  |                                                                      |  |
|--------------------------|----------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------|--|
| Crystallized             | Modification.                                                        | Amorpho                                 | us Modification.                                                     |  |
| . In W                   | ater.                                                                | Īn                                      | Water.                                                               |  |
| t°.                      | Gms. As <sub>2</sub> O <sub>2</sub><br>per 100 cc.<br>Sat. Solution. | <b>t°</b> .                             | Gms. As <sub>2</sub> O <sub>8</sub> per<br>100 cc. H <sub>2</sub> O. |  |
| 2                        | I . 20I                                                              | ord. temp.                              | 3.7                                                                  |  |
| 15                       | 1.657                                                                | b. pt.                                  | 11.86                                                                |  |
| 25                       | 2.038                                                                | In Alcohol, Ether and CS <sub>2</sub> . |                                                                      |  |
| 39.8                     | 2.930<br>6. +                                                        | G                                       | As <sub>2</sub> O <sub>3</sub> per 100 g. Solvent.                   |  |
| b. pt.                   | 0.+                                                                  | Alcohol                                 | o.446                                                                |  |
| (Bruner and St. Tolloczk | 0 — Z. anorg. Chem. 37, 456,<br>(asty. Chem. 13, 114, '88.)          | Ether                                   | 0.454                                                                |  |
| °03; Chodounsky — I      | Listy. Chem. 13, 114, '88.)                                          | CS <sub>2</sub><br>(Winkler — J. pr     | 0.001<br>. Chem. [2] 31, 347, '85.)                                  |  |

# **ASPARAGINE** C<sub>4</sub>H<sub>8</sub>N<sub>2</sub>O<sub>3</sub>.H<sub>2</sub>O.

Solubility  $\beta$ -*l*-Asparagine C<sub>4</sub>H<sub>8</sub>N<sub>2</sub>O<sub>3</sub>.H<sub>2</sub>O and of  $\beta$ -*l*-Asparaginic Acid C<sub>4</sub>H<sub>7</sub>NO<sub>4</sub> in Water.

Determined by "Synthetic Method," see Note, page 9.

(Bresler - Z. physik. Chem. 47, 613, '04.)

|                                    | $\beta$ - |                                      |                                                                                                                          |                                    | $\beta$ - <i>I</i> -Asparaginic Acid.                                                    |                                      |                                                |  |
|------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------|--|
| <b>t°</b> .                        | Gms<br>C4HgN2O3.H2O<br>per 100 g<br>H2O.                                                            | <b>t°</b> .                          | Gms.<br>C <sub>4</sub> H <sub>8</sub> N <sub>2</sub> O <sub>3</sub> .H <sub>2</sub> O<br>per 100 g.<br>H <sub>2</sub> O. | t°.                                | Gms.<br>C <sub>4</sub> H <sub>7</sub> NO <sub>4</sub><br>per 100 g.<br>H <sub>2</sub> O. | t°.                                  | Gms.<br>C4H7NO4<br>per 100 g.<br>H2O.          |  |
| 0.7<br>7.9<br>17.5<br>28.0<br>41.4 | 2 · 1400<br>3 · 1710                                                                                | 55 · 5<br>71 · 7<br>87 · 0<br>98 · 0 | 10.650<br>19.838<br>36.564<br>52.475                                                                                     | 0.2<br>9.5<br>16.4<br>31.5<br>40.0 | 0.2674<br>0.4042<br>0.5176<br>0.7514<br>0.9258                                           | 51.0<br>63.5<br>70.0<br>80.5<br>97.4 | 1.2746<br>1.8147<br>2.3500<br>3.2106<br>5.3746 |  |

#### ATROPINE C<sub>17</sub>H<sub>23</sub>NO<sub>3</sub>.

SOLUBILITY OF ATROPINE C<sub>17</sub>H<sub>22</sub>NO<sub>3</sub> AND OF ATROPINE SULPHATE (C<sub>17</sub>H<sub>22</sub>NO<sub>3</sub>)<sub>2</sub>.SO<sub>2</sub>(OH)<sub>2</sub> IN WATER AND OTHER SOLVENTS. (U. S. P.; Müller – Apoth.-Ztg. 28, 244, '03.)

| Grams Atro-<br>Grams Atropine per 100 Grams. pine Sulphate |           |                         |                       |                                         |  |  |  |  |  |
|------------------------------------------------------------|-----------|-------------------------|-----------------------|-----------------------------------------|--|--|--|--|--|
| Solvent.                                                   | t°.       | Solution.               | Solvent. (U. S. P.)   | per 100 Grams<br>Solvent.<br>(U. S. P.) |  |  |  |  |  |
| Water                                                      | 25        | 1 . 782 (20°)           | 0.222                 | 263 . 1                                 |  |  |  |  |  |
| Water                                                      | 80        |                         | 1.15                  | 454 . 5                                 |  |  |  |  |  |
| Alcohol                                                    | 25        | •••                     | 68.44                 | 27.0                                    |  |  |  |  |  |
| Alcohol                                                    | 60        | •••                     | III - II              | 52.6                                    |  |  |  |  |  |
| Ether                                                      | 25        | 2.21 (20 <sup>0</sup> ) | 6.02                  | 0.047                                   |  |  |  |  |  |
| Chloroform                                                 | 25        | 68.03 (20°)             | 64.10                 | 0.161                                   |  |  |  |  |  |
| Benzene                                                    | 20        | 3.99                    | •••                   | •••                                     |  |  |  |  |  |
| Carbon Tetrachloride                                       | 20        | 0.661                   | 1.136 <b>* (</b> 17°) | •••                                     |  |  |  |  |  |
| Ethyl Acetate                                              | 20        | 3.88                    | •••                   | •••                                     |  |  |  |  |  |
| Petroleum Ether                                            | 20        | 0.83                    | •••                   |                                         |  |  |  |  |  |
| Glycerine                                                  | 15        |                         | 3.0                   | 33.0                                    |  |  |  |  |  |
| · •                                                        | Schnideln | neiser — Chem. Ztg. 25  | . 120. '01.           |                                         |  |  |  |  |  |

- Chem. Ztg. 25, 129, '01. Schnidelmeiser

#### AZELAIO ACID C,HH(COOH),

#### SOLUBILITY IN WATER.

(Lamourouz - Compt. rend. 128, 998, '99.)

| t°-<br>Gms. C <sub>7</sub> H <sub>14</sub> (COOH), | 0    | 15   | 20   | 35   | 50   | 65   |
|----------------------------------------------------|------|------|------|------|------|------|
| per 100 cc. solution =                             | 0.10 | 0.15 | 0.24 | 0.45 | 0.82 | 2.20 |

#### AZOPHENETOL (p) C.H.N.C.H.OC.H.

SOLUBILITY IN 100 PER CENT ACETIC ACID.

(Dreyer and Rotarski - Chem. Centr. 76, 11, 1016, '05.)

| <b>t</b> ° ==    | 89.2  | QI    | 93    | 95.6  | 97.2  | 99.6 |
|------------------|-------|-------|-------|-------|-------|------|
| Mols. per liter. | 0.153 | 0.176 | 0.185 | 0.209 | 0.232 |      |

A knick at 94.7° corresponds to the transition temperature of the  $\alpha$  modification into the  $\beta$  modification.

#### BARIUM ACETATE Ba(CH,COO),.

#### SOLUBILITY IN WATER.

(Walker and Fyffe - J. Ch. Soc. 83, 179, '03; Krasnicki - Monatah. Chem. 8, 597, '87.)

|        | Gms. Ba( | CH_COO)   |                                  | 0      | ) <u>a</u> |               |              |
|--------|----------|-----------|----------------------------------|--------|------------|---------------|--------------|
| t°.    |          | o Gms.    | Solid Phase.                     | t°.    |            | o Gms.        | Solid Phase. |
|        | Water.   | Solution. |                                  |        | Water.     | Solution      |              |
| 0.3    | 58.8     | 37 · O    | $Ba(C_2H_3O_2)_2 \cdot 3H_2O$    | 40.5   | 79.0       | 44 . I        | Ba(C,H,O,),  |
| 7.9    | 616      | 38.1      | **                               | 41.5   | 78.7       | <b>44</b> · O | "            |
| 17.5   | 69.2     | 40.9      | "                                | 44 . 5 | 77.9       | 43.8          | "            |
| 21.6   | 72.8     | 42 . I    | **                               | 51.8   | 76.5       | 43.4          | "            |
| 24 . I | 78.1     | 43.9      | **                               | Ğ3.0   | 74.6       | 42.7          | "            |
| 26.2   | 76.4     | 43·3      | $Ba(C_{2}H_{2}O_{2})_{2}.H_{2}O$ | 73.0   | 73.5       | 42.4          | "            |
| 30.6   |          | 42.9      | **                               | 84 · o | 74.0       | 42.5          | 66           |
| 35.0   | 75.8     | 43 . I    | "                                | 99.2   | 74.8       | 42.8          | "            |
| 39.6   | 77 · 9   | 43.8      | "                                |        |            |               |              |

Transition temperatures 24.7° and 41°.

#### BARIUM ARSENATE Ba,(AsO,).

100 gms. H<sub>2</sub>O dissolve 0.055 gm. Ba<sub>3</sub>(AsO<sub>4</sub>)<sub>2</sub>; 100 gms. 5% NH<sub>4</sub>Cl dissolve 0.195 gm., and 100 gms. 10% NH<sub>4</sub>OH dissolve 0.003 gm. Ba<sub>3</sub>(AsO<sub>4</sub>)<sub>3</sub>

(Field - J. Ch. Soc. 11 6, 1859.)

#### 44

# BARIUM BROMATE BaBrO, H.O.

#### SOLUBILITY IN WATER.

(Trants and Anschütz - Z. physik. Chem. 56, 238, 'o6; Rammelsberg - Pogg. Ann. 52, 81, '41.)

| ·           |                                                                      |             |                                                                      |             |                                                                      |
|-------------|----------------------------------------------------------------------|-------------|----------------------------------------------------------------------|-------------|----------------------------------------------------------------------|
| <b>t*</b> . | Gms. Ba(BrO <sub>3</sub> ) <sub>3</sub><br>per 100 Gms.<br>Solution. | <b>t°</b> . | Gms. Ba(BrO <sub>8</sub> ) <sub>3</sub><br>per 100 Gms.<br>Solution. | <b>t°</b> . | Gms. Ba(BrO <sub>3</sub> ) <sub>3</sub><br>per 100 Gms.<br>Solution. |
| - 0.034     | o.28                                                                 | 30          | 0.95                                                                 | 70          | 2.922                                                                |
| 0           | o.286                                                                | 40          | 1.31                                                                 | 80          | 3.521                                                                |
| +10         | 0.439                                                                | 50          | 1.72                                                                 | 90          | 4.26                                                                 |
| 20          | 0.652                                                                | 60          | 2.271                                                                | 98.7        | 5.256                                                                |
| 25          | o 788                                                                |             |                                                                      | 99.65       | 5.39                                                                 |

# BARIUM BROMIDE BaBr, 2H,O.

SOLUBILITY IN WATER.

(Kremers - Pogg. Ann. 99, 47, '56; Etard - Ann. chim. phys. [7] 2, 540, '94.) Gms. BaBr2 per 100 Grams. Gms. BaBr<sub>2</sub> per 100 Grams. Water. Solution. (Kremers.) (Kremers.) (Etard.) Water. (Kremers.) Solution. (Kremers.) (Etard.) t°. ŧ°. - 20 45.6 40 114 53.2 51.5 . . . . . . 98 **4**9 · 5 52.5 118 0 47·5 50 54 · I 50.2 48.5 IO IOI 60 123 55.1 53.5 51.0 49 · 5 70 20 104 128 56.1 54.5 106 51.4 **8**0 135 57.4 25 50.0 55.5 57.8 50.6 30 109 52.I 100 149 60.0 140 . . . . . . 59.4

Sp. Gr. of saturated solution at  $19.5^{\circ} = 1.710$ . The results of Kremers and Etard are both given, since it is uncertain which is the more correct.

SOLUBILITY OF MIXTURES OF BARIUM BROMIDE AND BARIUM IODIDE IN WATER AT DIFFERENT TEMPERATURES.

|             | ~ ~              | U             | clard.)                 | -                            | ~ ~            |  |
|-------------|------------------|---------------|-------------------------|------------------------------|----------------|--|
| <b>t°</b> . | Grams per 100 Gr | ns. Solution. | <b>t</b> °.             | Grams per 100 Gms. Solution. |                |  |
|             | BaBra.           | Balg.         | <b>U</b> <sup>2</sup> . | BaBr2.                       | Balz.          |  |
| -16         | 4.8              | 58.4          | 170                     | 0. II                        | 67.4           |  |
| +60         | 5.5              | 66.0          | 210                     | 14.9                         | 67.7           |  |
| 135         | 9.2              | 67.2          | Both sal                | us present in                | n solid phase. |  |

SOLUBILITY OF BARIUM BROMIDE IN METHYL AND ETHYL ALCOHOLS. (de Bruyn - Z. physik. Chem. 10, 783, 92; Richards - Z. anorg. Chem. 3, 455, '93; Rohland - Ibid. 15 412, '97.)

| <b>t *</b> . | •     | Parts BaBrs per 100<br>parts Aq. CaHsOH of: | Parts BaBr2.2H2O per 100<br>parts of Aq. CH2OH of: |        |        |       |
|--------------|-------|---------------------------------------------|----------------------------------------------------|--------|--------|-------|
|              | 100%. | 97%.                                        | 87%.                                               | 100%.  | 93.5%. | 50%.  |
| 15.0         | ••    | 0.48 (BaBrg.2HgO)                           | ••                                                 | 45 · 9 | 27.3   | 4.0   |
| 22.5         | 3     | •••                                         | 6                                                  | 56.1   | •••    | • • • |

#### **BARIUM BUTYRATE** $Ba(C_4H_7O_2)_2 \cdot 2H_2O$ .

SOLUBILITY IN WATER. (Deszathy – Monatah. Chem. 14, 249, '93.) Gms. Ba(C4H7O2)2 per 100 Gms. Gms. Ba(C<sub>4</sub>H<sub>7</sub>O<sub>2</sub>)<sub>2</sub> per 100 Gms. ŧ°. t°. Water. Water. Solution. Solution. 0 27.24 50 36.44 26.77 37 . 42 36.65 26.82 60 37.68 27.36 IO 36.12 26.55 39.58 28.36 20 70 35.85 26.38 80 20.64 42.13 30 40 35.82 26.37

#### BARIUM CAPROATE AND BARIUM ISO CAPROATE.

#### SOLUBILITY IN WATER.

| (           | Kulisch —      | Monatsh.                                                                            | Chem. 14, 567, '93.)                                                        | (König — Monatsh. Chem. 15, 23, '94.) |                                                   |                                        |  |
|-------------|----------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------|----------------------------------------|--|
| _           | Barium<br>Ba(C | Caproate<br>HaCHaCH                                                                 | (Methyl 3 Pentan.)<br>(CH <sub>a</sub> )CH <sub>2</sub> COO) <sub>2</sub> . | Barium (<br>Ba(C                      | Iso Caproat<br>CH <sub>2</sub> CH(CH <sub>2</sub> | e (Methyl 2 Pentan.)<br>)CH2.CH2COO)2. |  |
| <b>t°</b> . | per 10         | C <sub>6</sub> H <sub>11</sub> O <sub>2</sub> ) <sub>3</sub><br>o Gms.<br>Solution. | Solid Phase.                                                                | Gms. Ba(C<br>per 100<br>Water.        | Gms.<br>Solution.                                 | Solid Phase.                           |  |
| 0           | II.7I          | 10.49                                                                               | Ba(C6H11O2)3-3H2O                                                           | 14.34                                 | 12.54                                             | Ba(C6H11O2)2.4H2O                      |  |
| 10          | 8.38           | 7.73                                                                                | 44                                                                          | 13.33                                 | 11.77                                             | **                                     |  |
| 20          | 6.89           | 6.45                                                                                | 66                                                                          | 12.67                                 | 11.26                                             | **                                     |  |
| 30          | 5.87           | 5.55                                                                                | 64                                                                          | 12.37                                 | 11.01                                             | "                                      |  |
| 40          | 5.79           | 5.47                                                                                | 64                                                                          | 12.42                                 | 11.05                                             | "                                      |  |
| 50          | 6.63           | 6.21                                                                                | **                                                                          | 12.83                                 | 11.38                                             | 44                                     |  |
| δo          | 8.39           | 7.74                                                                                | 66                                                                          | 13.63                                 | 11.00                                             | 44                                     |  |
| 70          | 11.00          | 9.98                                                                                | 64                                                                          | 14.68                                 | 12.80                                             | **                                     |  |
| Šo.         | 14.71          | 12.82                                                                               | 44                                                                          | 1Ó. 24                                | 13.97                                             | **                                     |  |
| 90          | 19.28          | 16.16                                                                               | *                                                                           | 17.95                                 | 15.23                                             | 66                                     |  |

#### BARIUM CARBONATE BaCO,

#### SOLUBILITY IN WATER.

(Holleman, Kohlrausch and Rose - Z. physik. Chem. 12, 129, 241, '93.)

Electrolytic conductivity method used.

1 liter H<sub>2</sub>O dissolves 0.016 g. BaCO<sub>2</sub> at 8.8°, 0.022 g. at 18°, and 0.024 g. at 24.2°.

#### SOLUBILITY OF BARIUM CARBONATE IN WATER CONTAINING CO.

The average of several determinations at about 10°, by Bineau, Lassaigne, Foucroy and Bergmann is 1.10 gms. BaCO, per liter water. Wagner (Z. anal. Ch. 6, 167, '67) gives 7.25 gms. BaCO, per liter of water saturated with CO, at 4-6 atmospheres pressure.

## BARIUM CHLORATE BaClO, H,O.

.

#### SOLUBILITY IN WATER.

(Trants and Anachëts – Z. physik. Chem 56, 238, '06; Kremers – Pogg. Ann. 99, 43, '56; Tilden and Shenstone – Trans. Roy. Soc. 34, '84.)

| <b>t</b> •. | Gms. Ba(ClO <sub>8</sub> ) <sub>2</sub><br>per 100 Gms.<br>Solution. | t°. | Gms. Ba(ClO <sub>2</sub> ) <sub>2</sub><br>per 100 Gms.<br>Solution | t°.  | Gms. Ba(ClO <sub>3</sub> ) <sub>2</sub><br>per 100 Gms.<br>Solution. |
|-------------|----------------------------------------------------------------------|-----|---------------------------------------------------------------------|------|----------------------------------------------------------------------|
| - 2.75      | 15.28                                                                | 30  | 29 43                                                               | 90   | 48.70                                                                |
| 0           | 16.90                                                                | 40  | 33.16                                                               | 99.1 | 51.17                                                                |
| + 10        | 21.23                                                                | 50  | 36.69                                                               | 105  | 52.62                                                                |
| 20          | 25.26                                                                | 60  | 40.05                                                               | 116  | 66.o                                                                 |
| 25          | 27.53                                                                | 70  | 43.04                                                               | 146  | 78.o                                                                 |
| •           |                                                                      | 80  | 45.90                                                               |      |                                                                      |

.

# BARIUM CHLORIDE BaCl, 2H,O.

#### SOLUBILITY IN WATER.

(Mulder; Engel - Ann. chim. phys. [6] 13, 372, '88; Etard - Ibid. [7] 2, 535, '94.)

| ŧ°. | Gms. BaCl <sub>2</sub> per 100 Gms. |           | t°. | Gms. BaCl <sub>2</sub> per 100 Gms. |           |  |
|-----|-------------------------------------|-----------|-----|-------------------------------------|-----------|--|
| £°. | Water.                              | Solution. | ¥*. | Water.                              | Solution. |  |
| 0   | 31.6                                | 24.0      | 60  | 46.4                                | 31.3      |  |
| 10  | 33.3                                | 25.0      | 70  | <b>49</b> · <b>4</b>                | 33.I      |  |
| 20  | 35.7                                | 26.3      | 80  | 52.4                                | 34.4      |  |
| 25  | 37.0                                | 27.0      | 100 | 58.8                                | 37.0      |  |
| 30  | 38.2                                | 27.7      | 130 | 59.5                                | 37.3      |  |
| 40  | 40.7                                | 28.9      | 160 | 63.6                                | 38.9      |  |
| 50  | 43.6                                | 30.4      | 215 | 75.9                                | 43.1      |  |
| ~   | • .•                                |           | •   |                                     |           |  |

Sp. Gr. of solution saturated at  $0^\circ = 1.25$ ; at  $20^\circ = 1.27$ .

#### SOLUBILITY OF MIXTURES OF BARIUM CHLORIDE AND BARIUM NITRATE IN WATER.

Both salts present in solid phase.

(Etard.)

| ŧ°. | Grams per 100 Gms. Solution. |           | <b>t°</b> . | Grams per 100 Gms. Solution. |           |   |
|-----|------------------------------|-----------|-------------|------------------------------|-----------|---|
| ¥-, | BaCl <sub>2</sub> .          | Ba(NO2)2. | ¥           | BaCl2.                       | Ba(NOa)2. |   |
| 0   | 22.5                         | 4.3       | 100         | 31                           | 14        |   |
| 20  | 24.5                         | 6.0       | 140         | 32                           | 20        | - |
| 40  | 26.5                         | 7.5       | 180         | 33                           | 26        |   |
| 60  | 28.5                         | 9.5       | 210         | 32                           | 32        |   |

SOLUBILITY OF MIXTURES OF BARIUM CHLORIDE AND MERCURIC CHLORIDE IN WATER.

(Foote and Bristol - Am. Ch. J. 32, 248, '04.)

| t°.  |       | tion.<br>HgCl <sub>2</sub> . | Solid<br>Phase.                                                | t*.  | Gms. per a<br>Soluti<br>BaCl <sub>2</sub> . |       | Solid<br>Phase.                                                          |
|------|-------|------------------------------|----------------------------------------------------------------|------|---------------------------------------------|-------|--------------------------------------------------------------------------|
| 10.4 | 23.58 | 50.54                        | { BaCl <sub>2</sub> 2H <sub>2</sub> O+<br>HgCl <sub>2</sub> .  | 10.4 | 22.10                                       | 51.66 | Double Salt<br>BaCl <sub>2</sub> .3HgCl <sub>2</sub> .6H <sub>2</sub> O. |
| 10.4 | 23.44 | 50.74                        | ( Double Salt                                                  | 10.4 | 21.64                                       | 51.74 | BaClg-2HgO+HgClg.                                                        |
| 10.4 | 22.58 | 51.23                        | BaCl <sub>2</sub> . 3HgCl <sub>2</sub> .<br>6H <sub>2</sub> O. | 25   | 23.02                                       | 54.83 | pecilisuio Lugoi.                                                        |
| 10.4 | 22.48 | 51.41                        |                                                                |      |                                             |       |                                                                          |

Solubility of Mixtures of Barium Chloride and Potassium Chloride in Water.

(Foote -- Am. Ch. J. 32, 253, '04.)

100 grams saturated solution contain 13.83 grams BaCl<sub>2</sub> + 18.97 grams KCl at 25°.

Solubility of Mixtures of Barium Chloride and Sodium Chloride in Water.

(Precht and Wittgen - Ber. 14, 1667, '81; Rüdorff - Ber. 18, 1161, '85.)

| ŧ°.        | Gms. per 100 | Gms. HgO. | Gms. per 100 Gms. Solution. |       |  |
|------------|--------------|-----------|-----------------------------|-------|--|
| <b>U</b> . | BaCl2.       | NaCl.     | BaCl <sub>2</sub> .         | NaCl. |  |
| 20         | <b>4</b> .I  | 33.8      | 2.9                         | 25.0  |  |
| 40         | 6.3          | 33.6      | 4 · 5                       | 23.0  |  |
| 60         | 9.7          | 33 · 5    | 6.8                         | 23.4  |  |
| 80         | 13.9         | 33.6      | 9.4                         | 22.8  |  |
| 100        | 17.9         | 33.6      | 11.8                        | 22.2  |  |

### SOLUBILITY OF BARIUM CHLORIDE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID AT 0°.

(Engel - Ann. chim. phys. [6] 13, 371, '88.)

| Sp. Gr. of<br>Solutions. | Milligram Mols. per<br>10 cc. Sol. |         | Gms. per | 100 cc. Sol. | Gms. per 100 g. Sol. |         |
|--------------------------|------------------------------------|---------|----------|--------------|----------------------|---------|
| Solutions.               | HCI.                               | BaCla.  | HCI.     | BaCls.       | HCI.                 | BaCla.  |
| I . 250                  | 0                                  | 28.90   | 0        | 30.10        | 0                    | 24.07   |
| I . 242                  | I.I                                | 27.80   | 0.40     | 28.95        | 0.32                 | 23.31   |
| 1 . 228                  | 2.8                                | 26.07   | I .02    | 27.15        | 0.83                 | 22.II   |
| I . 210                  | 5.0                                | 23.40   | 1.82     | 24.36        | 1.51                 | 20 . 14 |
| I.143                    | 14.4                               | 14.00   | 5.24     | 14.57        | 4.58                 | 12.76   |
| 1.118                    | 18.8                               | IO.20 . | 6.84     | 10.47        | 6.13                 | 9·37    |
| I.099                    | 22.7                               | 6.67    | 8.99     | 6.95         | 7 · 55               | 6.33    |
| 1.079                    | 32.0                               | 2.74    | 11.66    | 2.85         | 10.81                | 2.64    |
| I.088                    | 50.5                               | 0.29    | 18.41    | 0.30         | 16.92                | 0.28    |

Less than 1 part of BaCl, is soluble in 20,000 parts of concentrated HCl and in 120,000 parts of conc. HCl containing 1 volume of ether. (Mar - Am. J. Sci. [3] 43, 521, '92.)

#### SOLUBILITY OF BARIUM CHLORIDE IN ABSOLUTE METHYL ALCOHOL AND IN GLYCERINE.

(In Alcohol, de Bruyn - Z. physik. Chem. 10, 783, '92.)

100 parts of CH<sub>2</sub>OH dissolve 2.18 parts BaCl<sub>2</sub> at 15.5°, and 7.3 parts BaCl, 2H,O at 6°.

100 parts by weight of glycerine dissolve 10 parts of BaCl, at 15.5°.

Solubility of Barium Chloride in Aqueous Ethyl Alcohol at 15°. (Schiff - Liebig's Ann. 118, 365, '61; Rohland - Z. anorg. Ch. 15, 412, '97.)

| Wt. per cent alcohol                                                   | 10  | 20   | 30   | 40     | бо  | 80  | 97    |
|------------------------------------------------------------------------|-----|------|------|--------|-----|-----|-------|
| Gms. BaCl <sub>2</sub> . 2H <sub>2</sub> O per<br>100 g. aq. alcohol 3 | 1.1 | 21.9 | 14.7 | IO · 2 | 3.5 | 0.5 | 0.014 |

# BARIUM CHROMATE BaCrO.

SOLUBILITY IN WATER AND IN SALT SOLUTIONS.

| <b>t*</b> .              | Solvent.                             | Gms. BaCrO <sub>4</sub> per Liter<br>Solution.               | Observer.                                                |
|--------------------------|--------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|
| 18                       | Water                                | 0.0038                                                       | (Kohlrausch & Rose —<br>Z. physic. Ch. 12, 241,<br>'93.) |
| ord. temp.<br>ord. temp. | 66<br>66                             | 0.0062 (ignited BaCrO <sub>4</sub> )<br>0.0100 (not ignited) | (Schweitzer – Z. anal.<br>Ch. 29, 414, '90.)             |
| b. pt.                   | "                                    | 0.043                                                        | (Mescherzerski – Z.<br>anal. Ch. 21, 399, '82.)          |
|                          | 1.5% Am. Acetate<br>0.5% Am. Nitrate |                                                              | (Fresenius — Z. anal.<br>Ch. 29, 418, '90.)              |

#### BARIUM CITRATE Ba<sub>2</sub>(C<sub>6</sub>H<sub>5</sub>O<sub>7</sub>)<sub>2</sub>.7H<sub>2</sub>O.

SOLUBILITY IN WATER AND IN ALCOHOL.

100 grams water dissolve 0.0406 gram Ba<sub>3</sub>(C<sub>6</sub>H<sub>6</sub>O<sub>7</sub>)<sub>2.7</sub>H<sub>2</sub>O at 18°,

and 0.0572 gm. at 25°. 100 grams 95% alcohol dissolve 0.0044 gram Ba<sub>3</sub>(C<sub>6</sub>H<sub>8</sub>O<sub>7</sub>)<sub>3.7</sub>H<sub>2</sub>O at 18°, and 0.0058 gm. at 25°.

(Partheil and Hübner - Archiv. Pharm. 241, 413, '03.)

#### BARIUM CYANIDE Ba(CN).

SOLUBILITY IN WATER AND IN ALCOHOL AT 14°. (Joannis - Ann. chim. phys. [5] 26, 489, '82.)

100 parts water dissolve 80 parts Ba(CN).

100 parts 70% alcohol dissolve 18 parts Ba(CN).

#### BARIUM FERROCYANIDE AND BARIUM POTASSIUM FERRO-CYANIDE.

(Wyrouboff - Ann. chim. phys. [4] 16, 292, '69.)

100 parts water dissolve 0.1 part Ba<sub>2</sub>Fe(CN)<sub>2</sub>.6H<sub>2</sub>O at 15°, and 1.0 part at 75°.

100 parts water dissolve 0.33 part BaK, Fe(CN), 5H,O at ord. temp.

BARIUM FLUORIDE BaF<sub>3</sub>. (Kohlrausch – Z. physik. Chem. 50, 365, '04-'05.)

1 liter of water dissolves 1.63 gms. BaF, at 18°. Electrolytic conductivity method.

# BARIUM FORMATE Ba(HCOO), 2H,O.

SOLUBILITY IN WATER. (Krasnicki — Monatsh. Chem. 8, 597, '87.)

| t°. | Gms. Ba(HCOO) <sub>2</sub> per 100 Gms. |           | £°. | Gms. Ba(HCOO)2 per 100 Gms. |           |  |
|-----|-----------------------------------------|-----------|-----|-----------------------------|-----------|--|
|     | Water.                                  | Solution. | ••• | Water.                      | Solution. |  |
| 0   | 27.76                                   | 21.72     | 40  | 34 . 81                     | 25.82     |  |
| IO  | <b>28</b> .46                           | 21.15     | 50  | 37 . 14                     | 27.10     |  |
| 20  | 30.11                                   | 23.15     | 60  | 38.97                       | 28.03     |  |
| 25  | 31.20                                   | 23.80     | 70  | 39.95                       | 28.54     |  |
| 30  | 32.34                                   | 24.45     | 8o  | 39.71                       | 28.42     |  |
|     |                                         |           |     |                             |           |  |

# BARIUM HYDROXIDE Ba(OH),

SOLUBILITY IN WATER. SOLID PHASE Ba(OH)<sub>3</sub>.8H<sub>3</sub>O. (Rosenthiel and Rühlmann — Jahresber. Chem. 314, '70.)

|     | (                                     |           | ,   |               |                           |  |
|-----|---------------------------------------|-----------|-----|---------------|---------------------------|--|
| t°. | Gms. Ba(OH) <sub>2</sub> per 100 Gms. |           | t°. | Gms. Ba(OH    | Gms. Ba(OH); per 100 Gms. |  |
| • · | Water.                                | Solution. | • • | Water.        | Solution.                 |  |
| 0   | 1.67                                  | 1.65      | 30  | <b>5</b> · 59 | 5.29                      |  |
| 5   | I .95                                 | 1.92      | 40  | 8.22          | 7.60                      |  |
| 10  | 2.48                                  | 2.42      | 50  | 13.12         | 11.61                     |  |
| 15  | 3.23                                  | 3.13      | 60  | 20.94         | 17.32                     |  |
| 20  | 3.89                                  | 3.74      | 75  | 63.51         | 38.85                     |  |
| 25  | 4.68                                  | 4 · 47    | 30  | 101.40        | 50.35                     |  |
|     |                                       |           |     |               |                           |  |

SOLUBILITY OF BARIUM HYDROXIDE IN AQUEOUS ACETONE AT 25°. (Herz and Knoch - Z. anorg. Chem. 41, 321, '04.)

| Sp. Gr. of<br>Solutions. | Vol. %   |              |                | Solution.     |  | Gms. Ba(OH) <sub>3</sub><br>per<br>100 Gms. |  |
|--------------------------|----------|--------------|----------------|---------------|--|---------------------------------------------|--|
| Joiuuous.                | Adetode. | Millimols.   | Grams.         | Solution.     |  |                                             |  |
| I 0479                   | 0        | 55.08        | 4.722          | 4.506         |  |                                             |  |
| 1.0168                   | IO       | 31.84        | 2.730          | 2.686         |  |                                             |  |
| 0.9927                   | 20       | 17.79        | 1.525          | 1.53 <b>6</b> |  |                                             |  |
| 0.9763                   | 30       | 9.10         | 0.779          | o.798         |  |                                             |  |
| 0.9561                   | 40       | <b>4</b> ·75 | 0 · <b>407</b> | o · 426       |  |                                             |  |
| 0.9398                   | 50       | I.54         | 0.132          | 0.141         |  |                                             |  |
| <b>0</b> .9179           | 60       | o.48         | 0.04I          | 0.045         |  |                                             |  |
| 0.8956                   | 70       | o.o8         | 0.007          | 810.O         |  |                                             |  |

Ballona per

# BARIUM IODATE Ba(IO3)2.H2O.

SOLUBILITY IN WATER.

49

|     | (I rantz and | Anschutz - | - 2. physik. Chem. 50, 232    | , 00.) |    |
|-----|--------------|------------|-------------------------------|--------|----|
| IS. | Ba(IO3)2 per | +0         | Gms. Ba(IO <sub>3</sub> ) per | +0     | Gr |

| £°. 10  | o Gms. Solution. | t".  | 100 Gms. Solution. | t°. | 100 Gms. Solution |
|---------|------------------|------|--------------------|-----|-------------------|
| - 0.046 | 800.0            | 30   | 0.031              | 70  | 0.093             |
| + 10    | 0.014            | . 40 | 0.041              | 80  | 0.115             |
| 20      | 0.022            | 50   | 0.056              | 90  | 0.141             |
| 25      | 0.028            | 60   | 0.074              | 100 | 0.197             |

#### BARIUM IODIDE Bal.

C

SOLUBILITY IN WATER. (Kremers - Pogg. Ann. 103, 66, 1858; Etard - Ann. chim. phys. [7] 2, 544, '94.)

| t°   | Gms. Bala | Solution. | s. Solid Phase.                      | t°. | Gms. Bala | Solution. | <sup>15</sup> . Solid Phase. |
|------|-----------|-----------|--------------------------------------|-----|-----------|-----------|------------------------------|
| - 20 |           |           | Bal <sub>2</sub> .6 H <sub>2</sub> O | 40  |           |           | Bal2.2 H2O                   |
|      | 170.2     |           |                                      |     | 247.3     |           | "                            |
| +10  | 185.7     | 65.0      | "                                    |     | 261.0     |           | "                            |
| 20   | 203.I     | 67.0      | "                                    | 100 | 271.7     | 73.I      | "                            |
| 25   | 212.5     | 68.0      | "                                    |     | 281.7     |           | "                            |
|      | 219.6     |           | **                                   |     | 294.8     |           | **                           |
|      | ~ ~       |           |                                      |     |           |           |                              |

Sp. Gr. of saturated solution at  $19^{\circ}.5 = 2.24$ . For method of interpolating above results, see Note, page 33.

100 grams 97% Ethyl Alcohol dissolve 1.07 g. Bal2.2H2O at 15°.

(Rohland - Z. anorg. Chem. 15, 417, 1897.)

# BARIUM MALATE BaC,H,Os.

SOLUBILITY IN WATER.

(Cantoni and Basadonna - Bull. soc. chim. [3] 35, 731, 'o6.)

| tº. | Gms. BaC4H4O5<br>per 100 cc. Sol. | t°. | Gms. BaC4H4O5<br>per 100 cc. Sol. | t°. | Gms. BaC4H4Og<br>per 100 cc. Sol. |
|-----|-----------------------------------|-----|-----------------------------------|-----|-----------------------------------|
| 20  | 0.883                             | 35  | 0.895                             | 60  | I.OII                             |
| 25  | 0.901                             | 40  | 0.8)                              | 70  | 1.041                             |
| 30  | 0.903                             | 50  | 0.942                             | 80  | 1.044                             |

SOLUBILITY IN WATER AND IN ALCOHOL. (Partheil and Hübner - Archiv. Pharm. 241, 413, '03.)

100 grams water dissolve 1.24 gms. BaC4H4O5 at 18°, and 1.3631 gms. at 25°.

100 grams 95% alcohol dissolve 0.0038 gms. BaC<sub>4</sub>H<sub>4</sub>O<sub>6</sub> at 18°, and 0.0039 gm. at 25°.

# BARIUM MALONATE BaC3H2O4.N2O.

SOLUBILITY IN WATER. (Miczynski – Monatsh. Chem. 7, 263, '86.)

| t°. | Gms. BaCaH2 | Q4 per 100 Gms. | \$°. | Gms. BaCaH2O4 per 100 Gms. |           |  |
|-----|-------------|-----------------|------|----------------------------|-----------|--|
|     | Water,      | Solution.       |      | Water.                     | Solution. |  |
| 0   | 0.143       | 0.143           | 50   | 0.287                      | 0.285     |  |
| IO  | 0.179       | 0.179           | 60   | 0.304                      | 0.303     |  |
| 20  | 0.212       | O.2II           | 70   | 0.317                      | 0.316     |  |
| 30  | 0.241       | 0.240           | 80   | 0.326                      | 0.325     |  |
| 40  | 0.266       | 0.265           |      |                            |           |  |

# BARIUM MOLYBDATE BaMoO.

100 parts water dissolve 0.0058 part BaMoO, at 23°.

(Smith and Bradbury - Ber. 24, 2930, '91.)

#### BARIUM NITRATE Ba(NO,),.

#### SOLUBILITY IN WATER.

(Mulder; Gay Lussac; Etard - Ann. chim. phys. [7] 2, 528, 94; Euler - Z. physik. Chem. 49, 315, '04.)

| <b>t°</b> . | Gms. 1<br>pet 10 | Ba(NO2)2<br>oo Gms. | t°.  | Gms. Ba(NO <sub>3</sub> ) <sub>2</sub><br>per 100 Gms. |           |
|-------------|------------------|---------------------|------|--------------------------------------------------------|-----------|
|             | Water.           | Solution.           |      | Water.                                                 | Solution. |
| 0           | 5.0              | 4.8                 | 80   | 27.0                                                   | 21.3      |
| 10          | 7.0              | 6.5                 | 100  | 34.2                                                   | 25.5      |
| 20          | 9.2              | 8.4                 | I 20 | 42.0                                                   | 29.6      |
| 25          | 10.4             | 9.4                 | 140  | 50.0                                                   | 33.3      |
| 30          | ы. б             | 10.6                | 160  | 58.0                                                   | 36.7      |
| 40          | 14.2             | 12.4                | 180  | 67.0                                                   | 40 · I    |
| 50          | 17.1             | 14.6                | 200  | 76.0                                                   | 43 . 2    |
| δo          | 20.3             | 16.9                | 215  | 84.5                                                   | 45.8      |

Sp. Gr. of saturated solution at  $19.5^{\circ} - 1.072$ .

#### Solubility of Mixtures of Barium Nitrate and Lead Nitrate in Water at 25°.

(Fock. - Z. Kryst. Min. 28, 365, '97; at 17°, Euler - Z. phyisk. Chem. 49, 315, '04.)

|                         |                                     | In Solid Phase.                     |                                     |              |           |                    |
|-------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------|-----------|--------------------|
| Sp. Gr. of<br>Solution. | Gms. p                              | er Liter.                           | Mg. Mols                            | . per Liter. | Mol. %    | Mol. %<br>Ba(NO3)3 |
|                         | Ba(NO <sub>3</sub> ) <sub>2</sub> . | Pb(NO <sub>3</sub> ) <sub>2</sub> . | Ba(NO <sub>3</sub> ) <sub>2</sub> . | Pb(NOz)2     | Ba(NOa)2. | Ba(.NO3)3          |
| I.079                   | 102.2                               | 0                                   | 391.0                               | 0            | 100       | 100                |
| I.088                   | 54.9                                | 17.63                               | 210 · I                             | 53·3         | 79.78     | <u>98.30</u>       |
| 1 . 108                 | 86.5                                | 49.80                               | 330.7                               | 150.7        | 68.70     | 96.74              |
| 1.119                   | <b>7</b> 9 · 7                      | <b>68</b> . 10                      | 304.9                               | 205.7        | 59.69     | 94.80              |
| I.140                   | 77.0                                | 97 . 20                             | 294 . 4                             | 293.6        | 50.09     | 93.62              |
| 1.163                   | 69.8                                | 130.7                               | <b>2</b> 66 . <b>8</b>              | 395.0        | 40.31     | 92.49              |
| 1.198                   | 66 o                                | 177.3                               | 252.5                               | 535.6        | 32.03     | 90.07              |
| I.252                   | 57·5                                | 247.7                               | 222.6                               | 748.5        | 22.91     | 83.47              |
| 1.294                   | 25.9                                | 334.3                               | <u>99 · 2</u>                       | 1010.3       | 8.11      | 75.44              |
| 1.376                   | 28.8                                | 429.7                               | 110.3                               | 1298.0       | 7.77      | 35.11              |
| I.459                   | •••                                 | 553.8                               | 0.0                                 | 1673.0       | 0.0       | 0.0                |

Tables of results are also given for 15°, 30°, and 47°.

#### Solubility of Mixtures of Barium Nitrate and Potassium Nitrate in Water at 25°.

(Foote - Am. Ch. J. 32, 252, '04.)

| Gms. KNO <sub>3</sub> . | Grams<br>Ba(NO3)2. | Solid Phase.                                                        |
|-------------------------|--------------------|---------------------------------------------------------------------|
| 14.89                   | 6.62               | Ba(NO <sub>2</sub> ), and 2 KNO <sub>2</sub> .Ba(NO <sub>2</sub> ), |
| 16.30                   | 5 49               | Double salt,                                                        |
| 21 99                   | 3.04 \$            | 2 KNO, Ba(NO)                                                       |
| 27.76                   | 2.04               | 2 KNO, Ba(NO),<br>KNO, and 2 KNO, Ba(NO),                           |

ygagel **Ima** 

# 51 BARIUM NITRATE

# SOLUBILITY OF BARIUM NITRATE IN AQUEOUS PHENOL SOLUTIONS AT 25°.

# (Rothmund and Wilsmore - Z. phyisk. Chem. 40, 620, '02.)

| G. Mols. | per Liter. | Gms.    | per Liter. | G. Mols.                          | per Liter. | Gms. p                            | er Liter. |
|----------|------------|---------|------------|-----------------------------------|------------|-----------------------------------|-----------|
| C.H.OH   | Ba(NO3)2.  | CoH5OH. | Ba(NO3)2.  | C <sub>6</sub> H <sub>5</sub> OH. | Ba(NO3)2.  | C <sub>6</sub> H <sub>5</sub> OH. | Ba(NO3)2. |
| 0.000    | 0.3835     | 0.0     | 100.2      | 0.310                             | 0.3492     | 29.12                             | 91.31     |
| 0.045    | 0.3785     | 4.23    | 98.97      | 0.401                             | 0.3400     | 37.73                             | 88.90     |
| 0.082    | 0.3746     | 7.71    | 97.95      | 0.501                             | 0.3299     |                                   |           |
| 0.146    | 0.3664     | 13.73   | 95.81      | 0.728 (sat                        | .) 0.3098  | 68.45                             | 81.00     |

# BARIUM NITRITE Ba(NO2)2.H2O.

SOLUBILITY IN WATER. (Vogel - Z. anorg. Chem. 35. 389, '03.)

| t°.                                                                  | o° | 20 <sup>0</sup> | 25° | 30° | 35° |
|----------------------------------------------------------------------|----|-----------------|-----|-----|-----|
| Gms. Ba(NO <sub>2</sub> ) <sub>2</sub> per 100 gms. H <sub>2</sub> O | 58 | 63              | 71  | 82  | 97  |

# BARIUM OXALATE BaC.O.

SOLUBILITY OF THE THREE HYDRATES IN WATER. (Groschuff - Ber. 34, 3318, 'o1.)

|     |                                                             | 10                                                                         | ropensen per.                                               | 34, 3310, 01.7                                                              |                                                             |                                                                            |
|-----|-------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------|
|     | BaC2O                                                       | 43H2O.                                                                     | BaCz                                                        | 04.2H2O.                                                                    | BaC <sub>2</sub> (                                          | 04.HBO.                                                                    |
| t°. | Gms. BaC <sub>2</sub> O <sub>4</sub><br>per<br>1000 g. Sol. | G. M. BaC <sub>2</sub> O <sub>4</sub><br>per 100 Mol.<br>H <sub>2</sub> O. | Gms. BaC <sub>2</sub> O <sub>4</sub><br>per<br>1000 g. Sol. | G. M. BaC <sub>2</sub> O <sub>4</sub><br>per 100 G. M.<br>H <sub>2</sub> O. | Gms. BaC <sub>2</sub> O <sub>4</sub><br>per<br>1000 g. Sol. | G. M. BaC <sub>2</sub> O <sub>4</sub><br>per 100 Mol.<br>H <sub>2</sub> O, |
| 0   | 0.058                                                       | 0.00046                                                                    | 0.053                                                       | 0.00042                                                                     | 0.089                                                       | 0.00070                                                                    |
| 9.5 | 0                                                           | 0.00066                                                                    |                                                             |                                                                             |                                                             |                                                                            |
| 18  | 0.112                                                       | 0.00000                                                                    | 0.089                                                       | 0.00071                                                                     | 0.124                                                       | 0.00099                                                                    |
| 30  | 0.170                                                       | 0.00136                                                                    | 0.121                                                       | 0.00097                                                                     | 0.140                                                       | 0.00112                                                                    |
| 40  |                                                             |                                                                            | 0.152                                                       | 0.00122                                                                     | 0.151                                                       | 0.00121                                                                    |
| 45  |                                                             | ***                                                                        | 0.169                                                       | 0.00135                                                                     |                                                             |                                                                            |
| 50  |                                                             |                                                                            |                                                             |                                                                             | 0.164                                                       | 0.00131                                                                    |
| 55  |                                                             |                                                                            | 0.212                                                       | 0.00170                                                                     |                                                             |                                                                            |
| 60  |                                                             |                                                                            |                                                             |                                                                             | 0.175                                                       | 0.00140                                                                    |
| 65  |                                                             |                                                                            | 0.250                                                       | 0.00200                                                                     |                                                             |                                                                            |
| 73  |                                                             |                                                                            | 0.285                                                       | 0.00228                                                                     |                                                             |                                                                            |
| 75  |                                                             |                                                                            |                                                             |                                                                             | 0.188                                                       | 0.00151                                                                    |
| 90  |                                                             |                                                                            |                                                             |                                                                             | 0.200                                                       | 0.00160                                                                    |
| 100 |                                                             |                                                                            |                                                             |                                                                             | 0.211                                                       | 0.00169                                                                    |
|     |                                                             |                                                                            |                                                             |                                                                             |                                                             |                                                                            |

# SOLUBILITY OF BARIUM OXALATE (BaC<sub>2</sub>O<sub>4</sub>.<sup>1</sup>/<sub>2</sub>H<sub>2</sub>O) IN AQUEOUS ACETIC ACID AT 26°-27°.

(Herz and Muhs. - Ber. 36, 3715, '03.)

| Normality          | G. Residue*           | Gms. per 10 | o cc. Solution. | Normality          | G. Residue*        | Gms. per 100 | cc. Solution |
|--------------------|-----------------------|-------------|-----------------|--------------------|--------------------|--------------|--------------|
| of Acetic<br>Acid. | per 50.05 cc.<br>Sol. | CHaCOOH     | I. Oxalate.     | of Acetic<br>Acid. | per 50 cc.<br>Sol. | СН3СООН.     | Ba Oxalate   |
| 0                  | 0.0077                | 0.00        | 0.0154          | 3.85               | 0.0564             | 23.12        | 0.1127       |
| 0.565              | 0.0423                | 3.39        | 0.0845          | 5.79               | 0.0511             | 34.76        | 0.1021       |
| 1.425              | 0.0520                | 8.55        | 0.1039          | 17.30              | 0.0048             | 103.90       | 0.0096       |
| 2.85               | 0.0556                | 17.11       | O.IIII          |                    |                    | ***          |              |

• Dried at 70°.

# BARIUM ACID OXALATE 52

# BARIUM ACID OXALATE BaC<sub>2</sub>O<sub>4</sub>.H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>.2H<sub>3</sub>O.

#### SOLUBILITY IN WATER. (Groschuff.)

| <b>t°</b> .    | Gms. per 100                                   | Gms. Solution. | Mols. per 10                                   | o Mols. H2O. | Mols. H <sub>2</sub> C <sub>2</sub> O <sub>4</sub> |
|----------------|------------------------------------------------|----------------|------------------------------------------------|--------------|----------------------------------------------------|
| • •            | H <sub>2</sub> C <sub>2</sub> O <sub>4</sub> . | BaC2O4.        | H <sub>2</sub> C <sub>2</sub> O <sub>4</sub> . | BaCrO4.      | per 1 Mol.BaCrO4.                                  |
| 0              | 0.27                                           | 0.030          | 0.054                                          | 0.0024       | 22                                                 |
| 18             | o.66                                           | 0.070          | 0.130                                          | o.co56       | 24                                                 |
| 20.5           | 0.76                                           | 0.076          | 0.15                                           | 0.0001       | 25                                                 |
| 38             | 1.61                                           | 0.16           | 0.33                                           | 0.013        | 25                                                 |
| 41             | 1.82                                           | 0.18           | 0.37                                           | 0.015        | 25                                                 |
| 53             | 2.92                                           | 0.31           | 0.60                                           | 0.026        | 24                                                 |
| 60             | 3.60                                           | 0. <b>40</b>   | 0.75                                           | 0.033        | 22.5                                               |
| 8o             | 6.21                                           | 0.81           | I.34                                           | 0.070        | 19                                                 |
| 90             | 7.96                                           | I.II           | 1.75                                           | 0.098        | 18                                                 |
| <del>9</del> 9 | 10.50                                          | 1.55           | 2.39                                           | 0.141        | 17                                                 |

#### **BARIUM PROPIONATE** $Ba(C_3H_3O_2)_3$ . $H_2O$ . also $6H_2O$ .

#### SOLUBILITY IN WATER.

(Krasnicki - Monatsh. Chem. 8, 597, '87.)

| t°. | Gms. Bat<br>per 10 | (CaH <sub>5</sub> O <sub>2</sub> ) <sub>2</sub><br>o Gms. | t°. | Gms. Ba(C <sub>2</sub> H <sub>5</sub> O <sub>2</sub> ) <sub>2</sub><br>per 100 Gms. |           |
|-----|--------------------|-----------------------------------------------------------|-----|-------------------------------------------------------------------------------------|-----------|
|     | Water.             | Solution.                                                 |     | Water.                                                                              | Solution. |
| 0   | 47.98              | 32.41                                                     | 50  | 62 . 74                                                                             | 38.57     |
| 10  | 51.56              | 34.02                                                     | 60  | 64.76                                                                               | 39.31     |
| 20  | 54.82              | 35.42                                                     | 70  | 66.46                                                                               | 39.93     |
| 30  | 57.77              | 36.65                                                     | 8o  | 67.85                                                                               | 40.42     |
| 40  | 60.41              | 37.66                                                     | ••  | •••                                                                                 | •••       |

# BARIUM SULPHATE BaSO4.

#### SOLUBILITY IN WATER.

Electrolytic Conductivity Method. (Holleman; Kohlrausch and Rose – Z. physik. Chem. 12, 131, 241, '93.)

| t°                              | 2 <sup>0</sup> | 10 <sup>0</sup> | 19°    | 26°    | 34°    | 37 · 7° |
|---------------------------------|----------------|-----------------|--------|--------|--------|---------|
| Gm. BaSO <sub>4</sub> per liter | 0.0017         | 0.0020          | 0.0023 | 0.0026 | 0.0029 | 0.0031  |

Solubility of Barium Sulphate in Aqueous Solutions of Hydrochloric and of Nitric Acids.

(Banthisch — J. pr. Chem. 29, 54, 1884.)

| In Hydrochloric Acid. |                               |            |                     | In Nitric Acid.       |                       |                    |        |
|-----------------------|-------------------------------|------------|---------------------|-----------------------|-----------------------|--------------------|--------|
| 1 Mg. Equiv.          | Mgs. BaSO4<br>per 1 Mg. Equiv | . <u>S</u> | er 100 cc.          |                       | per i Mg. Equiv.      | Sol                | ution. |
| of HCl.               | of HCl.                       | HC1.       | BaSO <sub>4</sub> . | of HNO <sub>2</sub> . | of HNO <sub>2</sub> . | ΉNO <sub>3</sub> . | BaSO4. |
| 2.0                   | 0.133                         | 1.82       | 0.0067              | 2.0                   | 0.140                 | 3.15               | 0.0070 |
| I.O                   | 0.089                         | 3.65       | 0.0089              | Ι.Ο                   | 0.107                 | 6.31               | 0.0107 |
| 0.5                   | 0.056                         | 7 . 29     | 0.0101              | 0.5                   | 0.085                 | 12.61              | 0.0170 |
| 0.2                   | 0.017 1                       | 8.23       | 0.0086              | 0.2                   | o.o48                 | 31.52              | 0.0241 |

100 cc. HBr dissolve 0.04 gms. BaSO<sub>4</sub>; 100 cc. HI dissolve 0.0016 gms. BaSO<sub>4</sub> at the boiling point.

(Haslam - Chem. News 53, 87, '86.)

SOLUBILITY OF BARIUM SULPHATE IN AQUEOUS SOLUTIONS OF IRON, ALUMINUM AND MAGNESIUM CHLORIDES AT 20° - 25°. (Fraps. - Am. Ch. J. 27, 290, '01.)

53

| Gms.<br>Chloride |            |            |            | Gms.<br>Chloride | Mgs. BaSO, per Liter in: |            |           |  |
|------------------|------------|------------|------------|------------------|--------------------------|------------|-----------|--|
| per Liter.       | Aq. FeCla. | Aq. AlCla. | Aq. MgCl2. | per Liter.       | Aq. FeCla.               | Aq. AlCla. | Aq.MgCl2. |  |
| I                | 58         | 33         | 30         | 25               | 150                      | 110        | 50        |  |
| 21               | 72         | 43         | 30         | 50               | 160                      | 170        | 50        |  |
| 5                | 115        | 60         | 33         | 100              | 170                      | 175        | 50 -      |  |
| IO               | 123        | 94         | 33         |                  |                          |            |           |  |

#### BARIUM PerSULPHATE BaS<sub>2</sub>O<sub>8.4</sub>H<sub>2</sub>O.

100 parts water dissolve 39.1 parts BaS2O8 or 52.2 parts BaS2O8. 4H2O at o°. (Marshall - J. Ch. Soc. 59, 771, '91.

#### BARIUM SULPHITE BaSO<sub>a</sub>.

SOLUBILITY IN WATER AND IN AQUEOUS SUGAR SOLUTIONS. (Rogowicz - Z. Ver Zuckerind. 938, 1905.)

| Conc. of   | Gm. BaSO4 1 | er 100 cc. Sol. | Conc. of     | Conc. of Gm. BaSO4 pe |         |  |
|------------|-------------|-----------------|--------------|-----------------------|---------|--|
| Sugar Sol. | at 20°.     | at So°.         | Sugar Sol.   | at 20°.               | at 80°. |  |
| o° Bx      | 0.0197      | 0.00177         | 40° Bx       | 0.0048                | 0.00158 |  |
| 100 "      | 0.0104      | 0.00335         | 50° "        | 0.0030                | 0.00149 |  |
| 200 "      | 0.0007      | 0.00289         | 60° " (sat.) | 0.0022                | 0.00112 |  |
| 30° "      | 0.0078      | 0.00223         |              |                       |         |  |

#### BARIUM SUCCINATE AND BARIUM ISO SUCCINATE

Ba.CH2CH2(COO)2. Ba.CH<sub>3</sub>CH<sub>2</sub>(COO)<sub>2</sub>.

SOLUBILITY OF EACH IN WATER. (Miczynski - Monatsh. Chem. 7, 263, 1886.)

| t°. | Gms. Ba.<br>per 10 | Succinate<br>o Gms. | Gms. Ba. Iso Succinate<br>per 100 Gms. |           |  |
|-----|--------------------|---------------------|----------------------------------------|-----------|--|
|     | Water.             | Solution.           | Water.                                 | Solution. |  |
| 0   | 0.421              | 0.420               | I.884                                  | 1.849     |  |
| IO  | 0.432              | 0.430               | 2.852                                  | 2.774     |  |
| 20  | 0.418              | 0.417               | 3.618                                  | 3.493     |  |
| 30  | 0.393              | 0.392               | 4.181                                  | 4.014     |  |
| 40  | 0.366              | 0.365               | 4.542                                  | 4.346     |  |
| 50  | 0.337              | 0.336               | 4.700                                  | 4.594     |  |
| 60  | 0.306              | 0.305               | 4.656                                  | 4.450     |  |
| 70  | 0.273              | 0.272               | 4.410                                  | 4.224     |  |
| 80  | 0.237              | 0.237               | 3.962                                  | 3.810     |  |

100 gms. H<sub>2</sub>O dissolve 0.396 gms. Ba Succinate at 18° and 0.410 gms. at 25°.

100 gms. 95% alcohol dissolve 0.0015 gms. Ba Succinate at 18° and 0.0016 gms. at 25°. (Partheil and Hübner - Archiv. Pharm. 241, 413, '03.)

# BARIUM TARTRATE Ba(C2H2O3)2.

SOLUBILITY IN WATER. (Cantoni and Zachoder — Bull. soc. chim. [3] 33, 751, '05; see also Partheil and Hübner.)

| t°. | Gms. Ba(C <sub>2</sub> H <sub>2</sub> O <sub>3</sub> ) <sub>2</sub><br>per 200 cc.<br>Solution. | t°. | Gms. Ba(C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> ) <sub>2</sub><br>per 100 cc.<br>Solution: | t°. | Gms. Ba(C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> ) <sub>2</sub><br>per 100 cc.<br>Solution. |
|-----|-------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------|
| 0   | 0.0205                                                                                          | 30  | 0.0315                                                                                          | 70  | 0.0480                                                                                          |
| IO  | 0.0242                                                                                          | 40  | 0.0352                                                                                          | 80  | 0.0527                                                                                          |
| 20  | 0.0279                                                                                          | 50  | 0.0389                                                                                          | 90  | 0.0541                                                                                          |
| 25  | 0.0297                                                                                          | 60  | 0.0440                                                                                          |     |                                                                                                 |

#### SOLUBILITY OF BARIUM TARTRATE IN AQUEOUS ACETIC ACID Solutions at 26°-27°.

54

(Herz and Muhs - Ber. 36, 3715, '03.)

| Normality<br>of Acetic<br>Acid. | Gms. residue*<br>per 50 cc.<br>Sol. | Gilla: per i | oo cc. Solution.<br>H. Ba tartrate. |       |        |        | Ba tartrate. |  |
|---------------------------------|-------------------------------------|--------------|-------------------------------------|-------|--------|--------|--------------|--|
| 0                               | 0.0328                              | 0.0          | 0.0655                              | 3.77  | 0.1866 | 22.62  | 0.3728       |  |
| 0.565                           | 0.1151                              | 3 · 39       | 0.2300                              | 5.65  | 0.1865 | 33.90  | 0.3726       |  |
| 1.425                           | 0.1559                              | 8.55         | 0.3115                              | 16.85 | 0.0218 | 101.10 | 0.0436       |  |
| 2.85                            | 0.1739                              | 17.11        | 0.3475                              | • • • | • • •  | • • •  | •••          |  |
| * Dried at 70°.                 |                                     |              |                                     |       |        |        |              |  |

100 grams 95% alcohol dissolve 0.032 gm. Ba tartrate at 18° and 0.0356 gm. at 25°. (Partheil and Hübner.)

#### BENZALDEHYDE C.H.COH.

100 gms. H<sub>2</sub>O dissolve 0.3 gm. benzaldehyde at room temperature. (Fluckiger - Arch. Pharm. [3] 7, 103, '75.)

#### BENZAMIDE C.H.CONH.

Solubility in Ethyl Alcohol. (Speyers - Am. J. Sci. [4] 14, 295, '02.)

| t°. | Sp. Gr. of<br>Solutions. | G.M.<br>C <sub>4</sub> H <sub>4</sub> CONH <sub>3</sub><br>per 100 G.M.<br>C <sub>2</sub> H <sub>4</sub> OH. | Gms.<br>C <sub>6</sub> H <sub>6</sub> CONH <sub>2</sub><br>per 100 Gms.<br>C <sub>9</sub> H <sub>6</sub> OH. | t°. | Sp. Gr. of<br>Solutions. | G. M.<br>C <sub>e</sub> H <sub>6</sub> CONH <sub>2</sub><br>per 100 G.M.<br>C <sub>2</sub> H <sub>6</sub> OH. | Gms.<br>CeHsCONH2<br>per 100 Gms.<br>C9HsOH. |
|-----|--------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----|--------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 0   | <b>ວ</b> .833            | 3 · I                                                                                                        | 8.15                                                                                                         | 40  | o.848                    | 0. II                                                                                                         | 28.92                                        |
| 10  | 0.832                    | 4.2                                                                                                          | 11.04                                                                                                        | 50  | o.862                    | 14.2                                                                                                          | 37 . 34                                      |
| 20  | 0.833                    | 5.9                                                                                                          | 15.52                                                                                                        | 60  | o.881                    | 17.2                                                                                                          | 45.22                                        |
| 25  | 0.835                    | 6.8                                                                                                          | 17.87                                                                                                        | 70  | 0.913                    | 20.4                                                                                                          | 53.63                                        |
| 30  | 0.838                    | 8.2                                                                                                          | 21.56                                                                                                        | ••  | • • •                    |                                                                                                               | •••                                          |

SOLUBILITY OF BENZAMIDE IN MIXTURES OF ALCOHOL AND WATER AT 25°. (Holleman and Antusch — Rec. trav. chim. 13, 294, '94.)

| Vol. %<br>Alcohol. | Gms.<br>C <sub>a</sub> HgCONH2<br>per 100 Gms.<br>Solvent. | Sp. Gr. of<br>Solutions. | Vol.%<br>Alcohol. | Gms.<br>CeHsCONH2<br>per 100 Gms.<br>Solvent. | Sp. Gr. of<br>Solutions. |
|--------------------|------------------------------------------------------------|--------------------------|-------------------|-----------------------------------------------|--------------------------|
| 100                | 17.03                                                      | 0.830                    | 70                | 23.87                                         | 0.925                    |
| 95                 | 21.12                                                      | 0.856                    | 60                | 18.98                                         | 0.939                    |
| 90                 | 24 - 50                                                    | o.878                    | 50                | 13.74                                         | 0.949                    |
| 85                 | 26.15                                                      | 0.895                    | 40                | 8.62                                          | 0.958                    |
| 83                 | 26.63                                                      | 0.900                    | 31                | 5.33                                          | 0.967                    |
| 80                 | 26.43                                                      | 0.907                    | 15                | 2.28                                          | 0.912                    |
| 75                 | 25.41                                                      | 0.917                    | ō                 | 1.35                                          | 0.999                    |

# BENZENE C.H.

#### SOLUBILITY IN WATER AT 22°. (Herz - Ber. 31, 2671, '98.)

100 cc. water dissolve 0.082 cc.  $C_6H_6$ , Vol. of Sol. = 100.082, Sp. Gr. = 0.9979. 100 cc.  $C_6H_6$  dissolve 0.211 cc.  $H_2O$ , Vol. of sol. = 100.135, Sp. Gr. = 0.8768.

#### BENZENE, ACETIC ACID, WATER MIXTURES. (Lincoln - J. Physic, Chem. 8, 251, '04.)

NOTE. — To mixtures of known amounts of acetic acid and benzene, water was gradually added until clouding occurred. The same degree of clouding did not represent the end point in all cases, as was assumed by Waddel. (J. Physic. Chem. 4, 161, '00.)

|          | At 25°.      |                          | -        | At 35°.                                |                          |  |  |  |
|----------|--------------|--------------------------|----------|----------------------------------------|--------------------------|--|--|--|
| CHICOOH. | Cc.<br>C6H6. | cc.<br>H <sub>2</sub> O. | CH3COOH. | Cc.<br>C <sub>6</sub> H <sub>6</sub> . | CC.<br>H <sub>2</sub> O. |  |  |  |
| 5        | 10.06        | 0.45                     | 100      | 18.10                                  | 1.14                     |  |  |  |
| 5        | 8.04         | 0.55                     | 100      | 16.09                                  | I.22                     |  |  |  |
| 5        | 6.03         | 0.64                     | 100      | 10.06                                  | 1.55                     |  |  |  |
| 5        | 3.02         | 0.98                     | 100      | 6.03                                   | 2.17                     |  |  |  |
| 5        | 2.01         | 1.28                     | 100      | 4.02                                   | 2.77                     |  |  |  |
| 5        | I.OI         | 1.89                     | 100      | 3.01                                   | 3.26                     |  |  |  |
| 5        | 0.60         | 2.80                     | 100      | I.00                                   | 7.01                     |  |  |  |
| 5        | 0.35         | 4.54                     | 100      | 0.65                                   | IO.IO                    |  |  |  |
| 5        | 0.17         | 9.53                     | 100      | 0.47                                   | 13.64                    |  |  |  |

#### BENZENE, AQ. ALCOHOL MIXTURES; BENZENE, AQ. ACETONE MIX-TURES AT 20°.

 $H_2O$  added to mixtures of known amounts of the other two and appearance of clouding noted.

#### (Bancroft - Phys. Rev. 3, 31, 1895.96.)

#### C6H6,C2H5OH and H2O C6H6,CH3OH and H2O C6H5,(CH3)2CO and H2O

| Per 5 cc. C2H5OH. |                                     | Per 5 cc. | CH <sub>3</sub> OH. | Per 5 cc. (CH <sub>3</sub> ) <sub>2</sub> CO. |           |  |
|-------------------|-------------------------------------|-----------|---------------------|-----------------------------------------------|-----------|--|
| cc. HgO.          | cc. C <sub>6</sub> H <sub>6</sub> . | cc. H2O.  | cc. CeHe.           | cc. H2O.                                      | cc. CoHo. |  |
| 20                | 0.03                                | 5.0       | 0.15                | 8.0                                           | 0.10      |  |
| 8                 | 0.13                                | 3.0       | 0.215               | 3.0                                           | 0.395     |  |
| 4                 | 0.39                                | 2.0       | 0.59                | 2.0                                           | 0.69      |  |
| 2                 | 1.17                                | 1.4       | I.0                 | 1.3                                           | I.0       |  |
| 1.5               | 1.87                                | I.0       | 1.9                 | 0.51                                          | 2.0       |  |
| 1.0               | 3.57                                | 0.8       | 3.0                 | 0.295                                         | 3.0       |  |
| 0.605             | 8.0                                 | 0.69      | 4.0                 | 0.2                                           | 4.0       |  |
| 0.34              | 20.0                                | 0.49      | 8.0                 | 0.15                                          | 5.0       |  |

# MUTUAL SOLUBILITY OF BENZENE AND $\beta$ NAPHTHALENE PICRATE $C_6H_2(NO_2)_0OH.C_{10}H_7OH.$

"Synthetic Method " used — see Note, p. 9. (Kuriloff – Z. physik. Chem. 24, 442, '97.)

| t°,   | Gms.<br>Picrate. | Gms.<br>Benzene | a     | t°.   | Gms.<br>Picrate. | Gms.<br>Benzene. | a    |
|-------|------------------|-----------------|-------|-------|------------------|------------------|------|
| 157   | 100.0            | ***             | 100.0 | 111.6 | I.173            | 1.037            | 19.2 |
| 148.4 | 2.128            | 0.115           | 79.3  | 102.0 | 1.087            | 1.780            | 11.2 |
| 137.4 | 1.274            | 0.170           | 61.1  | 29.5  | 0.390            | 8.430            | 0.95 |
| 134.2 | 1.384            | 0.297           | 49.3  | 4.6   | I.329            | 21.80            | 0.48 |
| 126.8 | 1.019            | 0.343           | 38.3  | 5.02  |                  | 100.0            |      |

 $a = Mols. \beta$  Naphthalene Picrate per 100 Mols. of  $\beta$  Naphtalene Picrate plus Benzene.

Determinations for a large number of isothermes are also given.

SOLUBILITY OF BENZENE IN SULPHUR. By "Synthetic Method," see Note, p. 9. (Alexejew – Ann. Physik. Chem. 28, 305, '86.)

| te G | ms. C.H. | per 100 Gms. | <b>t*</b> . | Gms. Ce        | He per 100 Gms. |
|------|----------|--------------|-------------|----------------|-----------------|
| •••  | S Layer. | CaHa Layer.  | •••         | S Layer.<br>IÓ | CaHa Layer.     |
| 100  | 6        | 75           | 140         | 16             | 61              |
| 110  | 8        | 72.5         | 150         | 19             | 55              |
| I 20 | IO       | 70           | 160         | 25             | 45              |
| 130  | 12       | 66           | 164 (cri    | t. temp.)      | 35              |

#### Di Brom **BENZENE** (p) C<sub>6</sub>H<sub>4</sub>Br<sub>3</sub>.

# SOLUBILITY IN ETHYL, PROPYL, ISO BUTYL ALCOHOLS, BTC. (Schröder – Z. physik. Chem. 11, 456, '93.)

| Determinations by | "Synthetic Method'        | ' see Note, p. 9. |
|-------------------|---------------------------|-------------------|
| C                 | CHPs (A) ses ses Course C | A Caluation in .  |

| t°.        |        | Grams C <sub>6</sub> H <sub>6</sub> Br <sub>2</sub> (\$) per 100 Grams Sat. Solution in: |                |                                                  |                   |                                 |         |  |  |
|------------|--------|------------------------------------------------------------------------------------------|----------------|--------------------------------------------------|-------------------|---------------------------------|---------|--|--|
| <b>U</b> . | CHOH.  | CaHrOH.                                                                                  | (CH_)CH.CH_OH. | (C <sub>2</sub> H <sub>4</sub> ) <sub>2</sub> O. | CS <sub>2</sub> . | C <sub>e</sub> H <sub>e</sub> . | C.H.Br. |  |  |
| 0          | • • •  | ••                                                                                       | • • •          | ••                                               | 27                | ••                              | ••      |  |  |
| 10         | • • •  | ••                                                                                       | •••            | 30                                               | 34                | 34                              | 22      |  |  |
| 20         | •••    | ••                                                                                       | •••            | 38                                               | 43                | 43                              | 29      |  |  |
| 30         | 14     | ••                                                                                       | 15             | 47                                               | 53                | 53                              | 36      |  |  |
| 40         | 19     | ••                                                                                       | 20             | 57                                               | 62                | 62                              | 45      |  |  |
| 50<br>60   | 26     | 27                                                                                       | 30             | 67                                               | 72                | 71                              | 54      |  |  |
| δο         | 38     | 40                                                                                       | 44             | 77                                               | <b>8</b> 1        | 8o                              | 67      |  |  |
| 70         | 57.6   | 67                                                                                       | 65             | 87                                               | 90                | 88                              | 79      |  |  |
| 75         | 80.5   | 85                                                                                       | 77             | ••                                               | ••                | ••                              | 84      |  |  |
| 80         | 94 • 4 | 95                                                                                       | 94.6           | ••                                               | ••                | ••                              | 90      |  |  |

#### Chlor BENZENE C.H.Cl.

## SOLUBILITY OF CHLOR BENZENE IN SULPHUR.

| " Synthetic | Method, |  | see | page | 9. |  |
|-------------|---------|--|-----|------|----|--|
|-------------|---------|--|-----|------|----|--|

| •           | (Alexejew.)             | ,                         |
|-------------|-------------------------|---------------------------|
|             | Grams C <sub>e</sub> Hg | Cl per 100 Grams.         |
| <b>t°</b> . | Sulphur<br>Layer.       | Chlor Ben-<br>zene Layer. |
| 90          | 13                      | 70                        |
| 100         | 18.5                    | 63                        |
| 110         | 27                      | 53                        |
| 116 (crit.  | temp.)                  | 8                         |

116 (crit. temp.) 30 For the solubility of Mixtures of di Chlor Benzene and di Brom Benzene in aqueous Ethyl Alcohol solutions see Thiel. (Z. physik. Chem. 43, 656, 1903.)

# Di Nitro **BENZENE** (m) C<sub>6</sub>H<sub>4</sub>(NO<sub>2</sub>)<sub>2</sub>.

SOLUBILITY IN BENZENE, BROM BENZENE AND IN CHLOROFORM.

"Synthetic Method."

| (Sch | röde | r.) |
|------|------|-----|
|      |      |     |

| t°. | Gms. C                          | H4(NO2)2<br>ms. Sol. ii | <b>per</b> 100<br>n: | <b>t°</b> . | Gms<br>10 | . C <sub>6</sub> H <sub>4</sub> (NC<br>o Gm <sup>3</sup> . Sol | ) <sub>3</sub> )3 per<br>l. in: |
|-----|---------------------------------|-------------------------|----------------------|-------------|-----------|----------------------------------------------------------------|---------------------------------|
|     | C <sub>6</sub> H <sub>6</sub> . | C.H.Br.                 | CHCla.               |             |           | C.H.Br.                                                        |                                 |
|     |                                 | • • •                   |                      | 40          | 52.0      | 38.0                                                           | 42.0                            |
| 20  | 26.0                            | 18.5                    | 25.0                 |             |           | 47 · 5                                                         |                                 |
| 25  | 33.0                            | 23.7                    | 29.0                 | 60          | 71.0      | 57.0                                                           | 65.0                            |
| 30  | 40.0                            | 28.7                    | 33.O                 | ••          | • • •     | • • •                                                          | • • •                           |
|     |                                 |                         |                      |             |           |                                                                |                                 |

#### BENZENES

# Solubilities of Di-Nitro BENZENES and of Tri-Nitro BENZENES in Several Solvents. (de Bruyn - Rec. trav. chim. 13, 116, 150, '94.)

|                       |        | Grams per 100 Grams Solvent. |                                                                         |                     |                                                                         |                 |
|-----------------------|--------|------------------------------|-------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------|-----------------|
| Solvent.              | t°.    | (0)C6H4.<br>(NO2)2.          | (m)C <sub>6</sub> H <sub>4</sub> .<br>(NO <sub>2</sub> ) <sub>2</sub> . | (p)CeH4.<br>(NO2)2. | (s)C <sub>8</sub> H <sub>3</sub> .<br>(NO <sub>2</sub> ) <sub>3</sub> . | (as)CeH3(NO2)3. |
| Methyl Alcohol        | 20.5   | 3.30                         | 6.75                                                                    | 0.60                | 4.9 (16°)                                                               | 16.2 (15.5%)    |
| Ethyl Alcohol         | 20.5   | 1.9                          | 3.5                                                                     | 0.4                 | 1.9 (16°)                                                               | 5.45 (15.5°)    |
| Propyl Alcohol        | 20.5   | 1.00                         | 2.4                                                                     | 0.298               |                                                                         |                 |
| Carbon Bi-Sulphide    | 17.6   | 0.236                        | 1.35                                                                    | 0.148               | 0.25                                                                    |                 |
| Chloroform            | 17.6   | 27.1                         | 32.4                                                                    | 1.82                | 6.1                                                                     |                 |
| Benzene               | 18.2   | 5.66                         | 39.45                                                                   | 2.56                | 6.2 (16°)                                                               |                 |
| Ether                 | 17.5   |                              |                                                                         |                     | 1.5                                                                     |                 |
| Ethyl Acetate         | 17.5   | 12.96                        | 36.27                                                                   | 3.56                |                                                                         |                 |
| Toluene               | 16.2   | 3.62                         | 30.66                                                                   | 2.36                |                                                                         |                 |
| Carbon Tetra Chloride | 16.2   | 0.143                        | 1.18                                                                    | 0.12                |                                                                         |                 |
| Water                 | (ord.) | 0.014                        | 0.0525                                                                  | 0.008               |                                                                         |                 |

## Symmetrical Tri-Nitro BENZENE.

#### SOLUBILITY IN AQUEOUS ALCOHOL AT 25°. (Holleman and Antusch - Rec. trav. chim. 13, 296, '94.)

| Vol. %<br>Alcohol. | G. C <sub>6</sub> H <sub>3</sub> (NO <sub>3</sub> ) <sub>3</sub> (s)<br>per 100 g.<br>Solvent. | Sp. Gr. of<br>Solutions. | Vol. %<br>Alcohol. | G. C <sub>6</sub> H <sub>3</sub> (NO <sub>3</sub> ) <sub>3</sub> (s)<br>per 100 g.<br>Solvent. | Sp. Gr. of<br>Solutions. |
|--------------------|------------------------------------------------------------------------------------------------|--------------------------|--------------------|------------------------------------------------------------------------------------------------|--------------------------|
| 100                | 2.34                                                                                           | 0.7957                   | 80                 | 0.57                                                                                           | 0.8582                   |
| 95                 | 1.57                                                                                           | 0.8131                   | 75                 | 0.47                                                                                           | 0.8708                   |
| 90                 | 1.12                                                                                           | 0.8288                   | 70                 | 0.37                                                                                           | 0.8808                   |
| 85                 | 0.79                                                                                           | 0.8436                   | 60                 | 0.23                                                                                           | 0.9064                   |

# BENZOYL PHENYL HYDRAZINE C.H.NH.NH.C.H.O.

SOLUBILITY IN AQUEOUS ALCOHOL.

(Holleman and Antusch - Rec. trav. chim. 13, 291, '94.)

| Vol. %<br>Alcohol. | Gms. Hydrazine<br>per 100 g.<br>Solvent. | Sp. Gr.<br>Solutions. | Vol. %<br>Alcohol. | Gms. Hydrazine<br>per 100 g.<br>Solvent. | Sp. Gr.<br>Solutions. |
|--------------------|------------------------------------------|-----------------------|--------------------|------------------------------------------|-----------------------|
| 100                | 2.39                                     | 0.793                 | 80                 | I 59                                     | 0.859                 |
| 95                 | 2.43                                     | 0.814                 | 70                 | 1.08                                     | 0.884                 |
| 93                 | 3.00                                     | 0.822                 | 55                 | 0.51                                     | 0.917                 |
| 90                 | 2.26                                     | 0.831                 | 40                 | 0.16                                     | 0.946                 |

#### BENZO SULPHONIC ACIDS.

SOLUBILITY IN WATER. (Bahlman - Liebig's Ann. 186, 309, '77.)

Cons Sulaboris Asid and Co

| Name of Acid.                          | Gms. Sulphonic Acid per 100 Gms.<br>Solution at: |                      |  |  |
|----------------------------------------|--------------------------------------------------|----------------------|--|--|
| o-Amido benzo sulphonic acid.          | II <sup>0</sup> = I.30I                          | $15^{\circ} = 1.436$ |  |  |
| Amido brom benzo sulphonic acid.       | $8^{\circ} = 0.737$                              | 16° = 1.131*         |  |  |
| Mono brom amido benzo sulphonic acid.  | $12^{\circ} = 0.431$                             | $15^{\circ} = 0.463$ |  |  |
| Barium di-brom benzo sulphonic acid.   | $14^{\circ} = 1.713$                             | $9^{\circ} = 1.008$  |  |  |
| Barium nitro brom benzo sulphonic acid |                                                  | -                    |  |  |
| (hydrated).                            | 16° = 0.527                                      | 30° = 0.914          |  |  |
| Barium nitro brom benzo sulphonic acid |                                                  |                      |  |  |
| (anhydrous).                           | 8° = 0.156                                       |                      |  |  |
| • At 18° = 1.201.                      |                                                  |                      |  |  |

#### BENZINE

# 58

# BENZINE (Petroleum) C<sub>5</sub>H<sub>12</sub>C<sub>6</sub>H<sub>14</sub>.

100 parts of alcohol dissolve about 16 parts benzine of 0.638 - 0.660 Sp. Gr., at 25°.

#### BENZOIC ACID C.H.COOH.

#### SOLUBILITY IN WATER.

(Bourgoin - Ann. chim. phys. [5] 15, 171, '78.)

| t°. |        | H <sub>5</sub> COOH<br>oo Gms. | t°. | Grams. C.H.COOH<br>per 100 Gms. |           |  |
|-----|--------|--------------------------------|-----|---------------------------------|-----------|--|
|     | Water. | Solution.                      |     | Water.                          | Solution. |  |
| 0   | 0.170  | 0.170                          | 40  | 0.555                           | 0.551     |  |
| IO  | 0.210  | 0.200                          | 50  | 0.775                           | 0.768     |  |
| 20  | 0.200  | 0.289                          | 60  | 1.155                           | 1.142     |  |
| 25  | 0.345  | 0.343                          | 80  | 2.715                           | 2.643     |  |
| 30  | 0.410  | 0.408                          | 100 | 5.875                           | 5.549     |  |

100 grams saturated aqueous solution contains 0.340 gram  $C_{a}H_{s}COOH$  at 25°; 0.353 gram at 26.4°; 0.667 gram at 45°.

(Paul – Z. physik, Ch. 14, 111, '94; Noyes and Chapin – *Ibid*. 27, 443, '98; Hoffman and Langbeck – *Ibid*. 51, 393, '95; Philip – J. Ch. Soc. 87, 992, '95; see also Alexejew – Ann. Phys. Ch. 28, 305, '86; Ost – J. pr. Ch. [2] 17, 232, '78; Vaubel – *Ibid*. [2] 52, 73, '95.)

# SOLUBILITY OF MIXTURES OF LIQUID BENZOIC ACID AND WATER. (Alexejew.)

Determinations by "Synthetic Method," see Note, p. 9. Figures read from curve.

| t°. | Gms. C6H5COOH per 100 Gms. |                    | t°.    | Gms. C6H5COOH per 100 Gms. |                    |  |
|-----|----------------------------|--------------------|--------|----------------------------|--------------------|--|
| • • | Aq. Layer.                 | Benzoic Ac. Layer. | • •    | Aq. Layer.                 | Benzoic Ac. Layer. |  |
| 70  | 6                          | 83                 | 100    | 12.0                       | 69.0               |  |
| 80  | 7.5                        | 79.5               | IIO    | 18.0                       | 59.0               |  |
| 90  | 8.5                        | 76                 | 116 (c | rit. temp.) 3              | 5                  |  |

#### SOLUBILITY OF BENZOIC ACID IN AQUEOUS SOLUTIONS OF: (Hoffman and Langbeck.)

|                | Potas        | sium Chlor          | ride at 25°.  |                | Potassi       | im Nitrate                                    | e at 25°.     |
|----------------|--------------|---------------------|---------------|----------------|---------------|-----------------------------------------------|---------------|
| Nor-<br>mality | Gms.<br>KCl. | Dissolved C6H5COOH. |               | Nor-<br>mality | Gms.<br>KNO3  | Dissolved C <sub>6</sub> H <sub>5</sub> COOH. |               |
| of Aq.<br>KCl. | Liter.       | Mol. Conc.          | Wt. per cent. | of Aq.<br>KNO3 | per<br>Liter. | Mol. Conc.                                    | Wt. per cent. |
| 0.02           | 1.49         | 5.0254-10           |               | 0.02           | 2.02          | 5.0326-10                                     | -4 0.340      |
| 0.05           | 3.73         | 4.9801 "            | 0.333         | 0.05           | 5.06          | 5.0421 "                                      | 0.341         |
| 0.20           | 14.92        | 4.7639 "            | 0.322         | 0.20           | 20.24         | 5.0297 "                                      | 0.340         |
| 0.50           | 37.30        | 4.3632 "            | 0.295         | 0.50           | 50.59         | 4.9400 "                                      | · 0.334       |
|                |              |                     |               | 1.00           | 101.10        | 4.7646 "                                      |               |

#### SOLUBILITY OF BENZOIC ACID IN AQUEOUS SOLUTIONS OF: (Hoffmann and Langbeck.)

| Sodium Chloride.                  |                               |                                   |                               | Sodium Nitrate.          |                      |         |                     |  |
|-----------------------------------|-------------------------------|-----------------------------------|-------------------------------|--------------------------|----------------------|---------|---------------------|--|
| Nor-<br>mality<br>of Aq.<br>NaCl. | Gms.<br>NaCl<br>per<br>Liter. | Gms. C.I.<br>per 100 G<br>at 25°. | IsCOOH<br>ms. Sol.<br>at 45°. | Nor-<br>mality<br>of Aq. | Gms.<br>NaNO3<br>per | per 100 | HsCOOH<br>Gms. Sol. |  |
| NaCl.                             | Liter.                        |                                   |                               | NaNO3.                   | Liter.               | at 25°. | at 45°.             |  |
| 0.00                              | 0.00                          | 0.340                             | 0.667                         | 0.02                     | 1.70                 | 0.340   | 0.666               |  |
| 0.02                              | 1.17                          | 0.339                             | 0.663                         | 0.05                     | 8.51                 | 0.339   | 0.663               |  |
| 0.05                              | 2.93                          | 0.335                             | 0.654                         | 0.20                     | 17.02                | 0.333   | 0.647               |  |
| 0.20                              | II.70                         | 0.336                             | 0.617                         | 0.50                     | 42.54                | 0.319   | 0.613               |  |
| 0.50                              | 29.25                         | 0.282                             | 0.546                         | I.00                     | 85.09                | 0.294   |                     |  |
| I.00                              | 58.50                         |                                   | 0.449                         | 2                        |                      |         |                     |  |

SOLUBILITY OF BENZOIC ACID IN AQUEOUS SOLUTIONS OF SODIUM ACETATE, FORMATE, BUTYRATE, AND SALICYLATE. (Noyes and Chapin – Z. physik. Chem. 27, 443, '98; Philip – J. Ch. Soc. 87, 992, '05.)

| Grams              | Grams C6H3COOH per Liter of Solution in: |           |         |           |                       |           |  |  |
|--------------------|------------------------------------------|-----------|---------|-----------|-----------------------|-----------|--|--|
| Sodium<br>Salt per | CH3COONa.                                |           | HCOONa. |           | CaHTCOONa. CaHAOH.COO |           |  |  |
| Liter.             | At 25°.                                  | At 26.4°. | At 25°. | At 26.4°. | At 26.4°.             | At 26.4°. |  |  |
| 0                  | 3.41                                     | 3.53      | 3.41    | 3.53      | 3.53                  | 3.53      |  |  |
| I                  | 4.65                                     | 4.75      | 4.25    | 4.35      | 4.50                  | 3.62      |  |  |
| 2                  | 5.70                                     | 5.85      | 4.75    | 4.85      | 5.40                  | 3.70      |  |  |
| 3                  | 6.70                                     | 6.90      | 5.20    | 5.30      | 6.15                  | 3.80      |  |  |
| 4                  | 7.60                                     | 7.85      | 5.60    | 5.70      | 6.90                  | 3.87      |  |  |
| 6                  |                                          |           |         |           | 8.40                  | 4.00      |  |  |
| 8                  |                                          |           |         |           |                       | 4.10      |  |  |

Gram Molecules C6H5COOH per Liter of Solution in:

| Gram, Mois. |         |           |          |           |           |              |  |  |
|-------------|---------|-----------|----------|-----------|-----------|--------------|--|--|
| Sodium Salt | CH3CC   | CH3COONa. |          | HCOONa.   |           | CelLOH.COONa |  |  |
| per Liter.  | At 250. | At 26.4°. | At 25°.  | At 26.4°. | At 26.4°. | At 26.4°.    |  |  |
| 0.00        | 0.0279  | 0.0289    | , 0.0279 | 0.0289    | 0.0289    | 0.0289       |  |  |
| 0.0I        | 0.0362  | 0.0370    | 0.0330   | 0.0336    | 0.0376    | 0.0300       |  |  |
| 0.02        | 0.0440  | 0.0448    | 0.0364   | 0.0372    | 0.0455    | 0.0312       |  |  |
| 0.03        | 0.0508  | 0.0518    | 0.0392   | 0.0398    | 0.0525    | 0.0321       |  |  |
| 0.04        | 0.0572  | 0.0586    | 0.0416   | 0.0423    | 0.0596    | 0.0328       |  |  |
| 0.06        |         |           | 0.0460   | 0.0466    |           | 0.0342       |  |  |
|             |         |           |          |           |           |              |  |  |

SOLUBILITY OF BENZOIC ACID IN ABSOLUTE ALCOHOLS. (Timofeiew - Compt. rend. 112, 1137, '91; at 15°, Bourgoin - Ann. chim. phys., [5] 13, 406, '78.)

| In Methyl Alcohol. |                                                       |           | In Ethyl A                                            | lcohol.   | In Propyl Alcohol. |           |  |
|--------------------|-------------------------------------------------------|-----------|-------------------------------------------------------|-----------|--------------------|-----------|--|
| t°.                | G. C <sub>6</sub> H <sub>8</sub> COOH<br>per 100 Gms. |           | G. C <sub>6</sub> H <sub>5</sub> COOH<br>per 100 Gms. |           | G. C6H6COOH        |           |  |
|                    | CH3OH.                                                | Solution. | C2HoOH.                                               | Solution. | CaH7OH.            | Solution. |  |
| 3                  | 50.16                                                 | 33.39     | 40.16                                                 | 28.65     | 29.88              | 23.00     |  |
| 15                 |                                                       |           | 46.70                                                 | 31.80     |                    |           |  |
| 21                 | 69.29                                                 | 40.93     | 54.09                                                 | 35.10     | 40.64              | 28.90     |  |

Solubility of Benzoic Acid in 90% Alcohol, in Ether and in Chloroform.

| 10 |    | -  |    | -17 |   |
|----|----|----|----|-----|---|
| (B | ou | ГŖ | 01 | n.  | , |

| Solvent.    | t°. | Gms. C6H3COOH per 100 Gram |           |  |
|-------------|-----|----------------------------|-----------|--|
|             |     | Solvent.                   | Solution. |  |
| 90% Alcohol | 15  | 41.62                      | 29.39     |  |
| Ether       | 15  | 31.35                      | 23.86     |  |
| Chloroform  | 25  | 14.30                      | 12.50     |  |

SOLUBILITY OF BENZOIC ACID IN AQUEOUS SOLUTIONS OF DEXTROSE. (Hoffman and Langbeck.)

| Normality of  | Gms. CeH12O6 | Dissolved CoH5CO | OH at 25°.          | Dissolved C6H5COOH at 45°. |                     |
|---------------|--------------|------------------|---------------------|----------------------------|---------------------|
| Aq. Dextrose. | per Liter.   | Mol. Conc.       | Weight<br>Per Cent. | Mol. Conc.                 | Weight<br>Per Cent. |
| 0.02          | 3.67         | 5.0322.10-4      | 0.34                | 9.9088.10-4                | 0.674               |
| 0.05          | 9.00         | 5.0403 "         | 0.34                | 9.9328 "                   | 0.669               |
| 0.204         | 36.73        | 5.0303 "         | 0.34                | 9.9323 "                   | 0.669               |
| 0.533         | 96.15        | 5.0321 "         | 0.34                | 10.0101 "                  | 0.674               |
| 1.068         | 192.30       | 5.0443 "         | 0.341               | 10.0369 "                  | 0.676               |

## BENZOIC ACID

60

#### SOLUBILITY OF BENZOIC ACID IN AQUEOUS SOLUTIONS OF UREA AND OF THIO UREA. (Hoffman and Langbeck.)

|                 | Normality<br>of Solution. | Gms.<br>per Liter.                      | CoH <sub>5</sub> COOH Dissolved at 25°.<br>Mol. Conc. Wt. per cent. |
|-----------------|---------------------------|-----------------------------------------|---------------------------------------------------------------------|
| In Aqueous Urea | 0.10                      | 6.01 CO(NH <sub>2</sub> ) <sub>2</sub>  | 5.1876.10 0.350                                                     |
| In Aqueous Thio | Urea 0.20                 | 15.23 CS(NH <sub>2</sub> ) <sub>2</sub> | 5.4994 " 0.372                                                      |

## Amido BENZOIC ACIDS C.H. NH2.COOH (m).

## SOLUBILITY IN WATER AND IN OTHER SOLVENTS.

(de Coninck - Compt. rend. 116, 758, '93.)

|     | In Water.                                    | In Organic Sol        | vents. |                                                  |
|-----|----------------------------------------------|-----------------------|--------|--------------------------------------------------|
| t°. | Gms.<br>CeH4.NH2.COOH(m)<br>per 100 cc. H2O. | Solvent.              | t°.    | Gms.<br>C6H4.NH2.COOH(m)<br>per 100 cc. Solvent. |
| 0   | 0.43                                         | Ethyl Alcohol (95%)   | 12.5   | 2.92                                             |
| IO  | 0.52                                         | Methyl Alcohol (pure) | 10.5   | 4.05                                             |
| 20  | 0.67                                         | Acetone               | 11.3   | 6.22                                             |
| 30  | 0.87                                         | Methyl Iodide         | 10.0   | 0.04                                             |
| 40  | 1.15                                         | Ethyl Iodide          | 0.0    | 0.02                                             |
| 50  | 1.50                                         | Chloroform            | 12.0   | 0.07                                             |
| 60  | 2.15                                         | Bromoform             | 8.0    | trace                                            |
| 70  | 3.15                                         |                       |        |                                                  |

SOLUBILITY OF THE THREE ISOMERIC AMIDO NITRO BENZOIC ACIDS.

| t°.     | In E<br>Gms. C <sub>6</sub> H <sub>3</sub> .NO<br>per 100 | t°.          | In Ethyl Alcohol (90%).<br>Gms. CoHaNO2.NH2.COOH<br>per 100 cc. Alcohol. |    |        |       |       |  |
|---------|-----------------------------------------------------------|--------------|--------------------------------------------------------------------------|----|--------|-------|-------|--|
|         | Ortho.                                                    | Meta.        | Para.                                                                    |    | Ortho. | Meta. | Para. |  |
| 2.7     | 10.84<br>16.05 (6.8°)                                     | 1.70<br>1.81 | 6.4I<br>8.2I                                                             | 3. | 8.13   | 1.79  | 8.4   |  |
| 2.7 5.8 | 16.05 (6.8°)                                              |              |                                                                          | -  |        |       |       |  |

## SOLUBILITY IN WATER OF THE THREE ISOMERIC: (Vaubel - J. pr. Chem. [2] 52, 72, '95.)

|     |        | nic Acids.<br>r 100 g. Aq. Sol. |            | Amido Phenols.<br>G. CoH4(OH).NH2 per 100 g. Aq. Sol. |        |           |       |
|-----|--------|---------------------------------|------------|-------------------------------------------------------|--------|-----------|-------|
| t°. | Ortho. | Meta.                           | Para.      | t*                                                    | Ortho. | Meta.     | Para. |
| 7   | 1.06   | 1.276                           | 0.592 (6°) | 0                                                     | I.7    | 2.6 (20°) | 1.1   |

## Brom, Chlor, and Iodo BENZOIC ACIDS.

## SOLUBILITY IN WATER AT 25°.

(Paul - Z. hysik. Chem. 14, 111, '94; Löwenherz - Ibid. 25, 401, '98; Vaubel.)

| Compound.           | Formula.             | Per 1000 cc. Aqueous Solution. |           |  |
|---------------------|----------------------|--------------------------------|-----------|--|
| Compound.           |                      | Grams.                         | Gram Mol. |  |
| Brom benzoic acid.  | C.H.Br.COOH (ortho). | I.856                          | 0.00924   |  |
| Brom benzoic acid.  | C.H.Br.COOH (meta).  | 0.402                          | 0.00200   |  |
| Brom benzoic acid.  | C.H.Br.COOH (para).  | 0.056                          | 0.00028   |  |
| Chlor benzoic acid. | C.H.Cl.COOH (ortho). | 2.087                          | 0.01333   |  |
| Iodo benzoic acid.  | C.H.I.COOH (ortho).  | 0.95                           |           |  |
| Iodo benzoic acid.  | C.H.I.COOH (meta).   | 0.12                           |           |  |

SOLUBILITY OF ORTHO HYDROXY BENZOIC ACID (SALICYLIC ACID), META HYDROXY BENZOIC ACID, AND PARA HYDROXY BENZOIC ACID (ANISIC ACID) IN WATER, BENZENE, ETC. (See also pp. 38 and 274.) (Walker and Wood – J. Ch. Soc. 73, 622, '98; Vaubel – J. pr. Chem. [2] 52, 73, '95.)

100 gms. aq. solution contain 0.225 gm. C.H.OH.COOH (0) at 15° (Vaubel).

100 gms. aq. solution contains 0.794 gm. C.H.OH.COOH (p) at 15° (Vaubel).

| t°. |            | Gms. H <sub>2</sub> O. |     | Gms. CeH4.OH.COOH<br>per 100 Gms. CeHe. |         |  |
|-----|------------|------------------------|-----|-----------------------------------------|---------|--|
|     | Meta.      | Para.                  |     | Meta.                                   | Para.   |  |
| IO  | 0.55       | 0.25                   |     |                                         | 8100.0  |  |
| 20  | 0.90       | 0.50                   |     | 0.008                                   | 0.0027  |  |
| 25  | I.08       | 0.65                   |     | 0.010                                   | 0.0035  |  |
| 30  | I.34       | 0.81                   |     | 0.012                                   | 0.0045  |  |
| 35  | 1.64       | I.OI                   |     | 0.015                                   | 0.0060  |  |
| 40  | 2.10       | 1.24                   |     | 0.017                                   | 0.0082  |  |
| 50  | 3.10       | 2.12                   |     | 0.028                                   | 0.0162  |  |
| 60  |            |                        |     | 0.047                                   | 0.028   |  |
| 80  |            |                        |     |                                         | 0.066   |  |
| I   | n Acetone. |                        |     | In Ethe                                 | r.      |  |
| t°. | G. CoH4.OH |                        | t°. |                                         | OH.COOH |  |
| • • | Meta.      | Para.                  | • • | Meta.                                   | Para.   |  |
| 23  | 26.0       | 22.7                   | 17  | 9.73                                    | 9.43    |  |

## Methyl BENZOIC ACIDS C<sub>6</sub>H<sub>4</sub>COOH.CH<sub>2</sub>. o, m, and p. Solubility in Water.

#### (Vaubel.)

| t°. | Gms. C <sub>6</sub> H <sub>4</sub> CO | OH.CH3 per 1000 Gms | s. Sat. Solution. |
|-----|---------------------------------------|---------------------|-------------------|
|     | Ortho.                                | Meta.               | Para.             |
| 5°  | 1.18                                  | 0.98                | 0.35              |

## Nitro BENZOIC ACIDS C.H. NO2.COOH. o, m, and p.

SOLUBILITY IN SEVERAL SOLVENTS.

(de Coninck - Compt. rend. 118, 471, '04; for solubility in H<sub>2</sub>O, see also Paul, Vaubel, Löwenherz, and Goldschmidt - Z. physik. Chem. 25, 95, '96.)

|                    |     | Gms. C6H4.NO2.COC | H per 100 cc. Sol | vent.        |  |
|--------------------|-----|-------------------|-------------------|--------------|--|
| Solvent.           | t°. | Ortho.            | Meta.             | Para.        |  |
| Water              | 20  | 0.682 (0.654G.)   | 0.315             | 0.039        |  |
| Water              | 25  | 0.743-0.779       | 0.341             | 0.028        |  |
| Water              | 30  | 0.922             | ***               |              |  |
| Methyl Alcohol     | IO  | 42.72             | 47.34             | 9.6          |  |
| Ethyl Alcohol      | IO  | 28.2              | 33.I (II.7°)      | 0.9          |  |
| Ethyl " (33 Vol.%) | 15  | 0.64 (11.8°)      | 0.52              | 0.055        |  |
| Acetone            | IO  | 41.5              | 41.5              | 4.54         |  |
| Benzene            | IO  | 0.294             | 0.795             | 0.017(12.50) |  |
| Carbon Bi-Sulphide | IO  | 0.012             | 0.10 (8.5°)       | 0.007        |  |
| Chloroform         | IO  | 0.455 (11.°)      | 5.678             | 0.066        |  |
| Ether              | IO  | 21.58             | 25.175            | 2.26         |  |
| Ligröin            | IO  | trace             | 0.013             | 0.00         |  |

## SOLUBILITY OF PARA NITRO BENZOIC ACID IN AQUEOUS SOLUTIONS OF ANILIN AND OF PARA TOLUIDIN AT 25°. (Löwenherz – Z. physik. Chem. 25, 395, '98.)

|                                                 | In Ar             | nilin.                     | In <i>p</i> -Toluidin. |                   |                  |                   |
|-------------------------------------------------|-------------------|----------------------------|------------------------|-------------------|------------------|-------------------|
| G. Mo                                           | ls. per Liter.    | Gms. per Liter.            |                        | . per Liter.      | Gms. per         |                   |
| C <sub>6</sub> H <sub>6</sub> NH <sub>2</sub> . | CaHANO2.<br>COOH. | CeHaNH2. CeH4NO2.<br>COOH. | CaHaNHa<br>CHa.        | CeH4NO3.<br>COOH. | CaHaNH2-<br>CH2. | C.H.NO3.<br>COOH. |
| 0.0                                             | 0.00164           | 0.0 0.274                  | 0.0                    | 0.00164           | 0.0              | 0.274             |
| 0.01                                            | 0.00841           | 0.91 1.406                 | 0.01                   | 0.0100            | I.07I            | 1.671             |
| 0.02                                            | 0.01379           | 1.82 2.304                 | 0.02                   | 0.0174            | 2.142            | 2.902             |
| 0.04                                            | 0.02172           | 3.64 3.629                 | 0.03                   | 0.0245            | 3.213            | 4.097             |
| o.08                                            | 0.0347            | 7.29 5.798                 |                        |                   |                  |                   |

Solubility of Ortho Nitro Benzoic Acid in Aqueous Solutions of Sodium Butyrate, Acetate, Formate, and Salicylate at 26.4°.

(Philip - J. Chem. Soc. 87, 992, '05.)

Original results in terms of  $\frac{\text{Mols.}}{100}$  per liter.

| Gms. Na Salt<br>per Liter. | Gms. Ortho CoHoCOOH.NO2 per Liter of Solution in: |                        |         |               |  |  |  |
|----------------------------|---------------------------------------------------|------------------------|---------|---------------|--|--|--|
|                            | CaH7COONa.                                        | CH <sub>2</sub> COONa. | HCOONa. | C.H.OH.COONA. |  |  |  |
| 0                          | 7.85                                              | 7.85                   | 7.85    | 7.85          |  |  |  |
| 0.5                        | 8.35                                              | 8.50                   | 8.60    | 8.35          |  |  |  |
| 1.0                        | 8.90                                              | 9.15                   | 9.50    | 8.70          |  |  |  |
| 2                          | IO · O                                            | 10. <b>80</b>          | 11.5    | 9.4           |  |  |  |
| 3                          | II.2                                              | 12.55                  | 13.5    | <b>II</b> .0  |  |  |  |
| 4                          | 12.4                                              | 14.5                   | 15.6    | 11.5          |  |  |  |
| 6                          | 15.2                                              | •••                    | •••     | •••           |  |  |  |

SOLUBILITY OF ORTHO NITRO BENZOIC ACID IN AQUEOUS SOLUTIONS OF DEXTROSE, SODIUM CHLORIDE, AND OF SODIUM NITRATE.

Original results in molecular quantities.

(Hoffman and Langbeck - Z. physik. Chem. 51, 412, '05.)

| In Dextrose.                                                                 |                                    |                      |                                     | In NaCl.    |            |                                                   | In NaNO3. |                                                  |  |
|------------------------------------------------------------------------------|------------------------------------|----------------------|-------------------------------------|-------------|------------|---------------------------------------------------|-----------|--------------------------------------------------|--|
| G. C <sub>6</sub> H <sub>12</sub> O <sub>6</sub><br>per 100 cc.<br>Solution. | G.(0)C6H4N<br>per 100 g<br>At 25°. | NO2.COOH<br>Solvent. | G. NaCl.<br>per 100 cc<br>Solution. | . per 100 g | . Solvent. | H G.NaNO <sub>3</sub><br>per 100 cc.<br>Solution. | per 100   | ANO2.COOH<br>g. Solvent.<br>At 35 <sup>6</sup> . |  |
| 0.0                                                                          |                                    | I 063                | •                                   | 0.743       | 1.072      |                                                   | 0.746     |                                                  |  |
| 0.36                                                                         |                                    |                      |                                     |             | I.075      | 0 . 284                                           | 0.754     | 1.080                                            |  |
| 1.80                                                                         | 0.732                              | 1.061                |                                     |             |            | 0.851                                             | 0.767     | 1.096                                            |  |
| 9.50                                                                         | 0.722                              | 1.051                | 2.425                               | o.688       | 0.967      | 4.255                                             | 0.774     | I.097                                            |  |
| 20.00                                                                        | 0.703                              | 1.030                | 5. <b>80</b>                        | o.597       | 0.831      | 8.510                                             | 0.748     | I .047                                           |  |

**BENZOIC SULPHINIDE** (Saccharine)  $C_4H_4 < CO^{SO_2} > NH$ .

100 parts water dissolve 0.4 part at  $25^{\circ}$  and 4.17 parts at 100°. 100 parts alcohol dissolve 4 parts at  $25^{\circ}$  (U. S. P.).

## BENZOPHENONE (C.H.s)2CO.

SOLUBILITY IN AQUEOUS ALCOHOL AND IN OTHER SOLVENTS. (Derrien - Compt. rend. 130, 722, '00; Bell - J. Physic. Chem. 9, 550, '05.)

## In Aqueous Alcohol at 40°.

| Wt. %       | per 10   | H <sub>s</sub> ) <sub>2</sub> CO<br>Gms. | Wt. %<br>Alcohol |          | C <sub>8</sub> H <sub>8</sub> ) <sub>2</sub> CO<br>to Gms. |
|-------------|----------|------------------------------------------|------------------|----------|------------------------------------------------------------|
| in Solvent. | Solvent. | Solution.                                | in Solvent.      | Solvent. | Solution.                                                  |
| 40          | 2        | 1.9                                      | 67.5             | 39       | 28.I                                                       |
| 45          | 5        | 4.8                                      | 70               | 56       | 35.9                                                       |
| 50          | 8        | 8.3                                      | 71               | 67       | 39.2                                                       |
| 55          | II       | 9.9                                      | 72               | 90       | 47.4                                                       |
| 60          | 16       | 13.8                                     | 72.5             | 105      | 51.2                                                       |
| 65          | 28       | 22.6                                     | 73               | 156      | 61.0                                                       |

## In Aqueous Alcohol and other Solvents. (Derrien.)

| Solvent.                                                                                                                                               | t°.                                                              | Gms.<br>(C <sub>6</sub> H <sub>5</sub> ) <sub>2</sub> CC<br>per 100 g.<br>Solvent. | Solvent.                                                                                    | £°. (                                              | Gms.<br>C <sub>6</sub> H <sub>8</sub> ) <sub>2</sub> CO<br>per<br>100 g.<br>Solvent. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------|
| 97% Ethyl Alcohol<br>85 cc. 97% Alcohol + 15 cc.<br>80°°°° + 20°°<br>75°°° + 20°°<br>Methyl Alcohol (pure)<br>acetic Ether (pure)<br>Carbon Bisulphide | H <sub>2</sub> O <sup>17</sup><br><br>9.8<br>15.0<br>9.6<br>16.1 | 2.2<br>1.3<br>11.0<br>14.3                                                         | Benzene<br>Xylene<br>Nitro Benzene<br>Chloroform (com.)<br>Bromoform<br>Toluene<br>Ligröine | 17<br>17.6<br>15.8<br>16.5<br>17.3<br>17.2<br>14.6 | 76.9<br>38.4<br>58.8<br>55.5<br>33.3<br>55.5<br>6.7                                  |

BERYLLIUM HYDROXIDE Be(OH), (See also Glucinium, page 140). SOLUBILITY IN AQUEOUS SOLUTIONS OF SODIUM HYDROXIDE. (Rubenbauer - Z. anorg. Chem. 30 334, '02.)

Moist Be(OH)2 used, solutions shaken 5 hours, temperature probably about 20°.

| Per so co | . Solution. | Molecular<br>Dilution | Gms. per 100 cc. Solution. |          |  |
|-----------|-------------|-----------------------|----------------------------|----------|--|
| Gms. Na.  | Gms. Be.    | of the<br>NaOH.       | NaOH.                      | Be(OH)2. |  |
| 0.3358    | 0.0358      | 1.37                  | 2.917                      | 0.850    |  |
| 0.6716    | 0.0882      | 0.68                  | 5.840                      | 2.094    |  |
| 0.8725    | 0.1175      | 0.53                  | 7.585                      | 2.789    |  |
| 1.7346    | 0.2847      | 0.27                  | 18.310                     | 6.760    |  |

## BERYLLIUM SULPHATE BeSO,.

SOLUBILITY IN WATER. (Levi, Malvano - Z. anorg. Chem. 48, 446, '06.)

| Mols. H <sub>2</sub> O<br>per r Mol. |        | Gms. BeSO4 per<br>100 Gms. |           | Solid      | Mols. H <sub>2</sub> O<br>to. per t Mol. |        | Gms. BeSO <sub>4</sub> per<br>100 Gms. |           | Solid      |
|--------------------------------------|--------|----------------------------|-----------|------------|------------------------------------------|--------|----------------------------------------|-----------|------------|
| t°,                                  | BeSO4. | Water.                     | Solution. | Phase,     | £                                        | BeSO4. | Water.                                 | Solution. | Phase.     |
| 31                                   | 11.18  | 52.23                      | 34.32     | BeSO4.6H2O | 95.4                                     | 6.44   | 90.63                                  | 47.55     | BeSO4 4H O |
| 50                                   | 9.62   | 60.67                      | 37.77     |            | 107.2                                    | 5.06   | 115.3                                  | 53.58     | **         |
| 72.2                                 | 7.79   | 74.94                      | 42.85     |            | III                                      | 4.55   | 128.3                                  | 56.19     |            |
| 77.4                                 | 7-13   | 81.87                      | 45.01     |            | 80                                       | 6.89   | 84.76                                  | 45.87     | BeSO4.2HaO |
| 30                                   | 13.33  | 43.78                      | 30.45     | BeSO4 4H3O | 91.4                                     | 5.97   | 97.77                                  | 49.42     |            |
| 40                                   | 12.49  | 46.74                      | 31.85     |            | 105                                      | 4.93   | 118.4                                  | 54.21     | "          |
| 68                                   | 9.42   | 61.95                      | 38.27     |            | 119                                      | 3.91   | 149.3                                  | 59.88     | "          |
| 85                                   | 7.65   | 76.30                      | 43.28     |            |                                          |        | 200                                    |           |            |

**BISMUTH** 

## 64

## BISMUTH Bi.

## MUTUAL SOLUBILITY OF BISMUTH AND ZINC. (Spring and Romanoff - Z. anorg. Chem. 13, 34, '96.)

| <b>t°</b> . | Upper Layer. |      | Lower Layer. |      | ŧ°.          | Upper          | Upper Layer.  |          | Lower Layer. |  |
|-------------|--------------|------|--------------|------|--------------|----------------|---------------|----------|--------------|--|
| • •         | %Bi.         | %Zn. | %Bi.         | %Zn. | ð °.         | %Bi.           | %Zn.          | %Bi.     | %Zn.         |  |
| 266         | 86           | 14   | ••           | ••   | 584          | 80             | 20            | 10       | 90           |  |
| 419         | ••           | ••   | 3            | 97   | 650          | 77             | 23            | 15       | 85           |  |
| 475         | 84           | 16   | 5            | 95   | 750<br>810-8 | 70<br>820 (cri | 30<br>t. temp | 27<br>.) | 73           |  |

## BISMUTH CHLORIDE BiCl,

100 grams absolute acetone dissolve 17.9 grams BiCl<sub>3</sub> at 18°. (Naumann – Ber. 37, 4332, 1904.)

## BISMUTH IODIDE Bil,

100 grams absolute alcohol dissolve 3.5 grams Bil, at 20°. (Gott and Muir – J. Chem. Soc. 57, 138, '90.)

100 grams methylene iodide CH<sub>3</sub>I<sub>3</sub> dissolve 0.15 gram BiI<sub>3</sub> at 12°. (Retgers - Z. anorg. Chem. 3, 343, '93.)

## BISMUTH NITRATE Bi(NO<sub>2</sub>)<sub>2.5</sub>H<sub>2</sub>O.

100 grams acetone dissolve 48.66 grams  $Bi(NO_2)_{2.5}H_2O$  at o°, and 41.7 grams at 19°.

(von Laszczynski — Ber. 27, 2285, '94.)

## BISMUTH OXIDE Bi,O,.

SOLUBILITY OF BISMUTH OXIDE IN AQUEOUS NITRIC ACID AT 20°. (Rutten and van Bemmelen – Z. anorg. Chem. 30, 386, '02.)

|                                                                                                    |                   | 100 Gms.<br>Ition.            | Mols. p           | er 100 Mal                      | ls. H2O.<br>Solid                                                                                                                 |
|----------------------------------------------------------------------------------------------------|-------------------|-------------------------------|-------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Per 1 part Bi <sub>2</sub> O <sub>3</sub> .<br>3N <sub>2</sub> O <sub>5</sub> .10H <sub>2</sub> O. | BigO <sub>8</sub> | N <sub>2</sub> O <sub>8</sub> | BigO <sub>8</sub> | N <sub>2</sub> O <sub>5</sub> R | atio Bi <sub>2</sub> O <sub>3</sub> Phase.<br>: N <sub>2</sub> O <sub>5</sub> .                                                   |
| 24.4 parts H <sub>2</sub> O<br>3.2 parts H <sub>2</sub> O                                          | 0.321<br>6.37     | 0.963<br>7.17                 | 0 126<br>2.844    | 1.61<br>13.82                   | $ \begin{array}{c} \mathbf{I}:\mathbf{I2.8}\\ \mathbf{I}:4.8 \end{array} \right\} \operatorname{Bi_{3}O_{3}.N_{3}O_{5.2}H_{3}O} $ |
| Dilute HNO,<br>Dilute HNO,                                                                         | 18.74<br>31.48    | 15.9<br>23.7                  | 10.50<br>27.2     | 38.65<br>83.8                   | $ \begin{array}{c} 1: 3.6 \\ 1: 3.0 \end{array} Bi_{9}O_{8}N_{9}O_{8}.H_{9}O $                                                    |
| Dilute HNO, -<br>6.13% N <sub>2</sub> O <sub>5</sub>                                               | 32.93             | 24.8 <b>3</b>                 | 30.15             | 97.97                           | I: 3.2 $\begin{cases} Bi_9O_8.N_9O_8.H_9O \text{ and} \\ Bi_9O_8.3N_9O_8.10H_9O \end{cases}$                                      |
| 6.816% N2O8<br>24.0% N2O8                                                                          | 32.67<br>24.16    | 24.70<br>28.25                | 29.70<br>19.65    | 96.57<br>98.76                  | $ \begin{array}{c} \mathbf{I} : & 3.2 \\ \mathbf{I} : & 5.0 \\ \mathbf{Bi_{3}O_{3.3}N_{3}O_{8.10}H_{3}O} \end{array} $            |
| 51.0% N2O5<br>70.0% N2O5                                                                           | 11.66<br>20.76    | 46.62<br>53·75                | 10.81<br>33.51    | 186.23<br>355.87                | 1:17.2<br>1:10.6                                                                                                                  |
| Anyhdrous HNC                                                                                      | 27.85<br>), 8.56  | 51.02<br>68.28                | 51.0              | 403.0                           | 1: 7.9 $\begin{cases} Bi_2O_3 \cdot 3N_2O_3 \cdot 10H_2O \text{ and} \\ Bi_2O_3 \cdot 3N_2O_5 \cdot 3H_2O \end{cases}$            |
| Bi <sub>2</sub> O <sub>3</sub> + "                                                                 | 4.05              | 74.90                         | 14.35<br>7.45     | 492.0<br>592.9                  | I:34.3 Bi <sub>2</sub> O <sub>8</sub> .3N <sub>2</sub> O <sub>8.3</sub> H <sub>2</sub> O<br>I:79.5                                |

Results are also given for 9°, 30°, and 65°.

## BORIC ACID (Ortho) H.BO.

#### SOLUBILITY IN WATER.

(Ditte - Compt. rend. 85, 1069, 77; Herz and Knoch - Z. anorg. Chem. 41, 319, '04.)

| t°. |        |           | Gms. B <sub>2</sub> O <sub>3</sub><br>per 100 Gms. t <sup>o</sup><br>H <sub>2</sub> O.                          |     | 100    | IsBOs per<br>Gms. | Gms. B <sub>2</sub> O <sub>2</sub><br>per 100 Gms.<br>H <sub>2</sub> O. |
|-----|--------|-----------|-----------------------------------------------------------------------------------------------------------------|-----|--------|-------------------|-------------------------------------------------------------------------|
|     | Water. | Solution. | H2O.                                                                                                            |     | Water. | Solution.         | ņ20.                                                                    |
| 0   | 1.95   | 1.91      | I.I                                                                                                             | 40  | 7.0    | 6.54              | 3.95                                                                    |
| IO  | 2.70   | 2.63      | 1.5                                                                                                             | 50  | 8.8    | 8.09              | 5.08                                                                    |
| 20  | 4.0    | 3.85      | 2.25                                                                                                            | 60  | II.O   | 9.91              | 6.2                                                                     |
| 25  | 4.7    | 4.49      | 2.65                                                                                                            | 80  | 16.8   | 14.38             | 9.5                                                                     |
| 30  | 5.4    | 5-12      | 3.05                                                                                                            | 100 | 27.5   | 21.57             | 15.52                                                                   |
|     |        |           | Contraction of the second s |     |        |                   |                                                                         |

The above results of Ditte are probably low.

Herz and Knoch find for 13°, 3.845 grams H<sub>2</sub>BO<sub>3</sub> per 100 cc. solution, for 20°, 4.909, 25°, 5.593, and 26°, 5.637. Bogdan finds 5.753 grams H<sub>2</sub>BO<sub>2</sub> per 100 grams H<sub>2</sub>O at 25°.

## SOLUBILITY OF BORIC ACID IN AQUEOUS SOLUTIONS OF HYDROCHLORIC, SULPHURIC, AND NITRIC ACIDS AT 26°.

## (Herz - Z. anorg. Chem. 33, 355, 34, 205, '03.)

| Normality of                                                                                     | Normality of | Gms. Strong Acid         | Gms. B(OH)3 per 100 cc. Solution. |                                     |          |  |  |
|--------------------------------------------------------------------------------------------------|--------------|--------------------------|-----------------------------------|-------------------------------------|----------|--|--|
| the H <sub>2</sub> SO <sub>4</sub> , HCl Dissolved<br>or HNO <sub>3</sub> . B(OH) <sub>3</sub> . |              | per 100 cc.<br>Solution. | In HCl.                           | In H <sub>2</sub> SO <sub>4</sub> . | In HNO3. |  |  |
| 0                                                                                                | 0.91         | 0                        | 5.64                              | 5.64                                | 5.64     |  |  |
| 0.5                                                                                              | 0.78         | 5                        | 4.0                               | 4.25                                | 4.50     |  |  |
| 1.0                                                                                              | 0.71         | IO                       | 3.2                               | 3.6 .                               | 3.9      |  |  |
| 2.0                                                                                              | 0.58         | 15                       | 2.45                              | 3.0                                 | 3.35     |  |  |
| 3.0                                                                                              | 0.49         | 20                       | 1.8                               | 2.5                                 | 2.9      |  |  |
| 4.0                                                                                              | 0.41         | 25                       |                                   | 2.0                                 | 2.55     |  |  |
| 5.0                                                                                              | 0.35         | 30                       |                                   | 1.55                                | 2.I      |  |  |
| 6.0                                                                                              | 0.26         | 35                       |                                   |                                     | I.75     |  |  |

The determinations given in the original tables in terms of normal solutions when plotted together lay close to an average curve drawn through them. The figures in the tables here shown were read (and calculated) from the average curve.

SOLUBILITY OF BORIC ACID IN AQUEOUS SOLUTIONS OF ELECTROLYTES AT 25°.

## (Bogdan - Ann. Scient. Univ. Jassy, 2, 47, '02-'03.)

| Gms. Electro-          | , Grams H <sub>3</sub> BO <sub>3</sub> per 100 Gms. H <sub>2</sub> O in Aq. Solutions of: |      |        |       |         |        |  |  |
|------------------------|-------------------------------------------------------------------------------------------|------|--------|-------|---------|--------|--|--|
| Gms. H <sub>2</sub> O. | NaCl.                                                                                     | KCl. | NaNO3. | KNO3. | Na2SO4. | K2SO4. |  |  |
| 0                      | 5.75                                                                                      | 5.75 | 5.75   | 5.75  | 5.75    | 5-75   |  |  |
| 10                     | 5.75                                                                                      | 5.80 | 5.78   | 5.81  | 5.88    | 5.92   |  |  |
| 20                     | 5.74                                                                                      | 5.86 | 5.81   | 5.88  | 6.00    | 6.10   |  |  |
| 40                     | 5.72                                                                                      | 5.98 | 5.87   | 6.04  | 6.33    | 6.50   |  |  |
| 60                     | 5.72                                                                                      | 6.12 | 5.95   | 6.20  | 6.70    | 6.92   |  |  |
| 80                     | 5.71                                                                                      | 6.20 | 6.02   | 6.37  | 7.10    | 7.40   |  |  |

Interpolated from the original.

100 parts alcohol dissolve 6.5 parts H<sub>3</sub>BO<sub>3</sub> at 25° and 23 parts at b. pt. (U. S. P.).

## BORIC ACID

.

## Solubility of Boric Acid in Aqueous Solutions of Urea, Acetone, and of Propyl Alcohol at 25°.

(Bogdan.)

| Grams of<br>CO(NH <sub>2</sub> ) <sub>2</sub> , (CH <sub>2</sub> ) <sub>2</sub> CO | Gms. H <sub>2</sub> BO <sub>2</sub> per 100 g. H <sub>2</sub> O in Aq.<br>Solutions of: |                                     |         |  |  |  |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------|---------|--|--|--|
| or of CaH7OH per<br>100 Gms. HgO.                                                  | CO(NH2)2                                                                                | (CH <sub>2</sub> ) <sub>2</sub> CO. | CaHrOH. |  |  |  |
| 0                                                                                  | <b>5</b> ·75                                                                            | 5.75                                | 5.75    |  |  |  |
| IO                                                                                 | 5.84                                                                                    | 5.84                                | 5.80    |  |  |  |
| 20                                                                                 | 5 · 93                                                                                  | 5.93                                | 5 . 85  |  |  |  |
| 40                                                                                 | 6.13                                                                                    | 6.12                                | 5.94    |  |  |  |
| бо                                                                                 | 6.31                                                                                    | 6.29                                | 6.03    |  |  |  |

## SOLUBILITY OF BORIC ACID IN AQUBOUS SOLUTIONS OF:

Acetic Acid at 26°. (Herz – Z. anorg. Chem. 34, 205, '03.)

## Acetone at 20°.

(Herz and Knoch - Ibid. 41, 319, '04.)

| Normality of Solutions. |        | Gms. per 100 0 | c. Solution. | cc. Acetone<br>per 100 cc. | B(OH) <sub>3</sub> per 100 cc. Solution. |              |  |
|-------------------------|--------|----------------|--------------|----------------------------|------------------------------------------|--------------|--|
| CH_COOH.                | B(OH). | CH_COOH.       | B(OH)a.      | Solvent.                   | Millimols.                               | Grams.       |  |
| 0                       | 0.91   | 0              | 5.64         | 0                          | 79.15                                    | <b>4</b> .91 |  |
| I                       | 0.82   | 5              | 4.7          | 20                         | 81.71                                    | 5.07         |  |
| 2                       | 0.65   | IO             | 4.2          | 30                         | 83.35                                    | 5.17         |  |
| 4                       | 0.42   | 20             | 3.0          | 40                         | 82.72                                    | 5.13         |  |
| 6                       | 0.25   | 30             | 2.0          | 50                         | 81.62                                    | 5.06         |  |
|                         |        |                |              | 60                         | 76.40                                    | 4.74         |  |
|                         |        |                |              | 70                         | 67 . 62                                  | 4 . 19       |  |
|                         |        |                |              | 80                         | 55.05                                    | 3.41         |  |
|                         |        |                |              | 100                        | 8.06                                     | 0.50         |  |

## SOLUBILITY OF BORIC ACID IN:

|      | Pure Glycerine (Sp.Gr. = 1.260<br>at 15.5°).                                        |              |                                               |                                   |                                         | at                             | ons of Gl<br>; 25°.                |            |
|------|-------------------------------------------------------------------------------------|--------------|-----------------------------------------------|-----------------------------------|-----------------------------------------|--------------------------------|------------------------------------|------------|
| (Hoo | per — Pharn                                                                         | n. J. Trans. | [3] <b>13,</b> 258,                           | '82.) (H                          | erz and Knoc                            | h — Z. ano                     | rg. Chem. 45,                      | 268, '05.) |
| t°.  | Gms. B <sub>2</sub> O <sub>3</sub><br>3H <sub>2</sub> O per<br>100 cc.<br>Glycerine | <u> </u>     | H) <sub>3</sub> per 100<br>15.<br>. Solution. | Wt. %<br>Glycerine<br>in Solvent. | Millimols<br>B(OH)3 per<br>100 cc. Sol. | Sp. Gr.<br>at <sup>25°</sup> . | Gms. B(<br>per 10<br>cc. Solution. |            |
| 0    | 20                                                                                  | 15.87        | 13.17                                         | 0                                 | 90 · I                                  | 1.017                          | <b>5</b> · 59                      | 5.50       |
| 10   | 24                                                                                  | 19.04        | 16.00                                         | 7.15                              | 90 · I                                  | 1 .038                         | <b>5</b> · 59                      | 5.38       |
| 20   | 28                                                                                  | 22.22        | 18.21                                         | 20.44                             | 90.6                                    | 1.063                          | 5.62                               | 5.28       |
| 30   | 33                                                                                  | 26.19        | 20.75                                         | 31.55                             | 92.9                                    | I .090                         | 5.76                               | 5.29       |
| 40   | 38                                                                                  | 30.16        | 23.17                                         | 40.95                             | 97.0                                    | 1.113                          | 6.02                               | 5.41       |
| 50   | 44                                                                                  | 34.92        | 25.95                                         | 48.7                              | 103.0                                   | 1.133                          | 6.39                               | 5.64       |
| 60   | 50                                                                                  | 39.68        | 28.41                                         | 69.2                              | 140.2                                   | 1 . 187                        | 8.69                               | 7.32       |
| 70   | 56                                                                                  | 44.65        | 30.72                                         | 100.0                             | 390.3                                   | 1.272                          | 24.20                              | 19.02      |
| 80   | δı                                                                                  | 48.41        | 32.61                                         |                                   |                                         |                                |                                    |            |
| 90   | 67                                                                                  | 53.18        | 34.70                                         |                                   |                                         |                                |                                    |            |
| 100  | 72                                                                                  | 57 . 14      | 36.36                                         |                                   |                                         |                                |                                    |            |

## DISTRIBUTION OF BORIC ACID BETWEEN WATER AND AMYL ALCOHOL AT 25°.

| Millimols B(OH) <sub>3</sub> in |                     | Gms. B(OH) <sub>3</sub> in 100 cc. |                     | Millimols B(OH) <sub>3</sub> in |                     | Gms. B(OH)s in 100 cc |                     |
|---------------------------------|---------------------|------------------------------------|---------------------|---------------------------------|---------------------|-----------------------|---------------------|
| Aq.<br>Layer.                   | Alcoholic<br>Layer. | Aq.<br>Layer.                      | Alcoholic<br>Layer. | Aq.<br>Layer.                   | Alcoholic<br>Layer. | Aq.<br>Layer.         | Alcoholic<br>Layer. |
| 265.8                           | 76.6                | 1.648                              | 0.475               | 87.9                            | 33.2                | 0.545                 | 0.206               |
| 196.5                           | 59 · 5              | 1.219                              | 0.369               | 75.2                            | 22.7                | 0.466                 | 0.141               |
| 159.6                           | <b>47</b> · 5       | 0.990                              | 0.294               | 64.6                            | 19.76               | 0.400                 | 0.123               |
| 126.0                           | 37.1                | 0.781                              | 0.230               |                                 |                     |                       |                     |

(Fox - Z. anorg. Chem. 35, 130, '03.)

## BORIC ACID (Tetra) H,B,O7.

100 grams water dissolve 2.69 grams  $H_2B_4O_7$  at 15°, Sp. Gr. = 1.015. (Gerlach – Z. anal. Chem. 28, 473, '89.)

## BCRON TRI-FLUORIDE BF,

.

1 cc. H<sub>2</sub>O absorbs 1.057 cc. BF<sub>2</sub> at 0° and 762 mm., 1 cc. conc. H<sub>2</sub>SO<sub>4</sub> (Sp. Gr. 1.85) absorbs 50 cc. BF<sub>2</sub>.

## BROMINE Br.

#### SOLUBILITY IN WATER.

(Winkler -- Chem. Ztg. 23, 687, '99; Roozeboom -- Rec. trav. chim. 3, 29, 59, 73, 84, '84; Dancer --J. Chem. Soc. 15, 477, '62; at 15°, Dietze -- Pharm. Ztg. 43, 290, '98.)

|             |        | Grams Bromin           | e per 10          | "Absorption              | 11 C - h- h- 11 - h-  |                       |
|-------------|--------|------------------------|-------------------|--------------------------|-----------------------|-----------------------|
| <b>t*</b> . | (W.)   | Water.<br>(R. D. & D.) | (W.) <sup>S</sup> | olution.<br>(R. D. & D.) | Coefficient." *<br>4. | "Solubility." •<br>q. |
| 0           | 4.17   | 4.22                   | 3.98              | 4.05                     | 60.5                  | 43 · I                |
| 5           | 3.92   | 3.7                    | 3.77              | 3.57                     | 45.8                  | 32.4                  |
| IO          | 3 · 74 | 3 • 4                  | 3.61              | 3.29                     | 35.1                  | 24.8                  |
| 15          | 3.65   | 3.25                   | 3.52              | 3.15                     | 27.0                  | 19.0                  |
| 20          | 3 . 58 | 3.20                   | 3.46              | 3.10                     | 21.3                  | 14.8                  |
| 25          | 3.48   | 3.17                   | 3.36              | 3.07                     | 17.0                  | 11.7                  |
| 30          | 3 · 44 | 3.13                   | 3.32              | 3.03                     | 13.8                  | 9.4                   |
| 40          | 3 · 45 | • • •                  | 3.33              | •••                      | 9.4                   | 6.2                   |
| 50          | 3.52   | • • •                  | 3.40              | •••                      | 6.5                   | 4.0                   |
| 60          | • • •  | •••                    | • • •             | •••                      | 4.9                   | 2.8                   |
| 80          |        | •••                    | •••               | •••                      | 3.0                   | I.I                   |

• For "Absorption Coefficient" a and "Solubility" q. of Bromine Vapor in water, see Acetylene, page 9.

#### BROMINE

## Solubility of Bromine in Aqueous Solutions of Potassium Sulphate, Sodium Sulphate, and of Sodium Nitrate at 25°.

| Normality of<br>Salt Solution. | In K <sub>2</sub> SO <sub>4</sub><br>Gms. per Liter. |         | In Na<br>Gms. per | sO4<br>Liter. | In NaNOs<br>Gms. per Liter. |                |
|--------------------------------|------------------------------------------------------|---------|-------------------|---------------|-----------------------------|----------------|
| aut souuon.                    | K <sub>3</sub> SO <sub>4</sub> .                     | Br.     | NasSO4.           | Br.           | NaNO <sub>3</sub> .         | Br.            |
| ł                              | 91 . 18                                              | 25.14   | 63.55             | 25.07         | 85.09                       | 28.80          |
| 3                              | 45 · 59                                              | 29 · 44 | 31.77             | 29.20         | 42 · 54                     | 31.35          |
| 1                              | 22.79                                                | 31.46   | 15.88             | 31.33         | 21.27                       | 32.62          |
| 1                              | 11.39                                                | 32.70   | 7 • 94            | 32.94         | 10.63                       | 33 · <b>33</b> |
| Te                             | 5.69                                                 | 33.10   | 3 · 97            | 32.26         | 5.31                        | 33 · 74        |

#### (Jakowkin - Z. physik. Chem. 20, 38, '96.)

## SOLUBILITY OF BROMINE IN NORMAL AQUEOUS SALT SOLUTIONS AT 25°.

(McLauchlan - Z. physik. Chem. 44, 617, '03.)

| Salt.                                           | Gms.<br>Salt per<br>Liter. | Normality<br>of Dis-<br>solved Br. | Gms.<br>Br. per<br>Liter. | Salt.              | Gms.<br>Salt per<br>Liter. | Normality<br>of Dis-<br>solved Br. | Gms.<br>Br. per<br>Liter |
|-------------------------------------------------|----------------------------|------------------------------------|---------------------------|--------------------|----------------------------|------------------------------------|--------------------------|
| Water                                           | 0.0                        | 0.424                              | 33.95                     | NH NO              | 80.11                      | o.688                              | 55.15                    |
| Na <sub>2</sub> SO <sub>4</sub>                 | 63.55                      | 0.286                              | 23.0                      | NaČl               | 58.50                      | 0.701                              | 55.90                    |
| K <sub>z</sub> SO,                              | 91.18                      | 0.310                              | 24.8                      | KCl                | 74.60                      | 0.718                              | 57.40                    |
| (NH <sub>4</sub> ) <sub>z</sub> SO <sub>4</sub> | 70.04                      | 0.971                              | 77 . 7                    | NH <sub>4</sub> Cl | 53.52                      | 1.028                              | 82.2                     |
| NaNO <sub>2</sub>                               | 85.00                      | 0.3495                             | 28.0                      | CH,COONH,          | 77.09                      | 4.26                               | 340.5                    |
| KNO,                                            | 101.19                     | 0.362                              | 28.95                     | H,SO,*             | 49.03                      | 0.366                              | 29.26                    |

• Wildeman.

## Solubility of Bromine in Aqueous Potassium Bromide Solutions.

(Worley - J. Chem. Soc. 87, 1107, '05; see also Wildeman - Z. physik. Chem. 11, 421, '93.)

| Gram Mols. KBr | Gms. KBr   | Br. per Liter Di | ssolved at 26.5°. | Br. per Liter Di | ssolved at 18.5°. |
|----------------|------------|------------------|-------------------|------------------|-------------------|
| per Liter.     | per Liter. | G. Mols.         | Grams.            | G. Mols.         | Grams.            |
| 0.00           | 0.00       | 0.4282           | 34.23             | 0.4448           | 35.56             |
| 0.02           | 2 . 18     | 0.4671           | 37 · 35           | 0.4823           | 38.56             |
| 0.04           | 4.38       | 0.5101           | 40.79             | 0.5243           | 41.91             |
| o.o6           | 6.55       | 0.5530           | 44 · 21           | 0.5668           | 45.3I             |
| o.o8           | 8.76       | 0.5920           | 47 · 33           | 0.6059           | 48 . 44           |
| <b>0</b> .IO   | 10.91      | o.6488           | 51.87             | 0.6533           | 52.23             |
| 0.20           | 21.82      | 0.8591           | 68.69             | 0.8718           | 69.69             |
| 0.40           | 43.82      | I . 2704         | 101.60            | 1.3124           | 104.90            |
| 0.60           | 65 . 46    | 1.6717           | 133.70            | 1.7712           | 141.60            |
| o.80           | 87.64      | 2 . 1029         | 168.10            | 2.2354           | 178.70            |
| 0.90           | 98.19      | 2.3349           | 186.20            | 2.4851           | 198.70            |

100 grams saturated solution of Bromine in Carbon Bisulphide contain 45.4 grams Br at  $-95^{\circ}$ , 39.0 grams at  $-110.5^{\circ}$ , and 36.9 grams at  $-116^{\circ}$ .

,

(Arctowski - Z. anorg. Chem. 11, 274, '95-'96.)

## DISTRIBUTION OF BROMINE AT 25° BETWEEN WATER AND: (Jakowkin – Z. physik. Chem. 18, 588, '95.)

| Carbon Bisulphide. |                        | Bromoform. |                        | Carbon Tetra Chloride. |               |  |
|--------------------|------------------------|------------|------------------------|------------------------|---------------|--|
| Gms. Br. p         | er Liter of:           | Gms. Br.   | Gms. Br. per Liter of: |                        | per Liter of: |  |
| Aq. Layer.         | CS <sub>2</sub> Layer. | Aq. Layer. | CHBrs Layer.           | Aq. Layer.             | CCl, Layer.   |  |
| 0.5                | 36                     | 0.5        | 33                     | 0.5                    | 15            |  |
| r                  | Šo                     | I          | 33<br>66               | I                      | 15<br>28      |  |
| 2                  | 163                    | 2          | 136                    | 2                      | бо            |  |
| 3                  | 240                    | 3          | 206                    | 3                      | 90            |  |
| 4                  | 330                    | 4          | 276                    | 4                      | 123           |  |
| 5                  | 420                    | 5          | 346                    | 5                      | 156           |  |
| 5<br>6             | 515                    | 5<br>6     | 415                    | 5<br>6                 | 190           |  |
| 7                  | 620                    | •••        | •••                    | 8                      | 260           |  |
| -                  |                        |            |                        | 10                     | 340           |  |
|                    |                        |            |                        | 12                     | 430           |  |
|                    |                        |            |                        | 14                     | 520           |  |

## **BRUCINE** C<sub>21</sub>H<sub>20</sub>(OCH<sub>3</sub>)<sub>2</sub>N<sub>2</sub>O<sub>2</sub>.4H<sub>2</sub>O.

## Solubility in Several Solvents at 18°-22°.

(Müller — Apoth. Ztg. 18, 232, '03.)

| Solvent.     | Gms. Brucine<br>per 100 Gms.<br>Solution. | Solvent.               | Gms. Brucine<br>per 100 Gms.<br>Solution. |
|--------------|-------------------------------------------|------------------------|-------------------------------------------|
| Water        | 0.0563                                    | Petroleum Ether        | 0.088                                     |
| Ether        | 0.749                                     | Carbon Tetra Chloride  | 0.078                                     |
| Acetic Ether | 4.255                                     | Carbon Tetra Chloride' | * 1.937                                   |
| Benzene      | 1.11                                      | Glycerine              | 2.2                                       |

\* Schindelmeiser - Chem. Ztg. 25, 199, 'oi.

## BUTANE C.H.

Solubility in Water at t°. And 760 MM.

| t°.                                                                    | o°      | 4°   | 10 <sup>0</sup> | 15°   | 20 <sup>0</sup> |
|------------------------------------------------------------------------|---------|------|-----------------|-------|-----------------|
| Vols. C <sub>4</sub> H <sub>10</sub><br>per 100 vols. H <sub>2</sub> O | 3 . 147 | 2.77 | 2.355           | 2.147 | 2.065           |

## Iso BUTYL ACETATE, etc.

## SOLUBILITY IN WATER.

(Traube - Ber. 17, 2304, '84; at 20°, Vaubel - J. pr. Chem. 59, 30, '99.)

| <b>t*</b> . | Compound.               | Grams Com-<br>pound per 100<br>Grams H <sub>2</sub> O. |
|-------------|-------------------------|--------------------------------------------------------|
| 22          | Iso Butyl Acelate       | 0.5                                                    |
| 22          | Iso Butyl Formate       | I.O                                                    |
| 20          | Normal Butyric Aldehyde | 3.6                                                    |
| 20          | Iso Butyric Aldehyde    | 10.0                                                   |

## BUTYL ACETATE

## SOLUBILITY OF BUTYL ACETATE AND OF BUTYL FORMATE IN MIXTURES OF ALCOHOL AND WATER.

(Bancroft - Calc. from Pfeiffer - Phys. Rev. 3, 205, '95-'96.)

| cc. Alcohol<br>in Mixture. | cc. $H_2O$ added to cause separation of a second phase in mixtures of the given quantity of alcohol and 3 cc. portions of: |                |  |  |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|
|                            | Butyl Formate.                                                                                                             | Butyl Acetate. |  |  |  |
| 3                          | 3.45                                                                                                                       | 2.08           |  |  |  |
| 3<br>6                     | 8.83                                                                                                                       | 6.08           |  |  |  |
| 9                          | 14.75                                                                                                                      | 10.46          |  |  |  |
| 12                         | 21.45                                                                                                                      | 15.37          |  |  |  |
| 15                         | 29.65                                                                                                                      | 20.42          |  |  |  |
| 18                         | 39.0                                                                                                                       | 25.60          |  |  |  |
| 21                         | 51.8                                                                                                                       | 31 · <b>49</b> |  |  |  |
| 24                         | 00                                                                                                                         | 37 . 48        |  |  |  |
| 27                         |                                                                                                                            | 43.75          |  |  |  |
| 30                         |                                                                                                                            | 50.74          |  |  |  |
| 33                         |                                                                                                                            | 59.97          |  |  |  |

,

· 100 cc. H<sub>2</sub>O dissolve 0.7 cc. iso butyl acetate at 25° (Bancroft).

## Iso BUTYRIC ACID (CH1), CH.COOH.

SOLUBILITY IN WATER.

(Rothmund - Z. physik. Chem. 26, 475, '98.)

Synthetic Method used, see Note, p. 9.

| <b>t</b> °. | Gms. Iso Butyric Acid per 100 Gms. |                        |  |  |  |  |  |
|-------------|------------------------------------|------------------------|--|--|--|--|--|
| U .         | Aq. Layer.                         | Iso Butyric Ac. Layer. |  |  |  |  |  |
| 5           | 16.4                               | 73 - 4                 |  |  |  |  |  |
| IO          | 17.5                               | 68.5                   |  |  |  |  |  |
| 15          | 19.4                               | 62.5                   |  |  |  |  |  |
| 20          | 22.6                               | 53 · 9                 |  |  |  |  |  |
| 22          | 25.8                               | 49.6                   |  |  |  |  |  |
| 24.7        | (crit. temp.)                      | 36.3                   |  |  |  |  |  |

## CADMIUM BROMIDE CdBr.

## SOLUBILITY IN WATER.

(Dietz — Ber. 32, 95, '90; Z. anorg. Chem. 20, 260, '90; Wiss. Abh. p.t. Reichanstalt. 3, 433, '00; see also Eder — Dingler polyt. J. 221, 189, '76; Etard — Ann. chim. phys. [7] 2, 536, '94.)

| <b>t•</b> . | Gms. CdBr <sub>2</sub><br>per 100 Gms.<br>Solution. | Mols. CdBr<br>per 100<br>Mols. H <sub>2</sub> O. | Solid Phase.                         | \$°. 1 | Gms. CdBr <sub>2</sub><br>per 100 Gms.<br>Solution. | Mols. CdBi<br>per 100<br>Mols. H <sub>2</sub> O | Solid Phase.                        |
|-------------|-----------------------------------------------------|--------------------------------------------------|--------------------------------------|--------|-----------------------------------------------------|-------------------------------------------------|-------------------------------------|
| 0           | 37 . 92                                             | 4.04                                             | CdBr <sub>2</sub> .4H <sub>2</sub> O | 40     | 60.65                                               | 10.20                                           | CdBr <sub>2</sub> .H <sub>2</sub> O |
| 18          | 48.90                                               | 6.21                                             | ~~ -                                 | 45     | 60.75                                               | 10.24                                           | ·( -                                |
| 30          | 56.90                                               | 8.73                                             | "                                    |        | 61.10                                               | 10.39                                           | **                                  |
| 38          | 61.84                                               | 10.73                                            | "                                    | 8o     | 62.29                                               | 10.48                                           | "                                   |
| 35          | 60.29                                               | 10.05                                            | CdBr <sub>2</sub> .H <sub>2</sub> O  | 100    | 61.63                                               | 10.63                                           | "                                   |

Density of saturated solution at  $18^\circ = 1.683$ .

•

SOLUBILITY OF CADMIUM BROWIDE IN ALCOHOL, ETHER, AND IN ACETONE.

71

100 gms. sat. solution of CdBr, 4H.O in abs. alcohol contain 20.93 gms. CdBr, at 15<sup>2</sup> Eder .

100 gms. sat. solution of CdBr, 4H,O in abs. ether contain 0.4 gm. CdBr, at 15° Eder .

100 gms. absolute acetone dissolve 1.559 gms. CdBr, at 18°.

(Numman - Ber. 37. 4314 '04.)

#### CADMIUM (Mono) AMMONIUM BROMIDE CdBr, NH, Br.

#### SOLUBILITY IN WATER.

(Rimbach - Ber. 38, 1553, 'os: Eder.)

| <b>t"</b> . | 100 Gram   | Ator    | cix Re | G. CdBry_NH_Dr |    |       |                            |
|-------------|------------|---------|--------|----------------|----|-------|----------------------------|
|             | <u>Cd.</u> | Бг.     | NH4.   | <u>ca</u> :    | Br | : NH. | per toe Gans.<br>Solution. |
| I .O        | 16.33      | 34 .87  | 2.63   | I              | 3  | I     | 53.82                      |
| 14.8        | 17.40      | 37 15   | 2.So   | I              | 3  | I     | 58.0I                      |
| 52.2        | 19.79      | 42.38   | 3-21   | I              | 3  | I     | 65.31                      |
| IIO.I       | 22.99      | 49 - 17 | 3.72   | I              | 3  | I     | 75.98                      |

100 gms. sat. solution of CdBr..NH,Br in abs. alcohol contain 15.8 gms. double salt at 15° (Eder).

100 gms. sat. solution of CdBr..NH,Br in abs. ether contain 0.36 gm. double sait at 15° (Eder).

## CADMIUM (Tetra) AMMONIUM BROMIDE CdBr, 4NH, Br.

## SOLUBILITY IN WATER.

(Rimbach.)

The double salt is decomposed by water at temperatures below 160°.

|       | 100 Gms. Solution contain Gms.<br>Cd. Br. NH4. |         |        | Atomic Relation in Sol. |        |      | Atomic Relation in Solid. |        |      |
|-------|------------------------------------------------|---------|--------|-------------------------|--------|------|---------------------------|--------|------|
| • •   | Ca.                                            | Br.     | NH4.   | Ca                      | : Br : | NH.  | Ca                        | : Br : | NH.  |
| o.8   | 14.72                                          | 50.46   | 6.67   | I                       | 4.82   | 2.82 | I                         | IO .02 | 8.02 |
| 13.0  | 14.95                                          | 51.48   | 6.85   | I                       | 4.85   | 2.85 | I                         | 11.57  | 9.57 |
| 44.0  | 15.01                                          | 53.85   | 7.35   | I                       | 5.04   | 3.04 | I                         | 6.84   | 4.84 |
| 76.4  | 14.6                                           | 54.28   | 7.80   | I                       | 5.32   | 3.32 | I                         | 6.63   | 4.63 |
| 123.5 | 15.5                                           | 59 . 50 | 8.45   | I                       | 5.38   | 3.38 | I                         | 7.40   | 5.40 |
| 160.0 | 14.7                                           | 62.67   | 9 · 43 | I                       | 5 · 99 | 3.99 | I                         | 6.03   | 4.03 |

## CADMIUM (Mono) POTASSIUM BROMIDE CdBr, KBr.H.O.

SOLUBILITY IN WATER.

#### (Rimbach; see also Eder.)

| <b>t*</b> . | 100 Gms. Solution contain Gms. |                |      | Atomic | Gms. CdBrg.KBr |              |                           |
|-------------|--------------------------------|----------------|------|--------|----------------|--------------|---------------------------|
|             | Cd.                            | Br.            | K.   | Cd :   | Br             | : <b>K</b> . | per 100 Gms.<br>Solution. |
| 0.4         | 15.41                          | 33.0           | 5.42 | I      | 3              | I            | 53.63                     |
| 15.8        | 16.85                          | 35.96          | 5.86 | I      | 3              | I            | 58.6r                     |
| 50.0        |                                | 41.86          |      | I      | 3              | I            | 67.87                     |
| 112.5       | 22.24                          | <b>48</b> . 28 | 8.14 | o.98   | 3              | I .03        | 78.11                     |

## CADMIUM BROMIDE

**CADMIUM** Tetra **POTASSIUM BROMIDE** is decomposed by water at ordinary temperatures.

72

## CADMIUM (Mono) RHUBIDIUM BROMIDE CdBr, RbBr.

SOLUBILITY IN WATER.

(Rimbach.)

| <b>t*</b> . | 100 Gms.    | Solution co | ntain Gms. | Atomic I | Gms. CdBr2.RbBr<br>per 100 Gms. |        |           |
|-------------|-------------|-------------|------------|----------|---------------------------------|--------|-----------|
|             | <b>Cd</b> . | Br.         | Rb.        | Cd :     | Br                              | Rb.    | Solution. |
| 0.4         | 8.37        | 17.93       | 6.43       | I        | 3                               | I .0I  | 32.65     |
| 14.5        | 10.72       | 23.02       | 8.30       | 0.99     | 3                               | I . OI | 41.87     |
| 49.2        | 15.01       | 32.13       | 11.51      | I        | 3                               | I      | 58.54     |
| 107.5       | 19.65       | 41.12       | 14.06      | I .02    | 3                               | 0.96   | 75·77     |

## CADMIUM (Tetra) BHUBIDIUM BROMIDE CdBr,.4RbBr.

SOLUBILITY IN WATER.

(Rimbach.)

| t*.   | 100 Gms. | Atomic | Relati | Gms. CdBrg.4 RbBr<br>per 100 Gms. |    |       |           |
|-------|----------|--------|--------|-----------------------------------|----|-------|-----------|
|       | Ca       | Br     | Rb.    | Cd :                              | Br | : Rb. | Solution. |
| 0.5   | 5.70     | 24.94  | 17.97  | o.98                              | 6  | 4.05  | 47 · 95   |
| 13.5  | 6.55     | 28.74  | 20.74  | 0.97                              | 6  | 4.05  |           |
| 51.5  | 8.25     | 35.51  | 25.39  | 0.99                              | 6  | 4.02  | 68.82     |
| 114.5 | 9.50     | 40.67  | 29.00  | I.00                              | 6  | 4.0   | 79.04     |

## CADMIUM (Mono) SODIUM BROMIDE CdBr, NaBr2; H2O.

.

Solubility in Water, etc., at 15°.

(Eder - Ding. polyt. J. 221, 189, '76.)

| Solvent.         | Gms. CdBrg.Nal | Br per 100 Gms. | Solid<br>Phase.  |  |
|------------------|----------------|-----------------|------------------|--|
| Solvent.         | Solution.      | Solvent.        |                  |  |
| Water            | <b>4</b> 9.0   | 96.I            | CdBr,.NaBr.21H,O |  |
| Absolute Alcohol | 21.2           | 27.0            | "                |  |
| Absolute Ether   | 0.52           | 0.53            | "                |  |

## CADMIUM CHLORATE Cd(ClO<sub>3</sub>), 2H<sub>2</sub>O.

SOLUBILITY IN WATER.

(Meusser - Ber. 35, 1422, '02.)

| t°. 1 | Gms.<br>Cd(ClO <sub>3</sub> )3<br>per 100 Gms.<br>Solution. | Mols.<br>Cd(ClO <sub>3</sub> )3<br>per 100 Mola<br>H3O. | Solid Phase.        | t°. | Gms.<br>Cd(ClO <sub>3</sub> )s<br>per 100 Gms.<br>Solution. | Mols.<br>Cd(ClO <sub>2</sub> ) <sub>2</sub><br>per 100<br>Mols. H <sub>2</sub> O. | Solid Phase.                                        |
|-------|-------------------------------------------------------------|---------------------------------------------------------|---------------------|-----|-------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------|
| - 20  | 72.18                                                       | 22.47                                                   | $Cd(ClO_2)_2.2H_2O$ | 18  | 76.36                                                       | 27.98 Cd                                                                          | (ClO <sub>3</sub> ) <sub>2</sub> .2H <sub>2</sub> O |
| -15   | 72.53                                                       | 22.87                                                   | "                   | 49  | 80.08                                                       | 34.82                                                                             | "                                                   |
| ō     | 74.95                                                       | 25.92                                                   | "                   | 65  | 82.95                                                       | 42.14                                                                             | "                                                   |

Density of the saturated solution at  $18^\circ = 2.284$ .

SOLUBILITY IN WATER. (Dietz - W. Abh. p. t. Reichanstalt 3, 433, '00; above 100°, Etard - Ann. chim. phys. [7] 2, 536, '94.) t°, G.CdCaper Mols.CdCa 100 Gms, per 100 Solution. Mols.HgO. G. CdCla per Mols.CdCla Solid Phase. Solid Phase. t . solution. Mols. HgO. 43.58 - 9 7.5 +10 57.47 13.3 9.6 CdCL-4H\_O 20 13.2 0 49.39 57-35 13.3 CdCL.H.O +10 55.58 12.3 40 57.51 60 15 59.12 14.2 57.71 13.4 7.8 80 -10 58.41 13.8 44-35 0 100 59.52 47.37 9.0 14.4 +18 52.53 10.9 CdCl.21H20 150 64.8 30 (monoclinic) 56.91 12.8 200 72.0 36 270 57.91 13.5 77.7

73

Density of saturated solution at  $18^\circ = 1.741$ .

100 gms. abs. ethyl alcohol dissolve 1.52 gms. CdCl<sub>2</sub> at 15°.5. 100 gms. abs. methyl alcohol dissolve 1.71 gms. CdCl<sub>2</sub> at 15°.5. (de Bruyn – Z. physik. Chem. 10, 783, '92.)

#### CADMIUM AMMONIUM CHLORIDE CdCl.,NH,Cl.

SOLUBILITY IN WATER.

|       |          | Accession and | Der: 301 3 | 075, 1897.)                  |        |  |
|-------|----------|---------------|------------|------------------------------|--------|--|
| t°.   | 100 Gms. | Solution cont | ain Gms.   | Gms. CdCl2.NH4Cl per 100 Gms |        |  |
|       | Cd.      | Cl.           | NH .       | Solution.                    | Water. |  |
| 2.4   | 14.26    | 13.44         | 2.24       | 29.94                        | 42.74  |  |
| 16.0  | 15.82    | 15.07         | 2.56       | 33-45                        | 50.26  |  |
| 41.2  | 18.61    | 17.46         | 2.89       | 38.96                        | 63.83  |  |
| 63.8  | 20.92    | 19.73         | 3.34       | 43.99                        | 78.54  |  |
| 105.9 | 24.70    | 23.52         | 4.01       | 52.23                        | 109.33 |  |

## CADMIUM (Tetra) AMMONIUM CHLORIDE CdCl, 4NH,Cl.

IN CONTACT WITH WATER.

The salt is decomposed in aqueous solution.

(Rimbach.)

| ŧ*.   | 100 Gms. 5 | Solution cont | ain Gms. | Atomic Relation in Solution. |        |      |  |
|-------|------------|---------------|----------|------------------------------|--------|------|--|
|       | Cd.        | Cl.           | NH4.     | Cd                           | : Cl : | NH.  |  |
| 3.9   | 5.75       | 18.17         | 7-37     | I                            | 9.96   | 7.96 |  |
| 16.1  | 6.96       | 20.26         | 7.97     | I                            | 9.20   | 7.13 |  |
| 40.2  | 9.91       | 23.84         | 8.92     | I                            | 7.61   | 5.61 |  |
| 58.5  | 12.50      | 26.53         | 9.35     | I                            | 6.71   | 4.66 |  |
| 112.9 | 16.66      | 31.79         | 10.78    | I                            | 6.02   | 4.02 |  |
| 113.9 | 16.51      | 32.71         | 11.30    | I                            | 6.26   | 4.26 |  |

#### SOLUBILITY OF MIXTURES OF CADMIUM TETRA AMMONIUM CHLORIDE AND CADMIUM AMMONIUM CHLORIDE IN WATER. (Rimbach - Ber. 35, 1300, '02.)

| ¥°.  | 100 Gms. |       | Atomic Rel | ation. | Solid Phase,<br>Mol. per cent of: |      |                  |        |
|------|----------|-------|------------|--------|-----------------------------------|------|------------------|--------|
| •.   | Cd.      | CI.   | NH4.       | Cd     | : CI :                            | NH4. | CdCla.<br>NH4Cl. | CdCla. |
| I.I  | 5.34     | 17.62 | 7.27       | 1      | 10.47                             | 8.50 | 49.6             | 50.4   |
| 14.0 | 7.12     | 19.86 | 7.84       | I      | 8.84                              | 6.87 | 47.0             | 53.0   |
| 40.7 | 10.24    | 23.82 | 8.85       | I      | 7.37                              | 5.37 | 77.0             | 23.0   |
| 58.5 | 12.50    | 26.53 | 9.35       | I      | 6.71                              | 4.66 |                  |        |

## CADMIUM CHLORIDE

## Solubility of Mixtures of Cadmium Tetra Ammonium Chloride and Ammonium Chloride in Water.

74

(Rimbach.)

| <b>t°</b> . | 100 Gms. Solution<br>contain Gms. |       |       | Atomic<br>Relation |        |       | Solid Phase,<br>Mol. per cent of: |               |
|-------------|-----------------------------------|-------|-------|--------------------|--------|-------|-----------------------------------|---------------|
|             | Cd.                               | CI.   | NH.   | - Ca               | : CI : | NH4.  | NH <sub>4</sub> Cl.               | CdCl2.4NH4Cl. |
| I.O         | 2.82                              | 17.11 | 7.82  | I                  | 19.21  | 17.28 | 59.0                              | <b>4</b> I .0 |
| 13.2        | 2.76                              | 18.84 | 8.71  | I                  | 21.62  | 19.62 | 74.0                              | 26.0          |
| 40 . I      | 3.16                              | 22.56 | 10.49 | I                  | 22.65  | 20.74 | 71.0                              | <b>29</b> .0  |
|             |                                   | 25.21 |       | I                  | 22.79  | 20.89 | 69.0                              | 31.0          |

## CADMIUM BARIUM CHLORIDE 2(CdCl<sub>2</sub>).BaCl<sub>2</sub>.5H<sub>2</sub>O.

SOLUBILITY IN WATER. (Rimbach - Ber. 30, 3083, '97.)

| <b>t*</b> . | 10    | o Gms. Soluti<br>contain Gms. | Gms. 2(CdCl <sub>2</sub> ).BaCl <sub>2</sub><br>per 100 Gms. |           |          |  |  |  |  |
|-------------|-------|-------------------------------|--------------------------------------------------------------|-----------|----------|--|--|--|--|
|             | Cd.   | CI.                           | Ba.                                                          | Solution. | Water.   |  |  |  |  |
| 22.6        | 17.71 | 16.89                         | 0. II                                                        | 45.60     | 83.82    |  |  |  |  |
| 41.3        | 19.22 | 18.15                         | II .77                                                       | 49.14     | 96.62    |  |  |  |  |
| 53 · 9      | 19.85 | 18.75                         | 12.41                                                        | 51.04     | 104 . 25 |  |  |  |  |
| 62.2        | 20.59 | 19.66                         | 12.83                                                        | 53.08     | 113.13   |  |  |  |  |
| 69.5        | 21.20 | 20.18                         | 13.09                                                        | 54.47     | 119.64   |  |  |  |  |
| 107 . 2     | 24.25 | 23.23                         | 14.90                                                        | 62.38     | 165 .85  |  |  |  |  |

## CADMIUM BARIUM CHLORIDE CdCl<sub>2</sub>.BaCl<sub>2</sub>.4H<sub>2</sub>O.

SOLUBILITY IN WATER. (Rimbach.)

| <b>5°</b> . | 10    | o Gms. Solutio<br>contain Gms. | 10.   | Gms. CdCl <sub>2</sub> .BaCl <sub>2</sub><br>per 100 Gms. |          |  |
|-------------|-------|--------------------------------|-------|-----------------------------------------------------------|----------|--|
|             | Cd.   | Cl.                            | Ba.   | Solution.                                                 | Water.   |  |
| 22.5        | 11.98 | 15.19                          | 14.71 | 41.88                                                     | 72.06    |  |
| 32.9        | 12.40 | 16.18                          | 16.09 | 44 . 67                                                   | 80.73    |  |
| 41.4        | 13.05 | 16.95                          | 16.81 | 46.81                                                     | 88.01    |  |
| 53.4        | 13.96 | 18.21                          | 18.13 | 50.30                                                     | 101 . 21 |  |
| 52.0        | 14.73 | 18.81                          | 18.74 | 52.28                                                     | 109.56   |  |
| 97.8        | 17.57 | 22 . 48                        | 22.00 | 62 05                                                     | 163.50   |  |
| 108.3       | 18.53 | 23.51                          | 22.79 | 64.83                                                     | 184 . 33 |  |
| 109.2       | 18.67 | 23.69                          | 29.95 | 65.31                                                     | 188 . 27 |  |

## CADMIUM MAGNESIUM CHLORIDE 2(CdCl<sub>2</sub>)MgCl<sub>2</sub>.12H<sub>2</sub>O.

SOLUBILITY IN WATER. (Rimbach.)

|               |       | (                             |                                     |           |              |
|---------------|-------|-------------------------------|-------------------------------------|-----------|--------------|
| t°.           | 10    | o Gms. Soluti<br>contain Gms. | Gms. 2(CdCl2).MgCl2<br>per 100 Gms. |           |              |
|               | Cd.   | C1.                           | Mg.                                 | Solution. | Water.       |
| 2.4           | 22.14 | 21.06                         | 2.4I                                | 45.61     | 83.86        |
| 20.8          | 24.30 | 22.80                         | 2.55                                | 49.69     | <u>98.77</u> |
| <b>45</b> · 5 | 26.24 | 24.55                         | 2.72                                | 53.51     | 115.10       |
| 67.2          | 28.45 | 26.71                         | <b>2</b> .98                        | 58.14     | 138.90       |
| 121.8         | 31.84 | 30.20                         | 3.44                                | 65 . 48   | 189 69       |

## CADMIUM (Mono) RHUBIDIUM CHLORIDE CdCl., RbCl.

SOLUBILITY OF CADMIUM MONO RHUBIDIUM CHLORIDE IN WATER. (Rimbach - Ber. 35, 1303, '02.)

75

|       |         | (minoaca       | Der. 331 1303 |                              |        |  |
|-------|---------|----------------|---------------|------------------------------|--------|--|
| t°.   | 100 Gms | . Solution ont | Gms, CdClg.Rb | Gms. CdCl2.RbCl per 100 Gms. |        |  |
|       | Cd.     | CL.            | Rb.           | Solution.                    | Water. |  |
| I.2   | 4.80    | 4.53           | 3.63          | 12.97                        | 14.90  |  |
| 14.5  | 6.20    | 5.88           | 4.75          | 16.80                        | 20.19  |  |
| 41.4  | 9.34    | 8.86           | 7.14          | 25.31                        | 33.89  |  |
| 57.6  | 11.40   | 10.78          | 8.63          | 30.83                        | 44.58  |  |
| 103.9 | 17.14   | 16.37          | 13.39         | 46.62                        | 87.36  |  |

## CADMIUM (Tetra) RHUBIDIUM CHLORIDE CdCl2.4RbCl.

IN CONTACT WITH WATER. (Rimbach.)

The double salt decomposes to CdCl<sub>2</sub>.RbCl and RbCl.

| t°.   | 100 Gms. Solution contain Gms. |       |       | P  | Atomic Rel | Solid Phase,<br>Mol. per cent of: |                              |                               |
|-------|--------------------------------|-------|-------|----|------------|-----------------------------------|------------------------------|-------------------------------|
|       | Cd.                            | CI.   | Rb.   | cd | : Cl       | : Rb.                             | CdCl <sub>2</sub> .<br>RbCl. | CdCl <sub>2</sub> .<br>4RbCl. |
| 0.7   | 0.65                           | 6.52  | 14.73 | I  | 31.88      | 29.88                             | 30                           | 70                            |
| 8.8   | I.07                           | 7.37  | 16.13 | I  | 21.89      | 19.89                             | 24                           | 76                            |
| 13.8  | I.32                           | 7.86  | 16.93 | I  | 18.88      | 16.83                             | 16                           | 84                            |
| 42.4  | 3.21                           | 11.35 | 22.45 | I  | 11.21      | 9.21                              | 14                           | 86                            |
| 59.0  | 4.61                           | 13.41 | 25.31 | I  | 9.23       | 7.23                              | 33                           | 67                            |
| 108.4 | 8.94                           | 18.57 | 31.15 | I  | 6.57       | 4.59                              |                              |                               |

SOLUBILITY OF MIXTURES OF CdCl2.4RbCl and RbCl in Water. (Rimbach.)

| t°.  | 100 G | oo Gms. Solution contain Gms. |       |      | nic Rel | lation. | Solid Ph<br>Mol. per cer |       |
|------|-------|-------------------------------|-------|------|---------|---------|--------------------------|-------|
|      | Cd.   | C1.                           | Rb.   | Cd : | : Cl :  | Rb.     | CdCl2-4RbCl              | RbCl. |
| 0.4  | **    | 12.86                         | 30.97 |      | I       | I       | 55                       | 45    |
| 14.8 |       | 13.62                         | 32.81 |      | I       | 1       | 67                       | 33    |
| 17.9 |       | 14.0                          | 33.71 |      | I       | 1       | 80                       | 20    |

THE EFFECT OF THE PRESENCE OF HCl, CaCl<sub>2</sub> AND OF LiCl UPON THE DECOMPOSITION OF CADMIUM TETRA RHUBIDIUM CHLORIDE BY WATER AT 16°. (Rimbach — Ber. 38, 1570, '05.)

|           | oo Gms. | Solution co         | ntain Gm | s.    | Mols. per 100 Mols. H2O. Molecular Ratio. |       |                     |                   |         |
|-----------|---------|---------------------|----------|-------|-------------------------------------------|-------|---------------------|-------------------|---------|
| Total Cl. | CI.     | HCI.                | Cd.      | Rb.   | CdCl2.                                    | RbCl. | HCI.                | CdCl <sub>2</sub> | : RbCl. |
| 36.44     | 0.84    | 36.61               | 0.41     | I.39  | 0.100                                     | 0.483 | 29.76               | I                 | 4.43    |
| 28.45     | 0.80    | 28.44               | 0.35     | I.38  | 0.082                                     | 0.422 | 20.35               | I                 | 5.15    |
| 12.09     | 3.24    | 9.11                | 0.69     | 6.74  | 0.139                                     | 1.772 | 5.60                | I                 | 12.75   |
|           | Ca.     | CaCl <sub>2</sub> . |          |       |                                           |       | CaCl <sub>2</sub> . |                   |         |
| 14.98     | 7.56    | 20.91               | 0.73     | 2.80  | 0.159                                     | 0.799 | 4.59                | I                 | 5.04    |
| 12.70     | 5.77    | 15.96               | 0.77     | 4.87  | 0.163                                     | 1.353 | 3.41                | I                 | 8.31    |
| 10.85     | 3-78    | 14.47               | I.00     | 8.51  | 0.211                                     | 2.365 | 2.24                | I                 | II.22   |
| 9.08      | 1.84    | 5.10                | I.24     | 12.14 | 0.262                                     | 3.385 | 1.09                | I                 | 12.92   |
|           | Li.     | LiCL.               |          |       |                                           |       | LiCl.               |                   |         |
| 26.49     | 4.87    | 29.40               | 0.56     | 3.871 | 0.139                                     | 1.271 | 19.40               | I                 | 9.13    |
| 20.37     | 3.33    | 20.11               | 0.52     | 7.84  | 0.122                                     | 2.433 | 12.54               | I                 | 19.88   |
| See       | Note c  | n nevt              | nage     |       |                                           |       |                     |                   |         |

See Note on next page.

1

#### CADMIUM CHLORIDE 76

## CADMIUM (Mono) POTASSIUM CHLORIDE CdCl, KCl.H,O.

#### SOLUBILITY IN WATER.

(Rimbach - Ber. 30, 3079, '97; see also Croft - Phil. Mag. [3] 21, 356, '42.)

| <b>t*</b> .  | 100   | Gms. Solution | D          | Gms. CdCl <sub>2</sub> .KCl<br>per 100 Gms. |        |  |
|--------------|-------|---------------|------------|---------------------------------------------|--------|--|
|              | Ćd.   | Cl.           | <b>. .</b> | Solution.                                   | Water. |  |
| 2.6          | 9.53  | 9.03          | 3.31       | 21.87                                       | 27.99  |  |
| 15.9         | 11.63 | 10.98         | 3.99       | 26.60                                       | 36.24  |  |
| 41.5         | 15.47 | 14.73         | 5.45       | 35.66                                       | 55.34  |  |
| 60. <b>6</b> | 17.68 | 16.80         | 6.20       | 40.67                                       | 68.55  |  |
| 105 . 1      | 22.46 | 21.34         | 7 .87      | 51.67                                       | 106.91 |  |

## **CADMIUM** (Tetra) **POTASSIUM** CHLORIDE CdCl<sub>1.4</sub>KCl.

IN CONTACT WITH WATER.

(Rimbach.)

The double salt is decomposed when dissolved in water at ordinary temperature.

| <b>5°</b> . | 100 Grams Solution contain Gms. |       |       |  |  |  |  |
|-------------|---------------------------------|-------|-------|--|--|--|--|
| •           | Cd.                             | Cl.   | ĸ.    |  |  |  |  |
| 4           | 3.64                            | 9.84  | 8.31  |  |  |  |  |
| 23.6        | 5.66                            | 14.02 | 11.52 |  |  |  |  |
| 50.2        | 9.IO                            | 18.09 | 13.60 |  |  |  |  |
| 108.9       | 11.94                           | 23.11 | 17.16 |  |  |  |  |

NOTE. — The effect of the presence of certain chlorides upon the decomposition of cadmium tetra potassium chloride by water at 16° was investigated by Rimbach in a manner similar to that used in the case of cadmium tetra rhubidium chloride (see preceding page). The results, which show the extent to which increasing amounts of the several chlorides force back the decomposition of the double salt, were plotted on cross-section paper, and the points at which the decomposition was prevented, were determined by interpolation. These values which show the minimum amount of the added chlorides which must be present to insure the crystallization of the pure double salt are shown in the following table.

| Added<br>Chloride. | Mols.  | per 100 Mol | s. H <sub>2</sub> O. | Density of | Mols. per Liter of Solution. |          |                    |  |  |  |
|--------------------|--------|-------------|----------------------|------------|------------------------------|----------|--------------------|--|--|--|
|                    | CdCl2. | KCI.        | Added<br>Chloride.   | Solutions. | CdCl2.                       | KCI.     | Added<br>Chloride. |  |  |  |
| HCl                | 0.074  | o 296       | 19.80                | I . I 403  | 0.033                        | 0.132    | 8.828              |  |  |  |
| LiCl               | 0.344  | 1.376       | 9.30                 | 1.1380     | 0.166                        | 0.663    | 4 · 483            |  |  |  |
| CaCl               | 0.544  | 2.176       | 3.80                 | 1.2333     | 0.270                        | 1.808    | 1.887              |  |  |  |
| KCl                | I .034 | 6.514*      | 2.378                | 1.214      | 0 . 507                      | 3 . 195* | 1.167              |  |  |  |
| ♥ Total.           |        |             |                      |            |                              |          |                    |  |  |  |

## CADMIUM CYANIDE Cd(CN)2.

100 gms. H<sub>2</sub>O dissolve 1.7 gms. Cd(CN), at 15°.

(Joannis - Ann. chim. phys. [5] 26, 489, '82.)

## CADMIUM FLUORIDE CdF,

## SOLUBILITY IN WATER.

77

100 cc. saturated aqueous solution contain 4.36 gms. CdF, at \$5°. (Jager - Z. 2007, Chem. 27, 34, br.)

## CADMIUM HYDROXIDE Cd(OH),

SOLUBILITY IN WATER.

I liter of aqueous solution contains 0.0026 gm. Cd(OH), at 25°. (Bodlinder – Z. physik. Chem. 27, 66, '98.)

## CADMIUM IODIDE CdI,

SOLUBILITY IN WATER.

(Dietz - W. Abh. p. t. Reichanstalt 3, 433, '00; see also Kremers - Pogg. Ann. ro3, 57, '58; Eder - Dingl. polyt. J. 221, 189, '76; Etard - Ann. chim. phys. [7] 3, 536, '94.)

| <b>t*</b> . | Gms. Cdl <sub>2</sub> pe<br>Solution. | Water. | Mols. CdI2<br>per 100<br>Mols. H2O. | t*. | Gms. CdI <sub>2</sub> p<br>Solution. | er 100 Gms.<br>Water. | Mols. CdI2<br>per 100<br>Mols. H2O. |
|-------------|---------------------------------------|--------|-------------------------------------|-----|--------------------------------------|-----------------------|-------------------------------------|
| 0           | <b>44 · 4</b>                         | 79.8   | 3.9                                 | 30  | <b>47</b> · 3                        | 89.7                  | 4 - 43                              |
| IO          | 45·4                                  | 83.2   | <b>4</b> · I                        | 40  | 48.4                                 | 93.8                  | 4.6                                 |
| 15          | 45.8                                  | 84.5   | 4.17                                | 50  | 49.35                                | 97 .4                 | 4.8                                 |
| 15<br>18    | 46.02                                 | 85.2   | 4.2                                 | 75  | 52.65                                | 111.2                 | 5.4                                 |
| 20          | 46.3                                  | 86.2   | 4.26                                | 100 | 56.08                                | 127.6                 | ŏ.3                                 |
| 25          | 46.8                                  | 87.9   | 4.34                                |     | •                                    | •                     | •                                   |

Density of saturated solution at  $18^{\circ} = 1.590$ .

## SOLUBILITY OF CADMIUM IODIDE IN ORGANIC SOLVENTS.

| Solvent.         | <b>t°</b> . | Gms. CdI <sub>2</sub> per<br>100 Gms. |          | Observer.                                  |
|------------------|-------------|---------------------------------------|----------|--------------------------------------------|
|                  |             | Solution.                             | Solvent. |                                            |
| Absolute Alcohol | 15          | 50.5                                  | 102.0    | (Eder.)                                    |
| Ethyl Alcohol    | 20          | 42.6                                  | 74 - 27  | (Timofeiew Compt. rend. 112, 1924, '91.)   |
| Methyl Alcohol   | 20          | 59.0                                  | 143.7    | (Timofeiew Compt. rend. 112, 1224, '91.)   |
| Propyl Alcohol   | 20          | 28.9                                  | 40.67    | (Timofeiew - Compt. rend. 112, 1224, '91.) |
| Absolute Ether   | 15          | 21.7                                  | 27.7     | (Eder.)                                    |
| Absolute Acetone | 18          | 20.0                                  | 25.0     | (Naumann — Ber. 37, 4332, '04.)            |

## CADMIUM AMMONIUM IODIDES (Mono and Di).

SOLUBILITY IN WATER, ETC.

(Rimbach - Ber. 38, 1557, '05; at 15° Eder - Dingl. polyt. J. 221, 189, '76.)

|                            | An          | Cd. Mor<br>monium                                    |             | Cd. Di<br>Ammonium Iodide. |                         |                   |  |
|----------------------------|-------------|------------------------------------------------------|-------------|----------------------------|-------------------------|-------------------|--|
| Solvent.                   | <b>t*</b> . | Gms. CdI2.NH4I per<br>100 Gms.<br>Solution. Solvent. |             | <b>t°</b> .                | Gms. CdI <sub>2</sub> . | Gms.              |  |
| Water                      | 15          | Solution.<br>52.6                                    | Solvent.    | 14.5                       | Solution.<br>85.97      | Solvent.<br>611.6 |  |
| Abs. Alcohol<br>Abs. Ether | 15<br>15    | 53<br>29 · 4                                         | 113<br>41.7 | 15<br>15                   | 59<br>10                | 143<br>11         |  |

.

#### CADMIUM POTASSIUM IODIDES, Mono = CdI, KI.H,O, $Di = CdI_{3,2}KI_{2}H_{3}O_{2}$

## CADMIUM Di SODIUM IODIDE CdI2.2NaI.6H2O.

SOLUBILITY IN WATER, ETC., AT 15°.

(Eder.)

| Solvent.     | Gms. CdI <sub>2</sub> .KI<br>per 100 Gms. |          |           | dIg.2KI<br>o Gms. | Gms. CdI2.2NaI<br>per 100 Gms. |          |
|--------------|-------------------------------------------|----------|-----------|-------------------|--------------------------------|----------|
|              | Solution.                                 | Solvent. | Solution. | Solvent.          | Solution.                      | Solvent. |
| Water        | 51.5                                      | 106      | 57 .8     | 137               | бі.з                           | 158.8    |
| Abs. Alcohol | • • •                                     | •••      | 41.7      | 71                | 53·7                           | 116.2    |
| Abs. Ether   | • • •                                     | • • •    | 3.9       | <b>4</b> .I       | 9.0                            | 9.9      |

## CADMIUM NITRATE Cd(NO<sub>2</sub>)<sub>2</sub>.

#### SOLUBILITY IN WATER. (Funk - Wiss. Abh. p. t. Reichanstalt 3 440. '00.)

|          | (runk — | W 155. | ADB. | p. t. | Reichanstan | 3 | 440, | 00.) |  |
|----------|---------|--------|------|-------|-------------|---|------|------|--|
| <b>^</b> | CHANG N |        |      |       |             |   |      |      |  |

| <b>t °</b> . | gms. Cd(NO <sub>2</sub> ) <sub>2</sub><br>per 100 Gms. |        | Mols. Cd(NO <sub>3</sub> ) <sub>2</sub><br>per 100 Mols. H <sub>2</sub> O. | Solid<br>Phase.          |  |
|--------------|--------------------------------------------------------|--------|----------------------------------------------------------------------------|--------------------------|--|
|              | Solution.                                              | Water. | per 100 Mois. rigO.                                                        | Phase.                   |  |
| -13          | 37 . 37                                                | 59.67  | 4 · 55                                                                     | $Cd(NO_3)_2.9H_2O$       |  |
| — I          | 47.33                                                  | 89.86  | 6.85                                                                       | Ĩ.                       |  |
| + 1          | 52.73                                                  | 111.5  | 8.50                                                                       | "                        |  |
| 0            | 52.37                                                  | 109.7  | 8.37                                                                       | $Cd(NO_{3})_{2}.4H_{2}O$ |  |
| + 18         | 55.9                                                   | 126.8  | <b>9</b> .61                                                               | τι –                     |  |
| 30           | 58.4                                                   | 140.4  | 10.7                                                                       | "                        |  |
| 40           | бı . 42                                                | 159.2  | 12 . I                                                                     | "                        |  |
| 59·5         | 76 54                                                  | 326.3  | 25.0                                                                       | "                        |  |

Density of saturated solution at  $18^{\circ} = 1.776$ .

## CADMIUM OXALATE CdC<sub>2</sub>O<sub>4.3</sub>H<sub>2</sub>O.

1 liter of sat. aqueous solution contains 0.033 gm. CdC<sub>2</sub>O<sub>4</sub> at 18°. (Kohlrausch - Z. physik. Chem. 44, 197, '03.)

## CADMIUM SULPHATE CdSO,.

## SOLUBILITY IN WATER.

(Mylius and Funk — W. Abh. p. t. Reichanstalt 3, 444, '00; see also Kohnstamm and Cohn — Wied Ann. 65, 344, '98; Steinwehr — Ann. der Phys. (Drude) [4] 9, 1050, '02; Etard — Ann. chim. phys [7] 2 536, '04.)

| <b>t °</b> . | Gms. C<br>per 100<br>Solution. |               | Solid<br>Phase. | <b>t °</b> . | Gms.<br>per 100<br>Solution. | CdSO <sub>4</sub><br>Gms.<br>Water. | Solid<br>Phase. |
|--------------|--------------------------------|---------------|-----------------|--------------|------------------------------|-------------------------------------|-----------------|
| -17          | 44.5                           | 80.2          | CdSO4.7H2O      | 40           | 43.99                        | 7 <b>8</b> . 54                     | CdSO4.3H2O.     |
| - 10         | 46. I                          | 85.5          | "               | 60           | 44.99                        | 83.68                               | "               |
| - 5          | 48.5                           | 94.2          | "               | 73.5         | 46.6                         | 87.28                               | "               |
| - 18         | 43.35                          | 76.52         | CdSO4.3H2O      | 74.5         | 46.7                         | 87.62                               | CdSO4.H2O       |
| - 10         | 43.27                          | 76.28         | "               | 77           | 42.2                         | 73.02                               | "               |
| 0            | 43.01                          | 76.48         | "               | 85           | 39.6                         | 65.57                               | "               |
| + 10         | 43.18                          | 76.00         | "               | 90           | 38.7                         | 63.13                               | "               |
| 20           | 43·37                          | 76. <b>60</b> | "               | 100          | 37.8                         | 60.77                               | **              |

## SOLUBILITY OF CADMIUM SULPHATE IN AQUEOUS SOLUTIONS OF SUL-PHURIC ACID AT 0°.

| Equivalents per 10 Gms. H <sub>2</sub> O. |        | Density<br>of Solutions. | Grams per 100 Grams H <sub>2</sub> O. |         |  |  |
|-------------------------------------------|--------|--------------------------|---------------------------------------|---------|--|--|
| H <sub>2</sub> SO <sub>4</sub> .          | CdSO4. | of Solutions.            | H <sub>2</sub> SO <sub>4</sub> .      | CdSO4.  |  |  |
| ο.                                        | 71.6   | I.609                    | 0.00                                  | 74 · 61 |  |  |
| 3.87                                      | 70.9   | 1.591                    | I.90                                  | 73.87   |  |  |
| 12.6                                      | 62.4   | 1.545                    | 6.18                                  | 65.03   |  |  |
| <b>28</b> . I                             | 50.6   | 1.476                    | 13.78                                 | 52.73   |  |  |
| <b>43</b> · <b>3</b>                      | 40.8   | 1.435                    | 21.23                                 | 42.52   |  |  |
| 47.6                                      | 37.0   | 1.421                    | 23.34                                 | 38.56   |  |  |
| 53.8                                      | 32.7   | I . 407                  | 26.38                                 | 34.07   |  |  |
| 71.5                                      | 23.0   | I.379                    | 35.06                                 | 23.96   |  |  |

#### (Engel-Compt. rend. 104, 507, '87.)

## Solubility of Mixed Crystals of Cadmium Sulphate and Ferrous Sulphate in Water at 25°.

(Stortenbecker - Z. physik. Chem. 34, 109, '00.)

|                    | Mol. per cent Cd in     |               |                          |              |                             |
|--------------------|-------------------------|---------------|--------------------------|--------------|-----------------------------|
| Gms. per 100       | Gms. H <sub>2</sub> O.  | Mols. per 100 | Mols. per 100 Mols. H2O. |              | Crystals of<br>Solid Phase. |
| CdSO4.             | FeSO4.                  | Cd.           | Fe.                      | in Sol.      | Soud Failse.                |
| Crystals with 23 1 | dols. H <sub>2</sub> O. |               |                          |              |                             |
| 76.02              | 0.0                     | 6.57          | 0.0                      | 100          | 100                         |
| 57 . 61            | 10.63                   | 4.98          | 1.26                     | 79.8         | 99 · O                      |
| Crystals with 7 M  | ols. H <sub>2</sub> O.  |               |                          |              |                             |
| 57.61              | 10.63                   | 4 .98         | 1.26                     | 79.8         | 36.6                        |
|                    | • • •                   |               |                          | 78. <u>5</u> | 34.6                        |
| • • •              | • • •                   |               | • • •                    | 44.6         | II.I                        |
|                    | •••                     | • • •         | • • •                    | 24 · 4       | 4.8                         |
| 0.0                | 26.69                   | 0.0           | 3 . 165                  | 0.0          | 0.0                         |

## CADMIUM POTASSIUM SULPHATE CdK,(SO4),

## SOLUBILITY IN WATER.

(Wyrouboff - Bull. soc. chim. [3] 25, 121, '01.)

| t°. | G. CdK <sub>2</sub> (SO <sub>4</sub> ) <sub>2</sub> p<br>100 Gms. H <sub>2</sub> O. | er Solid<br>Phase.    | t°. p | G. CdK <sub>2</sub> (SO <sub>4</sub> )<br>er 100 Gms. H | )2 Solid<br>20. Phase.           |
|-----|-------------------------------------------------------------------------------------|-----------------------|-------|---------------------------------------------------------|----------------------------------|
| 16  | 42.89                                                                               | $CdK_2(SO_4)_2.2H_2O$ | 26    | 42.50                                                   | $CdK_2(SO_4)_2.1\frac{1}{2}H_2O$ |
| 31  | 46.82                                                                               |                       | 31    | 42 · 80                                                 |                                  |
| 40  | 47 40                                                                               | "                     | 40    | <b>43</b> · 45                                          | "                                |
|     |                                                                                     |                       | 64    | 44 . 90                                                 | "                                |

79

.

## 80

## CADMIUM BODIUM SULPHATE CdNa<sub>2</sub>(SO<sub>4</sub>)<sub>2.2</sub>H<sub>2</sub>O.

SOLUBILITY IN WATER, ALSO WITH THE ADDITION OF CADMIUM SUL-PHATE AND OF SODIUM SULPHATE.

(Koppel, Gumpery - Z. physik. Chem. 52, 413, 'o5.)

| <b>t°</b> . | Gms. per<br>Solu | 100 Gms.<br>tion.    | Gms. per<br>H <sub>2</sub> ( | 100 Gms.       | Mols. per<br>H | 100 Mola<br>0. | s.<br>Solid Phase.                                   |
|-------------|------------------|----------------------|------------------------------|----------------|----------------|----------------|------------------------------------------------------|
|             | CdSO4.           | Na <sub>2</sub> SO4. | CdSO4.                       | NasSO4.        | CdSO4.         | NasSO4.        |                                                      |
| 24          | 22.25            | 15.07                | 35 • 49                      | 24.04          | 3.07           | 3.05           |                                                      |
| 30          | 22.55            | 15.29                | 36.28                        | 24.60          | 3.14           | 3.12           | $CdNa_2(SO_4)_2.2H_2O$                               |
| 40          | 22.89            | 15.65                | 37 . 24                      | 25.45          | 3.22           | 3.28           |                                                      |
| 0           | 40.32            | 4.85                 | 73 · 54                      | 8.85           | 6.36           | I.12           |                                                      |
| IO          | 39.91            | 5.24                 | 72 · 77                      | <b>9 · 5</b> 5 | 6.30           | I.2I           | $CdNa_2(SO_4)_2.2H_2O$                               |
| 20          | 40.26            | 5.16                 | 73 . 81                      | 9 · 45         | 6.39           | I.20           | +CdSO <sub>1</sub> §H <sub>2</sub> O                 |
| 40          | 39.89            | 7 . 18               | 75.38                        | 13.56          | 6.52           | I.72           |                                                      |
| - 14.       | 8 40 . 18        | 4.60                 | 72.68                        | 8.32           | 6.29           | 1.05           |                                                      |
| 0           | 37 . 30          | 6.53                 | 66 . 32                      | 11.62          | 5.74           | I.47           | CdNa2(SO2)2.2H2O                                     |
| IO          | 32.53            | 8.69                 | 55·34                        | 14.78          | 4 · 79         | 1.84           | +Na <sub>2</sub> SO <sub>4</sub> .10H <sub>2</sub> O |
| 20          | 22.69            | 14.71                | 36.25                        | 23.52          | 3.14           | 2.98           | 1102004.101120                                       |
| 25          | 16.33            | 19.82                | 25.60                        | 31.06          | 2.21           | 3.94           |                                                      |
| 30          | 9.21             | 27.80                | 14.62                        | 44.14          | 1.26           | 4.59           | $CdNa_2(SO_4)_2.2H_2O$                               |
| 35          | 8.26             | 29.35                | 13.26                        | 47.06          | 1.15           | 5.96           | +Na <sub>s</sub> SO <sub>2</sub>                     |
| 40          | 9.98             | 28.27                | 16.24                        | 46.27          | I.4I           | 5.86           | 1 1102004                                            |

## CAESIUM ALUMS

SOLUBILITY OF CAESIUM CHROMIUM ALUM, CAESIUM IRON ALUM, CAESIUM INDIUM ALUM, AND OF CAESIUM VANADIUM ALUM IN WATER.

(Locke - Am. Ch. J. 27, 174, 'or.)

| Formula of Alum.                   | <b>t*</b> . | Gms. per 10<br>Anhydrous<br>Salt. | w cc. H <sub>2</sub> O.<br>Hydrated<br>Salt. | Gram Mols. Salt per<br>100 cc. H <sub>2</sub> O. |
|------------------------------------|-------------|-----------------------------------|----------------------------------------------|--------------------------------------------------|
| $Cs_2Cr_2(SO_4)_4.24H_2O$          | 25          | 0.57                              | 0.94                                         | 0.00151                                          |
|                                    | 30          | 0.96                              | I . 52                                       | 0.0025                                           |
| "                                  | 35          | 1.206                             | 1.91                                         | 0.0032                                           |
| **                                 | 40          | I . 53                            | 2.43                                         | 0.00405                                          |
| $Cs_Fe_2(SO_4)_4.24H_2O$           | 25          | 1.71                              | 2.72                                         | 0.0045                                           |
| "                                  | 30          | 2.52                              | 4.01                                         | o.0066                                           |
| "                                  | 35          | 3.75                              | 10. ð                                        | o.0099                                           |
| **                                 | 40          | 6.04                              | <b>9</b> .80                                 | 0.0156                                           |
| $Cs_2In_2(SO_4)_4.24H_2O$          | 25          | 7 · 57                            | 11.73                                        | 0.0172                                           |
| $Cs_{2}V_{3}(SO_{4})_{2}.24H_{2}O$ | 25          | 0.771                             | 1.31                                         | 0.00204                                          |

## CAESIUM CHLORAURATE CsAuCl.

## SOLUBILITY IN WATER. (Rosenbladt - Ber. 19, 2537, '86.)

| <b>\$</b> °. | Gans. CsAuCl <sub>s</sub><br>per 100 Gans.<br>Solution. | t°. | Gms. CsAuCle<br>per 100 Gms.<br>Solution. | <b>t°</b> . | Gms. CaAuCla<br>per 100 Gms.<br>Solution. |
|--------------|---------------------------------------------------------|-----|-------------------------------------------|-------------|-------------------------------------------|
| IO           | 0.5                                                     | 40  | 3.2                                       | 80          | 16.3                                      |
| 20           | o.8                                                     | 50  | 5.4                                       | 90          | 21.7                                      |
| 30           | I.7                                                     | 60  | 8.2                                       | 100         | 27.5                                      |
|              |                                                         | 70  | 12.0                                      |             |                                           |

## CAESIUM FLUOBORIDE CsBF1.

100 grams water dissolve 0.92 gram CsBFl, at 20°, and 0.04 gram at 100°. (Godefinor – Ber. 9, 1367, '76.)

## CAESIUM MERCURIC BROMIDE CsBr.2HgBr.

100 grams saturated aqueous solution contain 0.807 gram CsBr. 2HgBr, at 16°. (Wells - Am. J. Sci. (3) 44, 221, '92.)

## CAESIUM CARBONATE Cs,CO,.

100 grams absolute alcohol dissolve 11.1 grams Cs<sub>2</sub>CO at 19°, and 20.1 grams at b. pt. (Bunsen)

## CAESIUM CHLORIDE CsCl.

#### SOLUBILITY IN WATER.

(Berkeley - Trans. Roy. Soc. (Lond.) 203 A. 208, '04; see also Hinrichsen and Sachsel - Z. physik. Chem. 50, 99, '04-'05; at 25<sup>0</sup>, Foote.)

| <b>t °</b> . | G. CsCl pe<br>Solution. | Water.  | G. Mol. CsCl<br>per Liter. | <b>t°</b> . | G. CsCl pe<br>Solution. | Water.        | G. Mol. CsCl<br>per Liter. |
|--------------|-------------------------|---------|----------------------------|-------------|-------------------------|---------------|----------------------------|
| ο            | 61.7                    | 161.4   | 6.74                       | 60          | 69.7                    | 229.7         | 8.28                       |
| 10           | 63.6                    | 174.7   | 7.11                       | 70          | 70.6                    | 239.5         | 8.46                       |
| 20           | 65.1                    | 186 . 5 | 7.38                       | 80          | 71 · 4                  | 250.0         | 8.64                       |
| 30           | 66.4                    | 197.3   | 7.63                       | 90          | 72.2                    | 260.1         | 8.80                       |
| 40           | 67.5                    | 208.0   | 7 .86                      | 100         | 73.0                    | 270.5         | 8.96                       |
| 50           | 68.6                    | 218.5   | 8.07                       | 119.4       | 74·4                    | <b>290</b> .0 | 9.22                       |

SOLUBILITY OF MIXTURES OF CAESIUM CHLORIDE AND MERCURIC CHLORIDE IN WATER AT 25°.

| (Foole — Am. Ch. J. 30, 340, '03.) |  |
|------------------------------------|--|
|------------------------------------|--|

| Gms. per 100 Gms.   |                     |                                                         |                     | 100 Gms.            |                                      |  |
|---------------------|---------------------|---------------------------------------------------------|---------------------|---------------------|--------------------------------------|--|
| Solution.           |                     | Solid Phase.                                            | Solution.           |                     | Solid Phase.                         |  |
| CaCl <sub>2</sub> . | HgCl <sub>2</sub> . |                                                         | ĆsCl <sub>2</sub> . | HgCl <sub>2</sub> . |                                      |  |
| 65.61               | 0.0                 | CsCl                                                    | 38.63               | 1.32 )              |                                      |  |
| 65.78               | 0.215               | CsCl + CssHgCls                                         | 17.03               | 0.51                | Double Salt<br>CsllgCla = 38 3% CsCl |  |
| 62.36               | 0.32)               | Double Salt                                             | 1.53                | 0.42)               |                                      |  |
| 57.01               | 0.64 }              | CsaHgCla                                                | 0.61                | 2.64                | CsHg + (`sHgaCla                     |  |
| 52.35               | 1.23                | = 65.1% CaCl                                            | 0.49                | 2.91 (              | Double Salt                          |  |
| 51.08               | 1.44                | CsgHgCla + CsgHgCla                                     | 0.40                | 3.78 ≶              | $C_{sHg_{2}Cl_{6}} = 23.7\% C_{sCl}$ |  |
| 49.30               | 1.49 1              | Double Salt                                             | 0.14                | 4.63                | CaHgaCla + CaHgaCla                  |  |
| 45.95               | 1.69 \$             | CsgHgCl4 = 55.4%CsCl                                    | 0.41                | 4.68 <b>\</b>       | Double Salt                          |  |
| 45.23               | 1.73                | Cs <sub>2</sub> HgCl <sub>4</sub> + CsHgCl <sub>8</sub> | 0.25                | 5.65 \$             | $CsHg_sCl_{11} = 11.1\%C_sCl$        |  |
|                     |                     |                                                         | 0.18                | 7.09                | CaHgaCl11 + HgCl2                    |  |
|                     |                     |                                                         | 0.0                 | 6.90                | HgCla                                |  |

#### **CAESIUM CHLORTELLURATE** 82

## CAESIUM CHLORTELLURATE CsTeCl.

SOLUBILITY IN AQUEOUS HYDROCHLORIC ACID. (Wheeler - Am. J. Sci. [3] 45, 267, '93.)

100 parts HCl (Sp. Gr. 1.2) dissolve 0.05 part CsTeCl, at 22°. 100 parts HCl (Sp. Gr. 1.05) dissolve 0.78 part CsTeCl, at 22°.

## CAESIUM THALLIC CHLORIDE 3CsCl.TlCl, 2H,O.

100 parts H<sub>2</sub>O dissolve 2.76 parts 3CsCl.TlCl<sub>2</sub>.2H<sub>2</sub>O at 17°, and 33.3 parts at 100°. (Godeffroy - Z. Österr. Apoth. Ver. No. 9, 1886).

## CAESIUM IODATE CsIO.

100 parts H<sub>2</sub>O dissolve 2.6 parts CsIO<sub>2</sub> at 24°, and 2.5 parts 2CsIO<sub>3</sub>. I.O. at 21°. (Wheeler - Am. J. Sci. [3] 44, 123, '92.)

## CAESIUM IODIDE CsI.

SOLUBILITY OF MIXTURES OF CAESIUM IODIDE AND IODINE IN WATER. (Foote - Am. Ch. J. 29, 210, '03.)

| t°.<br>-4<br>-4<br>-4<br>-0.2 |                                                             | 20.<br>30. | 0<br>09<br>31                                                                      | <b>t°</b> .<br>35.6<br>35.6<br>35.6<br>35.6 |                                                   | 0.71<br>1.78                                                                       | CsI<br>CsI<br>CsI<br>CsI                                                                                                                 | d Phase at<br>th Temps.<br>and CsI <sub>3</sub><br>and CsI <sub>5</sub><br>and I |
|-------------------------------|-------------------------------------------------------------|------------|------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                               | t°.<br>52.2<br>52.2<br>52.2<br>52.2<br>73<br>73<br>73<br>73 | Gms. per   | 1.00 Gms.<br>tion.<br>1.<br>4.52<br>3.36<br>3.32<br>3.45<br>15.07<br>10.50<br>4.08 | In Sep<br>Gms. 1<br>C<br>22<br>22<br>22     | arated Heaper 100 Gr<br>sI.<br><br>.94<br><br>.56 | vy Solution<br>ns. Solution.<br>I.<br>73 · 72<br>74 · 63<br><br>68 · 40<br>80 · 02 | Solid<br>Phase<br>CsI <sub>3</sub> and<br>CsI <sub>6</sub> and<br>CsI <sub>5</sub><br>I<br>CsI <sub>3</sub> and<br>CsI <sub>5</sub><br>I | CsI.<br>I                                                                        |

#### CAESIUM (Tri) IODIDE CsI,

100 cc. saturated aqueous caesium iodide (about 17 per cent CsI) solution contain 0.97 gram CsI<sub>2</sub> at 20°, density of solution = 1.154. (Wells - Am. J. Sci. [3] 44, 221, '92.)

## CAESIUM NITRATE CsNO,

#### SOLUBILITY IN WATER. (Berkeley - Trans. Roy. Soc. (Lond ) 203 A, 213, '04.)

| ŧ°. | Gms. CsNO3 per (<br>100 Gms. |        | CsNO <sub>3</sub> t°. |       | Gms. Cs<br>100 ( |         | G. Mols CsNO <sub>2</sub><br>per Liter. |
|-----|------------------------------|--------|-----------------------|-------|------------------|---------|-----------------------------------------|
|     | Solution.                    | Water. | per Liter.            |       | Solution.        | Water.  | per Later.                              |
| 0   | 8.54                         | 9·33   | 0.476                 | 60    | 45.6             | 83.8    | 3.41                                    |
| 10  | 12.97                        | 14.9   | 0.725                 | 70    | 51.7             | 107.0   | <b>4</b> . IO                           |
| 20  | 18.7                         | 23.0   | I.II                  | 8o    | 57.3             | 134.0   | 4.81                                    |
| 30  | 25.3                         | 33.9   | 1 . 5 <b>8</b>        | 90    | 62.0             | 163 . o | 5 . 50                                  |
| 40  | 32.1                         | 47 . 2 | 2 . I 2               | 100   | 66.3             | 197.0   | 6.19                                    |
| 50  | 39.2                         | 64.4   | 2.73                  | 106.2 | 68.8             | 220.3   | 6.58                                    |

## CARSIUM CRALATE CALLEL.

Solvening of Ministers of Infestor Minister and Orally Acid in Vater at 25

**F**5

(Fore and Annes - An. 💷 🗦 34, 76, 76,

Varying amounts of the two substances were described in his water and the solutions allowed to cool in a thermistade held at egs.

| lines are less |             | L. Mon ne con<br>L. Mon Fig. |                      | Šoint<br>Taans                                                                                                                                                                                                                                                      |  |  |
|----------------|-------------|------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 50.9.4         |             | 119. 9.44                    |                      | - 1128                                                                                                                                                                                                                                                              |  |  |
| 15 25          |             | 2 27,4                       |                      | H_C_T_H_D                                                                                                                                                                                                                                                           |  |  |
| 15 25          | : 12        | 1 324                        | I I <u>I</u>         | Hill LE C. C. C. LE C. C. L. H. C. C. C. L. H. O                                                                                                                                                                                                                    |  |  |
| 7 50           | L 112       | I 1:14                       | 1 1:14               | Louine Salt.                                                                                                                                                                                                                                                        |  |  |
| 4 :::          | 25 22       | 1 31:2                       | z . <del>E</del> z 1 | H.C.S C.O H.O                                                                                                                                                                                                                                                       |  |  |
| 4 55           | 27, 55      | : 271                        | 1.01                 | H.C. C.O. H.O-H.C. C.O.                                                                                                                                                                                                                                             |  |  |
|                |             | : ::-                        |                      | Ivanine Set.                                                                                                                                                                                                                                                        |  |  |
| 4 40           | 15 V.       | : 277                        | 5 57 1               | H <sub>a</sub> Cia CaO <sub>a</sub> a                                                                                                                                                                                                                               |  |  |
|                | 4: ::       | : - : :                      | 3 -2                 | H <sub>4</sub> C <sub>2</sub> , C <sub>2</sub> O <sub>4</sub> , - HCaC <sub>2</sub> O <sub>4</sub>                                                                                                                                                                  |  |  |
| 4 45           | 4 34        | : :-:                        | 4 25 🖌               | Louisie Salt                                                                                                                                                                                                                                                        |  |  |
| 3 25           | <u>26 A</u> | : 25 <del>8</del>            | :::                  | HCsC.Û.                                                                                                                                                                                                                                                             |  |  |
| 1 54           | the trail   | : 1-:<br>: 21ê<br>: 18ê      | 22 <b>51</b>         | • •                                                                                                                                                                                                                                                                 |  |  |
|                |             | 5 545                        |                      | $HC=C_{2}O_{4}-H_{4}C_{2}C_{2}O_{4}$                                                                                                                                                                                                                                |  |  |
| ° ;;           | 73 45       | e șui                        | 14 31                | Derutar Salt.                                                                                                                                                                                                                                                       |  |  |
| C 75           | 74 54       | ວ ຊີຫລັ                      | 14 31                | H <sub>e</sub> Ci <sub>2</sub> C <sub>2</sub> O <sub>2</sub> -                                                                                                                                                                                                      |  |  |
| 0 74           | 75 25       | = fas                        | 15 13                | $\mathbf{H}_{\mathbf{C}}$ $\mathbf{C}_{\mathbf{v}}$ $\mathbf{C}_{\mathbf{v}}$ $\mathbf{C}_{\mathbf{v}}$ $\mathbf{C}_{\mathbf{v}}$ $\mathbf{C}_{\mathbf{v}}$ $\mathbf{C}_{\mathbf{v}}$ $\mathbf{C}_{\mathbf{v}}$ $\mathbf{H}_{\mathbf{v}}$ $\mathbf{O}_{\mathbf{v}}$ |  |  |
| CC             | 5 Å2        |                              | 15-97                | Cs <sub>i</sub> C <sub>i</sub> O <sub>a</sub> H <sub>i</sub> O                                                                                                                                                                                                      |  |  |

## CAESIUM PERMANGANATE (SM20,

#### OARSIUM SELENATE CS.SeO.

100 grams H<sub>2</sub>O dissulve 245 grams Cs<sub>2</sub>SeO, at 12<sup>2</sup>. (Tumm - J. Chem. Soc. 71, 895 be)

## CAESIUM SULPHATE Cs.S.D.

## SOLUBILITY IN WATER.

(Berkeley - Trans. R. 5. Soc. Lond. 203 A. 210, '04.)

| <b>t'</b> . | Gms. Ci <sub>9</sub> SO <sub>4</sub> per<br>100 Gms |        | G. Mals.<br>Csysi(), | <b>t°</b> . | Gms. CapSO <sub>6</sub> per<br>too Gms |         | G. Male<br>Capella |
|-------------|-----------------------------------------------------|--------|----------------------|-------------|----------------------------------------|---------|--------------------|
|             | Solution.                                           | Water. | per Liter.           |             | Saune.                                 | Water.  | per Later.         |
| ο           | 62.6                                                | 167.1  | 3.42                 | 60          | 66 . 7                                 | 1QQ - Q | 3.78               |
| IO          | 63.4                                                | 173.1  | 3.49                 | 70          | 07.2                                   | 205-0   | 3.83               |
| 20          | 64.1                                                | 178.7  | 3.56                 | 80          | 67.8                                   | 210.3   | 3.88               |
| 30          | 64.8                                                | 184.1  | 3.62                 | 90          | 68.3                                   | 214.9   | 3.92               |
| 40          | 65.5                                                | 189.9  | 3.68                 | 100         | 68.8                                   | 220.3   | 3.97               |
| 50          | 66.1                                                | 194.9  | 3.73                 | 108.6       | 69.2                                   | 224.5   | 4.00               |

SOLUBILITY OF CAESIUM DOUBLE SULPHATES IN WATER AT 25°. (Locke - Am. Ch. J. 27, 459, 'or.)

| Name.                      | Formula.         |           | Gms. Anhydrous Salt<br>per 100 Gms. |                                        |  |
|----------------------------|------------------|-----------|-------------------------------------|----------------------------------------|--|
|                            |                  | Solution. | Water.                              | Salt per 100<br>Gms. H <sub>2</sub> O. |  |
| Caesium Cadmium Sulphate   | Cs2Cd(SO4)2.6H2O | 58.16     | 139.9                               | 0.2455                                 |  |
| Caesium Cobalt Sulphate    | Cs2Co(SO4)2.6H2O | 29.52     | 41.9                                | 0.081                                  |  |
| Caesium Copper Sulphate    | CseCu(SO4)2.6H2O | 31.49     | 46.0                                | 0.0882                                 |  |
| Caesium Iron Sulphate      | Cs2Fe(SO4)2.6H2O | 50.29     | IOI.J                               | 0.1967                                 |  |
| Caesium Magnesium Sulphate |                  | 34.77     | 53.3                                | 0.1106                                 |  |
| Caesium Manganese Sulphate | Cs2Mn(SO4)2.6H2O | 44.58     | 80.4                                | 0.157                                  |  |
| Caesium Nickel Sulphate    | Cs2Ni(SO4)2.6H2O | 20.37     | 25.6                                | 0.0495                                 |  |
| Caesium Zinc Sulphate      | Cs2Zn(SO4)2.6H2O | 27.87     | 38.6                                | 0.0738                                 |  |

## CAFFEINE C,H(CH3)2N,O2.H2O.

SOLUBILITY IN SEVERAL SOLVENTS.

(U. S. P.; Göckel - J. Chem. Soc. 74, 327, '98; Commaille - Compt. rend. 81, 819, '75.)

Grams Caffeine per 100 Grams Solvent at:

| Solvent.          | 25°.     | 80°.          | 18°.      | b. pt.    | 15.170         | b. pt.   |
|-------------------|----------|---------------|-----------|-----------|----------------|----------|
|                   | 25 . U.S | S.P.          | Gốc       | kel.      | Comma          | uille.   |
| Water             | 2.19     | 19.23         |           |           | 1.311          | 45.51\$  |
| Alcohol           | 1.88     | 5.85*         |           |           | 0.6118         | 3.1218   |
| Ether             | 0.267    |               | 0.119     | 0.295     | 0.04418        | 0.36\$\$ |
| Chloroform        | 12.5     |               | 11.77     | 15.63     | 12.971         | 19.02    |
| Benzene           |          |               | 0.911     | 5.29      |                |          |
| Carbon Tetra      |          |               |           |           |                |          |
| Chloride          |          |               | 0.089     | 0.702     |                |          |
| Carbon Bisulphide |          |               |           | ***       | 0.0585\$       | 0.4541   |
| * 60°. † 65°.     | ‡ Gn     | ns. anhydrous | caffeine. | § Abs. al | cohol and abs. | ether.   |

## CALCIUM ACETATE Ca(CH3COO)2.2H2O.

## SOLUBILITY IN WATER.

(Lumsden - J. Chem. Soc. 81, 355, 'oz, Krasnicki - Monatsh. Chem. 8, 597, '87.)

| t°. | Gms. Ca(C<br>per 100<br>Solution. |      | Solid Phase.                                            | t°. | Solution. |      | Solid Phase,                                           |
|-----|-----------------------------------|------|---------------------------------------------------------|-----|-----------|------|--------------------------------------------------------|
| 0   | 27.2                              | 37.4 | Ca(CH3COO)2.2H2O                                        | 60  | 24.6      | 32.7 | Ca(CH3COO)2.2H2O                                       |
| IO  | 26.5                              | 36.0 | Ca(CH3COO)2.3H2O                                        | 80  | 25.I      | 33.5 | Ca(CH3COO)2.2H2O                                       |
| 20  | 25.8                              | 34.7 | Ca(CH <sub>3</sub> COO) <sub>2-2</sub> H <sub>2</sub> O | 84  | 25.3      | 33.8 | Ca(CH3COO)2.2H2O                                       |
| 25  | 25.5                              | 34.2 | Ca(CH <sub>3</sub> COO) <sub>2-2</sub> H <sub>2</sub> O | 85  | 24.7      | 32.9 | Ca(CH <sub>3</sub> COO) <sub>2</sub> .H <sub>2</sub> O |
| 30  | 25.3                              | 33.8 | Ca(CH <sub>3</sub> COO) <sub>2-2</sub> H <sub>2</sub> O | 90  | 23.7      | 31.1 | Ca(CH <sub>3</sub> COO) <sub>2</sub> .H <sub>2</sub> O |
| 40  | 24.9                              | 33.2 | $Ca(CH_3COO)_2.2H_2O$                                   | 100 | 22.9      | 29.7 | Ca(CH <sub>3</sub> COO) <sub>2</sub> .H <sub>2</sub> O |

SOLUBILITY OF CALCIUM ACETATE IN AN AQUEOUS SATURATED SOLUTION OF SUGAR AT 31.25°. (Köhler – Z. Ver. Zuckerind. 47, 447, '97.)

100 gms. solution contain 8.29 gms.  $Ca(CH_2COO)_2 + 60.12$  gms. sugar. 100 gms. water dissolve 26.3 gms.  $Ca(CH_3COO)_2 + 190.3$  gms sugar.

## GALGIUM (Tr) Nethyl AGETATE Ca[(CH<sub>4</sub>)<sub>2</sub>OCOO]<sub>5</sub> GALGIUM (Di Ethyl AGETATE Ca[(C<sub>2</sub>H<sub>4</sub>)<sub>2</sub>CHCOO]<sub>5</sub> GALGIUM Nethyl Ethyl AGETATE Ca[CH<sub>3</sub>(C<sub>3</sub>H<sub>4</sub>),CHCOO]<sub>5</sub> Solutbillitt of Each in Water. (Landa - Manch Chem. 14 - 17, 161; Kepth - Juit & an M. Sedikhi - Juit & 55, 37, 4

Ca. Tri Methyl Acetate. Ca. Di Ethyl Acetate. Ca. Methyl Ethyl.

85

|             |                     |                                        | Just Ca. Ca. C. R. C. R. C. S. C. R. Ca. Ca. Ca. Ca. Ca. Ca. Ca. Ca. Ca. Ca |  |  |
|-------------|---------------------|----------------------------------------|-----------------------------------------------------------------------------|--|--|
| <b>.</b> •. | Gans. Ca. CalleOals | Game. Ca. CollerO232<br>per 130 (1886. |                                                                             |  |  |
|             | Water. Solution.    | Water. Solution.                       | Water. Solution.                                                            |  |  |
| 0           | 7.30 6.81           | 30.3 23.22                             | 28.78 22.35                                                                 |  |  |
| IO          | 6.84 6.40           | 27.8 21.75                             | 31.71 24.07                                                                 |  |  |
| 20          | 6-54 6-14           | 25.6 20.38                             | 33.76 25.23                                                                 |  |  |
| 30          | 6.40 6.01           | 23.7 19.16                             | 34.92 25.89                                                                 |  |  |
| 40          | 6.44 6.05           | 22 J 18.10                             | 35.20 20.04                                                                 |  |  |
| 50          | 6.64 6.22           | 20.8 17.22                             | 34.00 25.71                                                                 |  |  |
| δo          | 6.86 6.42           | 19.9 16.60                             | 33.11 24.89                                                                 |  |  |
| 70          | 7.11 6.64           | 19.2 16.11                             | 30.74 23.41                                                                 |  |  |
| 80          | 7.38 6.87           | •••                                    | 27.49 21.50                                                                 |  |  |

**CALCIUM** Methyl Propyl **ACETATE** Ca[CH<sub>4</sub>(C<sub>3</sub>H<sub>7</sub>),CHCOO], **CALCIUM** (Di) Propyl **ACETATE** Ca[(C<sub>3</sub>H<sub>7</sub>)<sub>3</sub>CHCOO], **CALCIUM** (Iso) Butyl **ACETATE** Ca[(CH<sub>4</sub>)<sub>3</sub>CH(CH<sub>2</sub>)<sub>3</sub>COO], SOLUBULTY OF EACH IN WATER

SOLUBILITY OF EACH IN WATER. (Stiasmy - Monatsh. Chem. 12, 596. '91; Furth - Ibid. 9, 313. '88; König - Ibid. 15, 84, '94.) Ca. Methyl Propyl Acetate. Ca. Di Propyl Acetate. Ca. Iso Butyl Acetate.

|              |                                                                         |                                   | Acetate.                           |
|--------------|-------------------------------------------------------------------------|-----------------------------------|------------------------------------|
| <b>t °</b> . | Gms. Ca(CeH <sub>11</sub> O <sub>2</sub> ) <sub>2</sub><br>per 100 Gms. | Gms. Ca(CaHadOa)a<br>per 100 Gms. | Gms. Ca(CeH11(Og)g<br>per 100 Gms. |
|              | Water. Solution.                                                        | Water. Solution.                  | Water. Solution.                   |
| 0            | 16.58 14.22                                                             | 9.57 8.73                         | 7.48 6.96                          |
| 10           | 15.80 13.65                                                             | 8.35 7.71                         | 6.38 5.99                          |
| 20           | 15.14 13.15                                                             | 7.19 6.71                         | 5.66 5.36                          |
| 30           | 14.61 12.75                                                             | 6.11 5.77                         | 5.31 5.04                          |
| 40           | 14.21 12.45                                                             | 5.09 4.84                         | 5.31 5.04                          |
| 50           | 13.94 12.24                                                             | 4.14 3.98                         | 5.68 5.37                          |
| 60           | 13.79 12.13                                                             | 3.25 3.15                         | 6.41 6.02                          |
| 70           | 13.78 12.12                                                             | 2.44 2.38                         | 7.51 <b>6.98</b>                   |
| 80           | 13.89 12.20                                                             | 1.65 1.62                         | 8.97 8.23                          |
| 90           | ••••                                                                    | •••                               | 10.79 9.74                         |

## CALCIUM BROMIDE CaBr.

SOLUBILITY IN WATER.

(Kremers - Pogg. Ann. 103, 65, '58; Etard - Ann. chim. phys. [7] 2, 538, '04, gives results which yield an irregular curve and are evidently less accurate than those of Kremers.)

| t°.  | Gms. CaBr <sub>2</sub> per 100 Gms.<br>Water. Solution. | t°. Gi | ms. CaBry<br>Water. | per 100 Gms.<br>Solution. |
|------|---------------------------------------------------------|--------|---------------------|---------------------------|
| - 22 | IOI 50.5                                                | 34 . 2 | 185 IS              | 65                        |
| 0    | 125 55.5                                                | 40     | 213                 | 68.I                      |
| IO   | 132 57.0                                                | 60     | 278                 | 73.5                      |
| 20   | 143 58.8                                                | 80     | 295                 | 74.7                      |
| 25   | 153 60.5                                                | 105    | 312                 | 75 · 7                    |

Density of saturated solution at  $20^{\circ} = 1.82$ .

## **CALCIUM** (Normal) **BUTYRATE** Ca[CH<sub>2</sub>(CH<sub>2</sub>),COO]<sub>2</sub>.H<sub>2</sub>O.

## CALCIUM (Iso) BUTYRATE Ca[(CH<sub>1</sub>)<sub>2</sub>CH.COO]<sub>2.5</sub>H<sub>2</sub>O.

#### SOLUBILITY OF EACH IN WATER.

86

(Lumsden — J. Chem. Soc. 81, 355, 'o2; see also Chancel and Parmentier — Compt. rend. 104, 474. '87; Deszathy — Monatah. Chem. 14, 251, '93, and also Hecht — Liebig's Annalen 213, 73, '83, give results for the normal salt which are somewhat below those of Lumsden for the lower temperatures. Seditizki — Monatah. Chem. 8, 566, '87, gives slightly different results for the iso sait.)

#### Calcium Normal Butyrate.

Calcium Iso Butyrate.

| t •. | Gms. Ca(C <sub>4</sub><br>per 100<br>Water. Sol | Gms.  | <b>t °</b> . |   | Gms. Ca<br>per 10<br>Water. | (C <sub>4</sub> H <sub>7</sub> O <sub>2</sub> ) <sub>2</sub><br>o Gms.<br>Solution. |                     | Solid<br>Phase. |
|------|-------------------------------------------------|-------|--------------|---|-----------------------------|-------------------------------------------------------------------------------------|---------------------|-----------------|
| ο    | 20.3I I                                         | 16.89 | 0            |   | <b>20</b> . IO              | 16.78                                                                               | Ca(C <sub>4</sub> E | I,O,),.5H,O     |
| IO   | 19.15                                           | 16.08 | 20           |   | 22.40                       | 18.30                                                                               |                     |                 |
| 20   | 18.20                                           | 15.39 | 30           | ١ | 23.80                       | 19.23                                                                               |                     | "               |
| 25   | 17.72                                           | 15.05 | 40           |   | 25.28                       | 20.65                                                                               |                     | 66              |
| 30   | 17.25                                           | 14.71 | 60           |   | 28.40                       | 22.12                                                                               |                     | "               |
| 40   | 16.40                                           | 14.09 | 62           |   | 28.70                       | 22.30                                                                               |                     | "               |
| 60   | 15.15                                           | 13.16 | 65           |   | 28.25                       | 22.03                                                                               | Ca(C <sub>4</sub> I | H,O,),.H,O      |
| 80   |                                                 | 13.01 | 80           |   | 27.00                       | 21.26                                                                               |                     | <i>..</i> -     |
| 100  | 15.85                                           | 13.69 | 100          |   | 26.10                       | 20.69                                                                               |                     | "               |
|      |                                                 |       |              |   |                             |                                                                                     |                     |                 |

## OALOIUM CAPROATE Ca[CH,(CH,),COO],.H,O.

**CALCIUM** 3 Methyl **PENTANATE** Ca[CH<sub>3</sub>.CH<sub>3</sub>.CH(CH<sub>3</sub>)CH<sub>2</sub>. COO], 3H,O.

## CALCIUM CAPEYLATE Ca[CH<sub>2</sub>(CH<sub>2</sub>),COO]<sub>1</sub>.H<sub>2</sub>O.

SOLUBILITY OF EACH IN WATER.

(Lumsden; the Pentanate, Kulish — Monatsh. Chem. 14, 566, '03; see also Keppish — Ibid. 9, 594, '88, and Altschul — Ibid. 17, 571, '96, for results on the Caproate.)

| Ca. Caproate. |                                                       | Ca. 3 Methyl | Ca. Caprylate.                                   |                                                                                                           |
|---------------|-------------------------------------------------------|--------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| <b>t °</b> .  | Gms. $Ca(C_0H_{11}O_2)_2$<br>per 100 Gms.<br>$H_2O$ . |              | $(C_0H_{11}O_2)_2$<br>$\infty$ Gms.<br>Solution. | Gms. Ca(C <sub>6</sub> H <sub>15</sub> O <sub>2</sub> ) <sub>5</sub><br>per 100 Gms.<br>H <sub>2</sub> O. |
| o             | 2.23                                                  | 12.33        | 10.98                                            | 0.33                                                                                                      |
| 20            | 2.18                                                  | 17.18        | 14.66                                            | 0.31                                                                                                      |
| 40            | 2.15                                                  | 18.99        | 15.97                                            | 0.28                                                                                                      |
| 50            | 2.10                                                  | 18.73        | 15.78                                            | 0.26                                                                                                      |
| бо            | 2.15                                                  | 17.71        | 15.04                                            | 0.24                                                                                                      |
| 80            | 2.30                                                  | 13.37        | 11.80                                            | 0.32                                                                                                      |
| 100           | 2.57                                                  | 9.94         | 9.04                                             | 0.50                                                                                                      |

## CALCIUM CARBONATE CaCO,

.

SOLUBILITY IN WATER, AS DETERMINED BY THE ELECTROLYTIC CONDUCTIVITY METHOD. (Holleman, Kohlrausch, and Rose – Z. physik. Chem. 12, 120, 241, '03.)

(Holleman, Konirausch, and Kose – 2. physik. Chem. 12, 129, 241, 93.)

1 liter solution contains 0.01 gram CaCO<sub>3</sub> at 8.7°, and 0.012 gram at 20°.

## GALCIUM BICARDONATE CarHCO,J.

## SOLUBILITY IN WATER AT 15".

Calcium varionate in presence of water, free from and containing carbon formie, fissoives as the hydrogen carbonate.

Assume the investigations who have reported results upon the solutivity of microm mean sense have negative reported results upon the solutivity of microm mean sense have negative for the solution of the so

| C                                         | Partial Pres- | Gans per 100 m. hannanst hannas. |                     |          |  |
|-------------------------------------------|---------------|----------------------------------|---------------------|----------|--|
| Samue Phase<br>15' 1000 - 710 - 1000 - 11 | a nn. Ig.     | Ene Cha                          | Calification        |          |  |
| ž șe                                      | ÷- ;          | s :574                           | = 1 <del>3</del> 72 | ⊂ ⊂462   |  |
| f =1                                      | 47 }          | s sētg                           | = 1755              | C 24,23  |  |
| I 11                                      | 1:1           | : :577                           | = 1997              | = ==;4   |  |
| I :1                                      |               | = zułę                           | 5 IŞ <b>4</b> 5     | 5 53ÅC   |  |
| : 5;                                      | <b>14 4</b>   | = =347                           | : 151               | ত তথ্যক  |  |
| 1 71                                      | ::::          | : ::4:                           | s ::;;:             | T T 27   |  |
| : -,                                      | 1 1           | s 5:4ș                           | : II. <b>4</b> ,    | ာ ဘူးတစ် |  |
| : 4:                                      | ;:            | : ::;                            | : *::               | 0 0203   |  |
| = ==                                      | :;            | : :::;                           |                     | 5 5147   |  |
| : <b>:</b>                                | : :           |                                  | 5 5452              | ÷ 2095,  |  |
|                                           |               |                                  | a aigi              | ÷ 30,4   |  |

Therefore : from set solution at 15<sup>4</sup> and 5 partial pressure of 00, entrans 1 385 grant (a HUG).

## Soltement of Calcut Bicarboy ate in Aqueous Solute Celoride Solution at 15

#### Trades an Long.

The NaT solution contained about 5 grams per liter and was therefore approximately - normal

| and the second second | A attal Pre- | letane per un ti Saturane Souther |          |          |  |
|-----------------------|--------------|-----------------------------------|----------|----------|--|
|                       | sur J        | 1700 1 2                          | La BCine | 2        |  |
| 11 yr                 | ::è &        | <b>5</b> 3.5                      | : ::Ee   | 5.0530   |  |
| :: e-                 | <u>k</u> - : | :                                 | 5 2:23   | 5 55.29  |  |
| 4 <u>5</u> -          | <b>4</b> 1 I | 5 54 <u>55</u>                    | 5 1412   | 5 0308   |  |
| 3 22                  | 14 5         | 5 5 5                             | 5 2283   | 5 5292   |  |
| = 3=                  | 5 B          | 2 3.27                            | 2 27 32  | 5 5262   |  |
| 4:                    | 3.4          | 2 3003                            | 5 5495   | \$ \$222 |  |
|                       |              |                                   | C 2340   | s pobt   |  |
|                       | ••           |                                   | مۇرى ئ   | c ua62   |  |

#### CALCIUM BICARBONATE 88

SOLUBILITY OF CALCIUM BICARBONATE IN AQUEOUS SOLUTIONS OF AMMONIUM NITRATE, SODIUM CHLORIDE AND OF SODIUM SULPHATE. (Cameron and Seidell – J. Physic. Chem. 6, 50, '02; Berju and Kosminiko – Landw. Vers. Stat. 60, 422, '04.)

| In NH <sub>4</sub> NO | Da Solutions at 18°. | In NaCl   | Solutions at 25°.                    | In                        | Na <sub>2</sub> SO <sub>4</sub> Solutions | at 24°.    |
|-----------------------|----------------------|-----------|--------------------------------------|---------------------------|-------------------------------------------|------------|
| Grams per             | r Liter Solution.    | Grams per | Liter Solution.                      | Grams per Liter Solution. |                                           | ution.     |
| NHANO3.               | Ca(HCO2)2.           | NaCl.     | Ca(HCO <sub>3</sub> ) <sub>2</sub> . | NasSO4.                   | Ca(HCO3)2 total.                          | Ca(HCO3)2. |
| 0                     | 0.210                | 0         | 0.1046                               | 0                         | 0.092                                     | 0.092      |
| 5                     | 0.3 <b>40</b>        | 5         | 0.150                                | 5                         | 0.175                                     | 0.175      |
| IO                    | 0.415                | IO        | 0.180                                | IO                        | 0.232                                     | 0.220      |
| 20                    | 0.547                | 20        | 0.210                                | 20                        | 0.277                                     | 0.262      |
| 40                    | 0.744                | 40        | 0.225                                | 40                        | 0.332                                     | 0.307      |
| 80                    | 0.940                | 80        | 0.220                                | 80                        | 0.400                                     | 0.347      |
|                       |                      | 100       | 0.215                                | 100                       | 0.432                                     | 0.355      |
|                       |                      | 150       | 0.192                                | 150                       | 0.510                                     | 0.382      |
|                       |                      | 200       | 0.170                                | 200                       | 0.600                                     | 0.400      |
|                       |                      | 250       | 0.137                                | 250                       | 0.725                                     | 0.435      |

## CALCIUM CHLORATE Ca(ClO<sub>3</sub>)<sub>2</sub>.2H<sub>2</sub>O.

100 grams saturated aqueous solution contain 64.0 grams Ca(ClO<sub>1</sub>), at 18°. Density of solution is 1.729.

(Mylius and Funk - Ber. 30, 1718, '97.)

## CALCIUM CHLORIDE CaCl,

## SOLUBILITY IN WATER.

(Roozeboom — Z. physik. Chem. 4, 42, '80; see also Mulder; Ditte — Compt. rend. 92, 242, '81; Eng. — Ann. chim. physic. [6] 13, 381, '88; Etard — Ibid. [7] 2, 532, '94.)

| \$°. | Gms. CaCl <sub>2</sub> pe<br>roo Gms.<br>Water. Solution | Solid<br>Phase                             | t°.   |         | Cl <sub>2</sub> per<br>Gms. Solid<br>Solution.  |
|------|----------------------------------------------------------|--------------------------------------------|-------|---------|-------------------------------------------------|
| - 55 | 42.5 29.8                                                | Ice + CaCl <sub>2.6</sub> H <sub>2</sub> O | 60    | 136.8   | 57.8 CaCl2.2H2O                                 |
| -25  | 50.0 33.                                                 | CaCl <sub>2.6</sub> H <sub>2</sub> O       | 70    | 141.7   | 58.6 CaCl2.2H2O                                 |
| Ō    | 59.5 37.                                                 |                                            | 8o    | 147.0   | 59.5 CaCl <sub>2.2</sub> H <sub>2</sub> O       |
| IO   | 65.0 39.                                                 | CaCl2.6H2O                                 | 90    | 152.7   | 60.6 CaCl2.2H2O                                 |
| 20   |                                                          | CaCl <sub>2.6</sub> H <sub>2</sub> O       | 100   | 159.0   | 61.4 CaCl2.2H2O                                 |
| 30.2 | 102.7 50.                                                | CaCl2.6H2O                                 | I 20  | 173.0   | 63.4 CaCl2.2H2O                                 |
| 20   |                                                          | 6 CaCl2.4H2Oa                              | 140   | 191.0   | 65.6 CaCl2.2H2O                                 |
| 29.8 |                                                          | <b>4H₂O α + .6H₂O</b>                      | 160   | 222.5   | 69.0 CaCl2.2H2O                                 |
| 40   | 115.3 53.                                                | 4H2O a                                     | 170   | 255.0   | 71.8 CaCl2.2H2O                                 |
| 20   |                                                          | CaCl <sub>2-4</sub> H <sub>2</sub> Oβ      | 175.5 | 297.0   | $74.8$ $\{ CaCl_{2.2}H_{20}O + CaCl_{2.12}O \}$ |
| 29.2 | 112.8 53.0                                               | $\Delta H_{2}O\beta + \delta H_{2}O$       | 180   | 300 · O | 75.0 CaCl <sub>2</sub> H <sub>2</sub> O         |
| 35   | 122.5 55.0                                               | .⊿H <sub>8</sub> Oβ                        | 200   | 311.0   | 75.7 CaCl <sub>2</sub> H <sub>2</sub> O         |
| 38.4 | 127.5 56.0                                               | -4H2Oβ+CaCl2.2H2O                          | 235   | 332.0   | 76.8 CaCl <sub>2</sub> .H <sub>2</sub> O        |
| 45·3 | 130.2 56.                                                | 5 4H2O a + CaCl2.2H2O                      | 260   | 347.0   | 77.6 CaClg.H <sub>2</sub> O                     |

Density of saturated solution at  $0^\circ = 1.367$ , at  $15^\circ = 1.399$ , at  $18^\circ = 1.417$ .

SOLUBILITY OF CALCIUM CHLORIDE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID AT 0°. (Engel -- Compt. rend. 104. 434. 37.)

| G. Mols. in Mgs.<br>per 12 cc.<br>Solution. |       | Density of<br>Solutions. | Grams per<br>Solu | Grams per 100 cc.<br>Solution |  |  |
|---------------------------------------------|-------|--------------------------|-------------------|-------------------------------|--|--|
| C.C.                                        | HC    | 3000000                  | CaClp.            | BCI.                          |  |  |
| 92.7                                        | 0.0   | 1.367                    | 51.45             | 0.0                           |  |  |
| 83.7                                        | 9.I   | 1.344                    | 46 45             | 3.32                          |  |  |
| 77 . I                                      | 10.0  | 1.326                    | 42 80             | 5.83                          |  |  |
| 66.25                                       | 29.25 | 1.310                    | 36.77             | 10.66                         |  |  |
| 53-75                                       | 43-45 | ı . 283                  | 29.84             | 15.84                         |  |  |
| 36.25                                       | 63.5  | I - 250                  | 20 12             | 23.15                         |  |  |
| 20.3                                        | 95.0  | 1 - 238                  | II - 29           | 34.62                         |  |  |

#### SOLUBILITY OF MIXTURES OF CALCIUM CHLORIDE AND ALKALI CHLORIDES. (Mulder: Rüdorff.)

100 grams H<sub>4</sub>O dissolve 63.5 grams CaCl,  $\pm$  4.9 grams KCl at 7° (M) 100 grams H<sub>4</sub>O dissolve 57.6 grams CaCl,  $\pm$  2.4 grams NaCl at 4° (M) 100 grams H<sub>4</sub>O dissolve 59.5 grams CaCl,  $\pm$  4.6 grams NaCl at 7° (M) 100 grams H<sub>4</sub>O dissolve 72.6 grams CaCl,  $\pm$  16.0 grams NaCl at 15°(R)

SOLUBILITY OF CALCIUM CHLORIDE IN AQUEOUS ALCOHOL AT ROOM TEMPERATURE.

(Bödtker - Z. physik. Chem. 22, 570, '97.)

| Solution<br>Uned.                           | Vol.<br>per<br>cent<br>Alcobol. | Gms.<br>CaCla<br>per scc.<br>Sol. | Solution<br>Used.        | Vol.<br>per<br>cent<br>Alcohol. | Gms.<br>CaCle<br>per s cc.<br>Sol. |
|---------------------------------------------|---------------------------------|-----------------------------------|--------------------------|---------------------------------|------------------------------------|
| 15 Gms. CaCl <sub>2</sub> 6H <sub>2</sub> O |                                 |                                   | 15 Gms. CaCl_6H_0+20 cc. | :                               |                                    |
| + 20 cc. alcohol                            | 92.3                            | I.430                             | alcohol + 2 Gms. CaCl    | 99.3                            | 1.561                              |
| 15 Gms. CaCl <sub>2</sub> 6H <sub>2</sub> O |                                 |                                   | "+3" "                   |                                 | 1.500                              |
| + 20 cc. alcohol                            | 97.3                            | 1.400                             | " + <b>4</b> " <b>"</b>  | 44                              | 1.041                              |
| 15 Gms. CaCl <sub>2</sub> 6H <sub>2</sub> O |                                 |                                   | " + 5 " "                | 41                              | 1.709                              |
| + 20 cc. alcohol                            | 99.3                            | I.429                             | -                        |                                 |                                    |
| 15 Gms. CaCl <sub>2</sub> 6H <sub>2</sub> O |                                 |                                   |                          |                                 |                                    |
| + 1 Gm. CaCl <sub>2</sub>                   | 99 · 3                          | 1.529                             |                          |                                 |                                    |

SOLUBILITY OF CALCIUM CHLORIDE IN A SATURATED SOLUTION OF SUGAR AT 31.25°.

(Köhler - Z. Ver. Zucker.nd. 47, 447, '97.)

100 grams saturated solution contain 42.84 grams sugar + 25.25 grams CaCl<sub>2</sub>, or 100 grams water dissolve 135.1 grams sugar + 79.9 grams CaCl<sub>2</sub>.

## **CALCIUM CITRATE** $Ca_{2}(C_{4}H_{5}O_{7})_{2}.4H_{2}O.$

SOLUBILITY IN WATER AND IN ALCOHOL AT 18° AND AT 25°. (Partheil and Hübner - Archiv. Pharm. 241, 413, '03.)

| Solvent.                           | Grams Cag(CoHgO7)2-4H2O<br>per 100 Gms. Solvent at: |                |  |  |
|------------------------------------|-----------------------------------------------------|----------------|--|--|
|                                    | 18°.                                                | 25°.           |  |  |
| Water                              | o.08496                                             | 0. <b>0959</b> |  |  |
| Alcohol (Sp. Gr. $0.8092 = 95\%$ ) | 0.0065                                              | o. <b>0089</b> |  |  |

## CALCIUM CHROMATE

## CALCIUM CHROMATE CaCrO.

SOLUBILITY OF THE SEVERAL HYDRATES IN WATER. (Mylius and Wrochem — Wiss. Abh. p. t. Reichanstalt 3, 462, '00.)

00

| <b>t"</b> . | Gms. CaCrO4 J   | er 100 Gms. 1                         | Iols. CaCrO4      | , Gms | . CaCrO <sub>4</sub> p | er 100 Gms.             | Mols.CaCrO4<br>per 100 Mols. |
|-------------|-----------------|---------------------------------------|-------------------|-------|------------------------|-------------------------|------------------------------|
|             | Water.          | Solution.                             | H <sub>3</sub> O. | • • • | Water.                 | Solution.               | $H_2O$ .                     |
| S           | olid Phase, « C | aCrO4.2H3O. (                         | (Monoclinic.)     | Sc    | olid Phase,            | CaCrO4.H                | <b>0</b> .                   |
| 0           | 17.3            | 14.75                                 | 2.0               | 0     | 7.3                    | 6.8                     | o.84                         |
| 18          | 16.68           | 14.3                                  | 1.93              | 18    | 4.8                    | 4 · 4                   | 0.51                         |
| 20          | 16.6            | 14.22                                 | I.93              | 31    | 3.84                   | 3.7                     | 0.44                         |
| 30          | 16.5            | 13.89                                 | 1.85              | 38.5  | 2.67                   | 2.6                     | 0.31                         |
| 45          | 14.3            | 12.53                                 | 1.65              | 50    | 1.63                   | т.б                     | 0.19                         |
| Sol         | id Phase, β Ca  | CrO4.2H3O (R                          | hombic.)          | 60    | 1.13                   | I.I                     | 0.13                         |
| 0           | 10.9            | 9.8                                   | 1.25              | 100   | 0.81                   | o.8                     | 0.09                         |
| 18          | 11.5            | 10.3                                  | 1.33              |       | Solid Pha              | e, CaCrO <sub>4</sub> . | •                            |
| 40          | <b>11</b> .6    | IO · 4                                | 1.34              | 0     | 4.5                    | 4.3                     | 0.52                         |
|             | Solid Phase,    | CaCrO <sub>4</sub> .H <sub>2</sub> O. |                   | 18    | 2.32                   | 2.27                    | 0.27                         |
| 0           | 13.0            | II.5                                  | 1.50              | 31    | 2.92                   | I.89                    | 0.22                         |
| 18          | 10.6            | 9.6                                   | I.22              | 50    | I.I2                   | I.II                    | 0.13                         |
| 25          | IO.O            | 9 · I                                 | 1.15              | 60    | 0.83                   | 0.82                    | 0.11                         |
| 40          | 8.5             | 7.8                                   | o.98              | 70    | 0.80                   | 0.79                    | 0.09                         |
| 60          | 6.I             | 5.7                                   | 0.70              | 100   | 0.42                   | 0.42                    | 0.05                         |
| 75          | 4.8             | 4.6                                   | 0.56              |       |                        |                         | -                            |
| 100         | 3 - 2           | 3.1                                   | 0.37              |       |                        |                         |                              |

Densities of the saturated solutions of the above several hydrates at 18° are: a CaCrO<sub>4</sub>.2H<sub>2</sub>O, 1.149;  $\beta$  CaCrO<sub>4</sub>.2H<sub>2</sub>O, 1.105; CaCrO<sub>4</sub>.H<sub>2</sub>O, 1.096; CaCrO<sub>4</sub>.H<sub>2</sub>O, 1.044; CaCrO<sub>4</sub>, 1.023.

100 cc. 29% alcohol dissolve 1.206 grams CaCrO<sub>4</sub>. 100 cc. 53% alcohol dissolve 0.88 gram CaCrO<sub>4</sub>.

(Fresenius - Z. anal. Chem. 30, 672, '91.)

## CALCIUM POTASSIUM FERROCYANIDE CaK,Fe(CN).3H,O.

100 parts H<sub>2</sub>O dissolve 0.125 part salt at 15°, and 0.69 part at b. pt. (Kunheim and Zimmerman — Dingt. polyt. J. 252, 478, '84.)

#### CALCIUM FLUORIDE CaF,

1 liter of saturated aqueous solution contains 0.016 gram CaF, at 18°. Determined by the electrolytic method.

(Kohlrausch - Z. physik. Chem. 44, 197, '03.)

## CALCIUM FORMATE Ca(HCOO),.

SOLUBILITY IN WATER.

(Lumsden - J. Chem. Soc. 81, 355, '02; see also Krasnicki - Monatsh. Chem. 8, 597, '87.)

| <b>t*</b> . | Gms. Ca(HCOO) <sub>2</sub><br>per 100 Gms. |           | <b>t°</b> . | Gms. Ca(HCOO) <sub>2</sub><br>per 100 Gms. |           |  |
|-------------|--------------------------------------------|-----------|-------------|--------------------------------------------|-----------|--|
|             | Water.                                     | Solution. |             | Water.                                     | Solution. |  |
| 0           | 16.15                                      | 13.90     | 60          | 17.50                                      | 14.89     |  |
| 20          | 16.60                                      | 14.22     | 80          | 17.95                                      | 15.22     |  |
| 40          | 17.05                                      | 14.56     | 100         | 18.40                                      | 15.53     |  |

**CALCIUM HEPTOATE** (Oenanthate) Ca[CH<sub>2</sub>(CH<sub>2</sub>)<sub>2</sub>COO]<sub>2</sub>.H<sub>2</sub>O.

SOLUBILITY IN WATER.

91

(Lumsden - J. Chem. Soc. 81, 355, '02; see also Landau - Monatsh. Chem. 14, 712, '93; Aktschul --

|                             |                  |                   | •    |      |      |                    |
|-----------------------------|------------------|-------------------|------|------|------|--------------------|
| <b>t°</b> .                 | o <sup>e</sup> . | 20 <sup>0</sup> . | 40°. | 60°. | 80°. | 100 <sup>0</sup> . |
| G. $Ca(C_7H_{13}O_2)_2$ per |                  | -                 | -    | -    |      |                    |
| 100 gms. solution           | 0.94             | 0.85              | 0.81 | 0.81 | 0.97 | I . 24             |

## CALCIUM HYDROXIDE Ca(OH),

## SOLUBILITY IN WATER.

(Average curve from the results of Lamy — Ann. chim. phys. [5] 14, 145, '78; Mahen — Pharm. J. Trans [3] 14, 505, '83-84; Herzfeld — Z. Ver Zuckerind. 34, 820, '97, and Guthrie — J. Soc. Chem. Ind. 20, 224, '01.)

| t°. | Grams per 100 Grams H <sub>2</sub> O. |                 | <b>t°</b> . | Grams. per 100 Grams H <sub>2</sub> O. |                |  |
|-----|---------------------------------------|-----------------|-------------|----------------------------------------|----------------|--|
|     | Ca(OH)2.                              | CaO.            | 5           | Ca(OH)2.                               | CaO.           |  |
| ο   | 0 · 185                               | 0.140           | 50          | 0.128                                  | o. <b>o</b> 97 |  |
| IO  | 0.176                                 | 0.133           | 60          | 0.116                                  | o.o88          |  |
| 20  | 0.165                                 | 0.125           | 70          | 0.106                                  | o.o8o          |  |
| 25  | 0.159                                 | O . I 20        | 80          | 0.094                                  | 0.071          |  |
| 30  | 0.153                                 | 0.116           | 90          | 0.085                                  | 0.064          |  |
| 40  | 0.141                                 | <b>O</b> •. 107 | 100         | 0.077                                  | 0.058          |  |

## SOLUBILITY OF CALCIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF AMMONIUM CHLORIDE AT 25°.

(Noyes and Chapin - Z. physik. Chem. 28, 520, '99.)

| Millimols per Liter. |                       | Grams per Liter of Saturated Solution. |           |        |  |
|----------------------|-----------------------|----------------------------------------|-----------|--------|--|
| NH <sub>4</sub> Cl.  | Ca(OH) <sub>2</sub> . | NH <sub>4</sub> Cl.                    | Ca(OH)2 = | CaO.   |  |
| 0.00                 | 20.22                 | 0.00                                   | I . 50    | 1.13   |  |
| 21.76                | <b>29</b> .08         | 1.165                                  | 2.16      | 1.63   |  |
| 43 - 52              | 39.23                 | 2.330                                  | 2.91      | 2.20   |  |
| 83.07                | 59.68                 | 4 · 447                                | 4 . 42    | 3 · 45 |  |

#### SOLUBILITY OF CALCIUM HYDROXIDE IN AQUBOUS SOLUTIONS OF CALCIUM CHLORIDE.

(Zahorsky - Z. anorg. Chem. 3, 41, '93; Lunge - J. Soc. Chem. Ind. 11, 882, '92.)

| Concentration                              | Grams CaO Dissolved per 100 cc. Solvent at: |         |             |          |          |  |
|--------------------------------------------|---------------------------------------------|---------|-------------|----------|----------|--|
| Concentration<br>of CaCle Solutions, Wt.%. | 20°.                                        | 40°.    | 60°.        | 80°.     | 100°.    |  |
| 0                                          | 0.1374                                      | 0.1162  | 0 . 1026    | 0.0845   | o.o664   |  |
| 5                                          | 0.1370                                      | 0.1160  |             | 0.0936   |          |  |
| IO                                         | 0.1661                                      | 0.1419  | 0.1313      | 0 . 1328 | 0.1389   |  |
| 15                                         | 0.1993                                      | 0.1781  | 0.1706      | 0.1736   | 0 . 1842 |  |
| 20                                         | o.1857 <b>*</b>                             | 0.2249  | 0 . 2 2 0 4 | 0.2295   | 0.2325   |  |
| 25                                         | o.1661*                                     | 0.3020* |             | 0.3261   |          |  |
| 30                                         | 0 · 163 <b>0*</b>                           | o.3680* | o.3664      | 0.4122   | 0 . 4922 |  |

\*Indicates cases in which a precipitate of calcium oxychloride separated and thus removed some of the CaCl, from solution. The results in 0% CaCl, solutions, *i.e.*, in pure water, are high when

compared with the average results given above.

## GALCIUM HYDROXIDE 92

.

.

· .

## SOLUBILITY OF CALCIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE AND OF SODIUM CHLORIDE. (Cabot - J. Soc. Chem. Ind. 16, 417, '97.)

|                         | In KCl Solutions. |                        |                   | In NaCl Solutions. |                        |              |  |
|-------------------------|-------------------|------------------------|-------------------|--------------------|------------------------|--------------|--|
| Gms. of the<br>Chloride | Gms               | Gms. CaO per Liter at: |                   |                    | Gms. CaO per Liter at: |              |  |
| per Liter.              | o°.               | 15 <sup>0</sup> .      | 99 <sup>°</sup> . | ø.                 | 15°.                   | <b>9</b> 9°. |  |
| 0                       | 1.36              | 1.31                   | 0.635             | 1.36               | 1.31                   | 0.635        |  |
| 30                      | 1.701             | I.658                  | o.788             | 1.813              | 1.703                  | 0.969        |  |
| 60                      | 1.725             | 1.674                  | 0.876             |                    | τ.824                  | I.004        |  |
| I 20                    | 1.718             | 1.606                  | 0.894             | <b>1.86</b>        | I .722                 | 1.015        |  |
| 240                     | I.248             | I . 199                | 0.617             | I.37               | I.274                  | 0.771        |  |
| 320                     | •••               | •••                    | •••               | 1.054              | 0.929                  | 0.583        |  |

## Solubility of Lime in Aqueous Solutions of Sodium Chloride alone and containing Sodium Hydroxide.

(Margiet - Bull. soc. chim. [3] 33, 631, '05.)

| G. NaCl    | Gms. C           | aO per Liter            | of Solution.            | G. NaCl.   | Gms. CaO per Liter of Solution. |                         |                         |
|------------|------------------|-------------------------|-------------------------|------------|---------------------------------|-------------------------|-------------------------|
| per Liter. | Without<br>NaOH. | o.89.NaOH<br>per Liter. | 4.09.NaOH<br>per Liter. | per Liter. | Without<br>NaOH.                | o.89.NaOH<br>per Liter. | 4.09.NaOH<br>per Liter. |
| 0          | I.3              | o.8                     | 0.22                    | 150        | 1.65                            | I.25                    | o.44                    |
| 5          | 1.4              | 0.9                     | •••                     | 175        | 1.6                             | I . 2                   |                         |
| IO         | т.б              | Ι.Ο                     | • • •                   | 182        | 1.6                             | I . 2                   | • • •                   |
| 25         | I.7              | I.I                     | •••                     | 225        | I.4                             | I.O                     | •••                     |
| 50         | <b>1</b> .8      | I . 25                  | •••                     | 250        | 1.3                             | 0.9                     | • • •                   |
| 75         | 1.9              | I.4                     | 0.55                    | 300        | I.I                             | 0.7                     | 0.22                    |
| Ico        | 1.85             | I.4                     | •••                     | •••        | •••                             | •••                     | •••                     |

## Solubility of Calcium Hydroxide in Aqueous Solutions of Sodium Hydroxide.

| Concentra  | tion of NaOH:  | Gr      | ams CaO per Lite | er Sat. Solution a | t:    |
|------------|----------------|---------|------------------|--------------------|-------|
| Normality. | Gms. per Liter | 20°.    | 50°.             | 70°.               | 100°. |
| 0          | 0              | I . 170 | o.88o            | 0.75               | 0.54  |
| N/100      | 0.4            | 0.94    | 0.65             | 0.53               | 0.35  |
| N/25       | т.б            | 0.57    | 0.35             | 0.225              | 0.14  |
| N/15       | 2.66           | 0.39    | 0.20             | 0.11               | 0.05  |
| Ň/8        | 5.00           | 0.18    | o.o6             | 0.04               | 0.01  |
| N/5        | 8.00           | 0.11    | 0.02             | 0.01               | trace |
| N/2        | 20.00          | 0.02    | trace            | 0.00               | 0.00  |

(d'Anselme — Bull. soc. chim. [3] 29, 938, '03.)

For results upon mixtures of calcium hydroxide and alkali carbonates and hydroxides, see Bodländer — Z. angew. Chem. 18, 1138, '05.

.

SOLUBILITY OF CALCIUM HYDROXIDE IN AQUBOUS SOLUTIONS OF GLYCERINE AT 25<sup>5</sup>.

93

(Herr and Kanets — Z. snorp. Chem. 46, 705, 55; for older determinations, see Perthelot — Ann. chim. phys. 15, 49, 797; and Carlos — Arch. Phorm. 15, 4, 556, 76.)

| Density of<br>Solutions | V: per cett               | Milimak<br>JCa VH 2 per | Gaus per roe er Schution. |         |  |
|-------------------------|---------------------------|-------------------------|---------------------------|---------|--|
| Solutions               | Giventine<br>in Solution. | THE CLASSING            | C. OF                     | - carl. |  |
| 1.0003                  | 6 6                       | 4 3                     | C 1503                    | 0.1200  |  |
| I .C244                 | 7.15                      | Š 13                    | 0 3213                    | 0.2281  |  |
| 1.0537                  | ≈ 44                      | <b>14</b> Q             | C . 3522                  | C-41Š0  |  |
| 1.0542                  | 31.55                     | 22.5                    | C . Š. 30                 | 0.0313  |  |
| 1.1137                  | 40 .95                    | 40.I                    | I.4Š0                     | 1.125   |  |
| 1 1350                  | 4Š.7                      | 44 · O                  | 1.031                     | I 234   |  |
| I - 2072                | 69.2                      | 95.8                    | 3 - 550                   | 2.087   |  |

SOLUBILITY OF LIME IN AQUEOUS SOLUTIONS OF SUGAR. (Weindery - Bell son chim. 13 21, 175 (36))

The original results were plotted on cross-section paper and the following table constructed from the curves.

| 1st series, $t^{\circ} = 16' - 17^{\circ}$ . |          |                                        | 2d, series t° = 15°. |        |                                       |  |  |
|----------------------------------------------|----------|----------------------------------------|----------------------|--------|---------------------------------------|--|--|
|                                              | ine Gas. | G. Ca() per 100<br>Gres. Supar in Sol. | Gans. per            | TANK . | G Call per 100<br>Gras. Sucar in Sol. |  |  |
| Sugar.                                       | Ca0.     |                                        | Sugar.               | CaO.   |                                       |  |  |
| I                                            | 0.30     | 35.0                                   | I                    | 0.50   | 62.5                                  |  |  |
| 2                                            | 0.56     | 28.7                                   | 2                    | 0.75   | 30.0                                  |  |  |
| 3                                            | 0.85     | <b>28</b> .0                           | 3                    | I .02  | 32.5                                  |  |  |
| 4                                            | I.I2     | 27.7                                   | 4                    | I - 22 | 30.2                                  |  |  |
| 5<br>6                                       | I.40     | 27.5                                   | 5<br>6               | I-45   | 28.5                                  |  |  |
|                                              | 1.65     | 27 - 5                                 | -                    | 1.67   | 27.7                                  |  |  |
| 8                                            | 2.22     | 27.5                                   | 8                    | 2.22   | 27.5                                  |  |  |
| 10                                           | 2.77     | 27.5                                   | 10                   | 2.77   | 27.5                                  |  |  |
| 12                                           | 3.27     | 27.5                                   | 12                   | 3.27   | 27.5                                  |  |  |
| 14                                           | 3.85     | 27.5                                   | 14                   | 3.85   | 27.5                                  |  |  |

In the second series a very much larger excess of lime was used than in the first series. The author gives results in a subsequent paper, — Bull. soc. chim. [3] 23, 740, '00, — which show that the solubility is also affected by the condition of the calcium compound used, *i.e.*, whether the oxide, hydrate, or milk of lime is added to the sugar solutions.

## CALCIUM IODATE

#### 94

## **CALCIUM IODATE** Ca(IO,),.6H,O.

SOLUBILITY IN WATER. (Mylius and Funk — Ber. 30, 1724, '97; W. Abh. p. t. Reichanstalt 3, 448, '00.)

| <b>t °</b> . | Gms.<br>Ca(IO <sub>3</sub> ) <sub>2</sub><br>per 100<br>Gms. Sol. | Mols.<br>Ca(IO <sub>3</sub> ) <sub>2</sub><br>per 100<br>Mols. H <sub>2</sub> O. | Solid<br>Phase.               | t°. | Gms.<br>Ca(IO <sub>3</sub> ) <sub>2</sub><br>per 100<br>Gms. Sol. | Mols.<br>Ca(IO <sub>8</sub> ) <sub>2</sub><br>per 100<br>Mols. H <sub>2</sub> O | Solid<br>Phase.   |
|--------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------|-----|-------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------|
| 0            | 0.IO                                                              | 0.0044                                                                           | $Ca(IO_3)$ .6H <sub>2</sub> O | 21  | 0.37                                                              | 0.0IQ                                                                           | $Ca(IO_3)_2.H_2O$ |
| 10           | 0.17                                                              | 0.0075                                                                           | "                             | 35  | o.48                                                              | 0.021                                                                           | 7                 |
| 18           | 0.25                                                              | 0.0II                                                                            | "                             | 40  | 0.52                                                              | 0.023                                                                           | "                 |
| 30           | 0.42                                                              | 0.019                                                                            | "                             | 45  | 0.54                                                              | 0.024                                                                           | "                 |
| 40           | 0.61                                                              | 0.027                                                                            | "                             | 50  | 0.59                                                              | 0.026                                                                           | "                 |
| 50           | 0.89                                                              | 0.040                                                                            | "                             | 60  | 0.65                                                              | 0.029                                                                           | "                 |
| 54           | I.04                                                              | 0.046                                                                            | "                             | 80  | 0.79                                                              | 0.034                                                                           | "                 |
| бo           | 1.36                                                              | 0.063                                                                            | "                             | 100 | 0.94                                                              | 0.042                                                                           | "                 |
| т            | Joneity /                                                         | of solution                                                                      | n saturated at r              | 8°  | T 00                                                              |                                                                                 |                   |

Density of solution saturated at  $18^{\circ} = 1.00$ .

## CALCIUM IODIDE Cal,

#### SOLUBILITY IN WATER.

(Average curve from the results of Kremers - Pogg. Ann. 103, 65, '58; Etard - Ann. chim. phys. [7] 2, 532, '94.)

| <b>t °</b> . | Gms. Cal <sub>2</sub> per 100<br>Gms. Solution. | <b>t °</b> . | Gms. Cal <sub>2</sub> per 100<br>Gms. Solution. | t°. G | ns. Cal <sub>2</sub> per 10<br>Gms. Solution. | ø |
|--------------|-------------------------------------------------|--------------|-------------------------------------------------|-------|-----------------------------------------------|---|
| 0            | 64.6                                            | 30           | 69                                              | · 80  | 78                                            |   |
| 10           | 66.0                                            | 40           | 70.8                                            | 100   | Å1                                            |   |
| 20           | 67.6                                            | 60           | 74                                              |       |                                               |   |
| •.           | · · · ·                                         |              |                                                 |       |                                               |   |

Density of solution saturated at  $20^\circ = 2.125$ .

# **CALCIUM** (Neutral) **MALATE** $Ca(C_4H_4O_5)._3H_2O.$ **CALCIUM** (Acid) **MALATE** $Ca(C_4H_5O_5)._6H_2O.$ **CALCIUM MALONATE** $Ca(C_5H_2O_4)._4H_2O.$

SOLUBILITY OF EACH IN WATER.

(Iwig and Hecht - Liebig's Ann. 233, 167, '86; Cantoni and Basadonna - Bull. soc. chim. [3] 35, 731, '06; the malonate, Miczynski - Monatsh. Chem. 7, 261, '86.)

| Ca. Neutral Malate. |                           |                | late.                  | Ca. Acid Malate.       | Ca. Malonate.                                          |
|---------------------|---------------------------|----------------|------------------------|------------------------|--------------------------------------------------------|
|                     | Gms. C                    | $a(C_4H_4O_5)$ | per 100.               | Gms. $Ca(C_4H_5O_5)_2$ | Gms. Ca(C <sub>3</sub> H <sub>2</sub> O <sub>4</sub> ) |
| t°.                 | Gms.<br>H <sub>2</sub> O. | Gms.<br>Sol.   | cc. Sol.<br>(C and B). | Water. Solution.       | per 100<br>Gms. H <sub>2</sub> O.                      |
| 0                   | •••                       |                | • • •                  | ••• •••                | 0.290                                                  |
| 10                  | o.85                      | o .84          |                        | 1.8 I.77               | 0.330                                                  |
| 20                  | 0.82                      | 0.81           | <b>0</b> .907          | 1.5 1.48               | 0.365                                                  |
| 30                  | 0.78                      | 0.77           | o.835                  | 2.0 I.96               | o.396                                                  |
| 40                  | 0.74                      | 0.73           | 0.816                  | 5.2 4.94               | 0.422                                                  |
| 50                  | o.66                      | 0.65           | o.809                  | 15.0 13.09             | 0.443                                                  |
| 57                  | 0.57                      | 0.56           | · · ·                  | 32.24 24.29            | • • •                                                  |
| 60                  | 0.58                      | o.58           | o.804                  | <b>26.0 20.64</b>      | o 460                                                  |
| 70                  | 0.63                      | 0.63           | o.795                  | II.0 9.9I              | 0.472                                                  |
| 80                  | 0.71                      | 0.70           | 0.754                  | 6.8 6.37               | 0.479                                                  |
| 90                  |                           | • • •          | 0.7 <b>40</b>          | •••                    |                                                        |

SOLUBILITY OF CALCIUM MALATE IN WATER AND IN ALCOHOL. (Partheil and Hübner — Archiv. Pharm. 241, 413. '03.)

100 grams H<sub>2</sub>O dissolve 0.9214 gram CaC<sub>4</sub>H<sub>4</sub>O<sub>8</sub>.H<sub>2</sub>O at 18°, and o.8552 gram at 25°. 100 grams 95% alcohol dissolve 0.0049 gram CaC<sub>4</sub>H<sub>4</sub>O<sub>8</sub>.H<sub>2</sub>O at 18°,

and 0.00586 gram at 25°.

## CALCIUM MITRATE Ca NO1 - 2H2O.

SOLUBILITY IN WATER AT 18°. Mylins and Fank - Ser. 30, 1715. (cr.)

95

100 grams saturated solution contain 54.8 grams Ca(NO<sub>2</sub>), Density of solution. 1.548.

## CALCIUM OXALATE Ca COO), H.O.

SOLUBILITY IN WATER, BY ELECTROLYTIC CONDUCTIVITY METHOD.

(Holleman Kohrausch and Rose - Z. reysik. Chem. 12, 136, 141. 103; Richards. McCaffrey, and Bisber - Z. anarg. Chem. 26, 55. 11.

| <b>t*</b> . | Gens CaCeA, per<br>Later of Sociolog | <b>t</b> ". | Gens. CaCyO <sub>n</sub> per<br>Liter of Solution. |
|-------------|--------------------------------------|-------------|----------------------------------------------------|
| 13          | 0 0067 H                             | 25          | 0.0068 (R, McC and B)                              |
| 18          | o cc56 'K and R)                     | 50          | c.∞95 "                                            |
| 24          | o.coôo 'H                            | 95          | 0.0140 **                                          |

Solubility of Calcium Oxalate in Aqueous Solutions of Acetic Acid at  $26^2-27^2$ .

Herr and Muhs - Ber. 36, 3715. [03]

| Normality of<br>Acroc Acid. | G. CHyCOOH<br>per 130 cc. Sol. | Residue from 50.258<br>cc. Solution. |
|-----------------------------|--------------------------------|--------------------------------------|
| С                           | 0.00                           | 0.0017                               |
| c 58                        | 3.48                           | 0.0048                               |
| 2.59                        | 17 34                          | 0.0058                               |
| 5 79                        | 34-74                          | 0.0004                               |

The residues were dried at 70° C.

CALCIUM OXIDE. See Calcium Hydroxide, p. 91.

## **CALCIUM PHOSPHATE** (Tribasic) Ca,(PO,),

## SOLUBILITY IN WATER.

The determinations of the solubility of this salt in water, as stated in the literature, are found to vary within rather wide limits, due, no doubt, to the fact that so-called tribasic calcium phosphate is apparently a solid solution of the dibasic salt and calcium oxide, and therefore analyses of individual samples may show an excess of either lime or phosphoric acid. When placed in contact with water, more PO, ions enter solution than Ca ions, the resulting solution being acid in reaction and the solid phase richer in lime than it was, previous to being added to the water. For material having a composition approximating closely that represented by the formula  $Ca_1(PO_4)$ , the amount which is dissolved by CO, free water at the ordinary temperature, as calculated from the calcium determination, is 0.01 to 0.10 gram per liter, depending upon the conditions of the experiment. Water saturated with CO<sub>2</sub> dissolves 0.15 to 0.30 gram per liter.

A list of references to papers on this subject is given by Cameron and Hurst — J. Am. Chem. Soc. 26, 903, '04; see also Cameron and Bell, Ibid. 27, 1512, '05.

# **CALCIUM PHOSPHATE** (Dibasic) CaHPO4.2H3O.

90

SOLUBILITY IN WATER. (Cameron and Seidell – J. Am. Chem. Soc. 26, 1460, '04; see also Rindell – Compt. rend. 134, 112, '02; Magnanini – Gazz. chim. ital. 31, II, 544, '01.)

1 liter of CO, free water dissolves 0.136 gram CaHPO, at 25°.

1 liter of water sat. with CO, dissolves 0.561 gram CaHPO, at 25°.

SOLUBILITY OF DI CALCIUM PHOSPHATE AND OF MONO CALCIUM PHOS-PHATE IN AQUEOUS SOLUTIONS OF PHOSPHORIC ACID AT 25°. (Cameron and Seidell – J. Am. Chem. Soc. 27, 1508, '05; Causse – Compt. rend. 114, 414, '92.)

| (Cause              | ton and other                                               | J                  |                                                               | ,, e                                                                                 |                                             |
|---------------------|-------------------------------------------------------------|--------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------|
| Grams<br>Sc<br>CsO. | per Liter of<br>slution.<br>P <sub>2</sub> O <sub>8</sub> . | Gms<br>Calc. from  | , per Liter<br>n CaO Found.                                   | P <sub>2</sub> O <sub>5</sub> per Liter<br>in Excess of<br>that combined<br>with Ca. | Solid Phase.                                |
| 1.71                | 4.69                                                        | 4.15               | CaHPO                                                         | 2.53                                                                                 | CaHPO, 2H2O                                 |
| 11.57               | 36.14                                                       | 28.05              | "                                                             | 21.5                                                                                 | . "                                         |
| 23.31               | 75.95                                                       | 56.53              | 66                                                            | 46.45                                                                                | "                                           |
| 39.81               | 139.6                                                       | 97.01              | "                                                             | 89.0                                                                                 | "                                           |
| 49.76               | 191.0                                                       | 120.7              | "                                                             | 128.0                                                                                | "                                           |
| 59.40               | 234.6                                                       | 144.1              | "                                                             | 159.4                                                                                | "                                           |
| 70.31               | 279.7                                                       | 170.6              | **                                                            | 190.7                                                                                | "                                           |
| 77.00               | 317.0                                                       | { 174.2<br>{ 321.3 | CaHPO, or<br>CaH <sub>4</sub> (PO <sub>4</sub> ) <sub>2</sub> | 226.0<br>122.2                                                                       | $CaHPO_{1,2}H_{2}O + CaH_{4}(PO)_{2}H_{2}O$ |
| 72.30               | 351.9                                                       | 301.6              | $CaH_{4}(PO_{4})_{2}$                                         | 169.0                                                                                | $CaH_{4}(PO_{4})$ , $H_{2}O$                |
| 69.33               | 361.1                                                       | 289.3              | - "                                                           | 186.1                                                                                |                                             |
| 59.98               | 419.7                                                       | 250.2              | "                                                             | 267.9                                                                                | "                                           |
| 53.59               | 451.7                                                       | 223.7              | ""                                                            | 316.1                                                                                | "                                           |
| 44.52               | 505.8                                                       | 185.8              | "                                                             | 393.1                                                                                | "                                           |
| 39.89               | 538.3                                                       | 166.4              | 66                                                            | 437 . 4                                                                              | "                                           |
|                     | •. •                                                        |                    |                                                               |                                                                                      |                                             |

Density of the solution in contact with both salts at  $25^{\circ} = 1.20$ .

SOLUBILITY OF DI CALCIUM PHOSPHATE IN AQUEOUS N/200 SOLUTION OF ACID POTASSIUM TARTRATE AT 25°. (Magnanini.)

1 liter of the solution contains 0.08 gram Ca = 0.235 gram  $CaHPO_4$ .

# **CALCIUM PHOSPHATE** (Monobasic) CaH<sub>4</sub>(PO<sub>4</sub>)<sub>2</sub>, H<sub>2</sub>O.

•

# SOLUBILITY IN WATER.

This salt is stable in contact with the aqueous solution only when there is present free phosphoric acid to the extent indicated by the above table.

**CALCIUM PELARGONATE** (Nonate) Ca[CH<sub>3</sub>(CH<sub>2</sub>),COO],H<sub>3</sub>O. CALCIUM PROPIONATE Ca(CH<sub>2</sub>.CH<sub>2</sub>COO)<sub>2</sub>.H<sub>2</sub>O.

SOLUBILITY OF EACH IN WATER.

| (Lumsden -           | - J. Chem. Soc. 81, 355, '02;                                                                           | Krasnicki — Monatsh.                      | Chem. 8, 597, '87.)    |  |  |
|----------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------|--|--|
| Calcium Pelargonate. |                                                                                                         | Calcium I                                 | Calcium Propionate.    |  |  |
| t°.                  | Grams<br>CelCH-(CH-)-COOb                                                                               | Grams Ca(CH <sub>3</sub> .CH <sub>3</sub> | COO)2 per 100 Grams.   |  |  |
| . • •                | Ca[CH <sub>3</sub> (CH <sub>2</sub> ) <sub>7</sub> COO] <sub>2</sub><br>per 100 Grams H <sub>2</sub> O. | Water.                                    | Solution.              |  |  |
| 0                    | 0.16                                                                                                    | 42.80                                     | 29.97                  |  |  |
| 20                   | 0.14                                                                                                    | 39.85                                     | <b>28</b> . <b>4</b> 8 |  |  |
| 40                   | 0.13                                                                                                    | 38.45                                     | <b>27</b> . 76         |  |  |
| 60                   | 0.12                                                                                                    | 38.25                                     | 27.67                  |  |  |
| 8o                   | 0.15                                                                                                    | 39.85                                     | 28.48                  |  |  |
| 90                   | 0.18                                                                                                    | 42.15                                     | <b>29</b> .66          |  |  |
| 100                  | <b>o</b> .26                                                                                            | 48.44                                     | 32.63                  |  |  |

# CALCIUM SELENATE CaSeO.

# SOLUBILITY IN WATER.

(Etard - Ann. chim. phys. [7] 2, 532, '94.)

97

t°. - 1°. + s°. 20<sup>0</sup>. 370. 670. Gms. per 100 gms. sol. 7.4 7.3 7.6 6.8 5.1 . The accuracy of these results appears questionable.

# **GALOIUM SILICATE** CaSiO,.

.

SOLUBILITY IN WATER AND IN AQUEOUS SUGAR SOLUTIONS AT 17". (Weisberg - Bull. soc. chim. [3] 15, 1097, '96.)

The sample of calcium silicate was air dried.

|                | Grams per 100 cc. Saturated Solution. |               |                                 |               |  |  |  |
|----------------|---------------------------------------|---------------|---------------------------------|---------------|--|--|--|
| Solvent.       | A                                     | t_17°.        | After Boiling and Filtering Hot |               |  |  |  |
|                | CaO(det.)                             | CaSiOg(calc.) | CaO(det.)                       | CaSiOs(cale.) |  |  |  |
| Water          | o.0046                                | 0.0095        |                                 |               |  |  |  |
| 10% sugar sol. | 0.0065                                | 0.0135        | o.0094                          | 0.0195        |  |  |  |
| 20% sugar sol. | o.0076                                | 0.0157        | 0.0120                          | 0.0249        |  |  |  |

# **CALCIUM SUCCINATE** Ca(C<sub>3</sub>H<sub>3</sub>O<sub>3</sub>)<sub>2</sub>.

# CALCIUM (Iso) SUCCINATE CaCH, CHC, O, H,O.

SOLUBILITY OF EACH IN WATER.

(Miczynski - Monatsh. Chem. 7, 261, '%).)

| Calcium Succinate. |                                             |     | Calcium Iso Succinate.                                                                                       |               |                                                                                                               |             |                                                 |
|--------------------|---------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------|
| <b>t *</b> .       | Gms.<br>Ca(CgHgO2)2<br>per 100 Gms.<br>HgO. | t°. | Gms.<br>Ca/C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> ) <sub>3</sub><br>per 100 Gms.<br>H <sub>2</sub> (). | <b>t*</b> . ' | (jms.<br>Ca(C <sub>2</sub> H <sub>2</sub> t <sub>2</sub> ) <sub>2</sub><br>yet 100 (jma.<br>H <sub>2</sub> () | <b>6*</b> . | Cinna<br>Callid Jujy<br>per 100 Cinna,<br>flyt) |
| 0                  | I.127                                       | 50  | I .0 <b>29</b>                                                                                               | 0             | 0 522                                                                                                         | 50          | () ANI                                          |
| IO                 | I . 220                                     | 60  | 0.894                                                                                                        | 10            | 0 524                                                                                                         | (xs         | 1, 31/1                                         |
| 20                 | 1 - 276                                     | 70  | 0.770                                                                                                        | 20            | \$ 517                                                                                                        | 71,         | 1 342                                           |
| 40                 | 1.177                                       | 80  | 0.657                                                                                                        | 40            | o 475                                                                                                         | ×.,         | 1, 2719                                         |

100 cc. HrO dissolve 1.424 grams succinate (CaC, Hr(), H()) at 184, and 1.436 grams at 25<sup>3</sup>. 100 cc. 95<sup>3</sup>; aloshoi dissolve a cor36 gram suzinate (1 al 11/1,

H.O. at 15, and 0.00136 gram at 25%

Paran and Manner horsen Manner 141, 414 144,

# CALCIUM SULPHATE (200, 284)

#### Summer of the Works

Heiser and Alex - . An Chem is 24 to a site electronic is the determined on the determined on the determined and the same the same the site of a site of the second of the determined and the second of the state of the second of

| <b>t *</b> . | Const Calles<br>1975 - 1975 -<br>Summers | Villimose<br>Yr Carr | ۶- ۲۰۱۰ میلامیسیم<br>سالای المالان | ۴.   | and allow   | بالازیندال<br>مرده زیرم | Срадина у А.<br>Дорогодин |
|--------------|------------------------------------------|----------------------|------------------------------------|------|-------------|-------------------------|---------------------------|
|              | 5 : - : ; ;                              | : z : ;t.            | : 11:15.                           | 4.   | 1. 415,     | 19 419                  | 1. 11.8.11                |
| IS           | 5 : 5:1Å                                 | · . · · ·            | 2 11.20                            |      | 1. 1111,    | 14 14:                  | 1. 19.11.                 |
| 1÷           | : z.: .                                  | : 6 3:-              | : 111:                             | 4.4  | 1. 1. 1.1.1 | \$ 111                  | 1. 19.1.1.                |
| 25           | : E.M.                                   | 1. 191               | 1. 11.                             |      | 1. 1.6      |                         | 1. 4.111                  |
| 30           | : ::se.                                  |                      | · · · /; · · /,                    | :11. | 1. Asing    | 111                     |                           |
| 1:           | ", <i>"25\$</i> ,                        | · · · ·              | 1. 15.41                           | 200  |             | 1: J.                   |                           |

# CALCIUM SULPHATE

98

SOLUBILITY OF CALCIUM SULPHATE IN AQUEOUS SOLUTIONS OF HYDRO-CHLORIC, NITRIC, CHLOR ACETIC, AND FORMIC ACIDS. (Banthisch - J. pr. Chem. 29, 52, '84; Lunge - J. Soc. Chem. Ind. 4, 32, '85.)

| I                                      | n Hydi                    | rochloric.                                                | In Nitric. In                                             | n Chlor Aceti                             | c. In Formic.                                                      |
|----------------------------------------|---------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------|
| Grams Acid<br>per 100 cc.<br>Solution. | Grams<br>100 c<br>at 25°. | CaSO <sub>4</sub> per<br>c. Sol.<br>at 102 <sup>0</sup> . | Gms. CaSO <sub>4</sub> per<br>100 cc. Solution<br>at 25°. | Gms. CaSO, per<br>100 cc. Sol.<br>at 25°. | Gms. CaSO <sub>4</sub> per<br>100 cc. Sol.<br>at 25 <sup>0</sup> . |
| 0                                      | 0.208                     | 0.160                                                     | 0.208                                                     | 0.208                                     | 0.208                                                              |
| I                                      | 0.72                      | 1.38                                                      | o.56                                                      | •••                                       | •••                                                                |
| 2                                      | I .02                     | 2.38                                                      | o.82                                                      | •••                                       | • • •                                                              |
| 3                                      | I.25                      | 3.20                                                      | I .02                                                     | • • •                                     | • • •                                                              |
| 4                                      | I.42                      | 3.64                                                      | I . 20                                                    | 0.22                                      | 0.24                                                               |
| 6                                      | 1.65                      | 4.65                                                      | 1.48                                                      | •••                                       | • • •                                                              |
| 8                                      | 1.74                      |                                                           | I.70                                                      | •••                                       | • • •                                                              |
| 10                                     |                           | •••                                                       | I.84                                                      | 0.25                                      | •••                                                                |
| 12                                     | •••                       | •••                                                       | 1.98                                                      |                                           | •••                                                                |

# SOLUBILITY OF CALCIUM SULPHATE IN AQUEOUS SOLUTIONS OF PHOS-PHORIC ACID AT 25°. (Taber — page 61, Bull. 33, Bureau of Soils — U. S. Dept. Agr., 1906.)

| Gms.                            | per Liter. | Sp. Gr. of<br>Solutions at ##. | Gms. p | er Liter. | Sp. Gr. of                             |
|---------------------------------|------------|--------------------------------|--------|-----------|----------------------------------------|
| P <sub>2</sub> O <sub>4</sub> . | CaSO4.     | Solutions at ##.               | P2O5.  | CaSO4.    | Sp. Gr. of<br>Solutions at <b>##</b> . |
| 0.0                             | 2 . 1 26   | 0.9991                         | 145.1  | 7.920     | 1.106                                  |
| 5.0                             | 3.143      | I.002                          | 205.0  | 8.383     | I.145                                  |
| 10.5                            | 3 · 734    | I.007                          | 311.5  | 7.965     | I.22I                                  |
| 21.4                            | 4.456      | 010. I                         | 395.8  | 6.848     | I . 280                                |
| 46.3                            | 5.760      | I.035                          | 494.6  | 5.572     | I.344                                  |
| 105.3                           | 7.318      | 1.075                          |        |           | -                                      |

# SOLUBILITY OF CALCIUM SULPHATE IN AQUEOUS SOLUTIONS OF SUL-PHURIC ACID.

(Cameron and Breazeale - J. Physic. Chem. 7, 574, '03.)

| Grams H <sub>2</sub> SO <sub>4</sub><br>per Liter of<br>Solution. | Resu<br>Gms. CaSO <sub>4</sub><br>per Liter. | Wt. of 1 cc.<br>Sol.         | Results at 35°.<br>Gms. CaSO4<br>per Liter. | Results at 43°.<br>Gms. CaSO <sub>4</sub><br>per Liter. |
|-------------------------------------------------------------------|----------------------------------------------|------------------------------|---------------------------------------------|---------------------------------------------------------|
| 0.00                                                              | 2.126                                        | 0.9991 grams                 | •••                                         | 2.145                                                   |
| o.48<br>4.87                                                      | 2 . 128<br>2 . 144                           | 1.0025 "<br>1.0026 "         | 2.209<br>2.451                              | 2.236<br>2.456                                          |
| 8.11<br>16.22                                                     | 2 · 203<br>2 · 382                           | 1.0051 "<br>1.0098 "         |                                             | 2.760<br>3.116                                          |
| 48.67                                                             | 2.727                                        | 1.0302 "                     | 3 · 397                                     | 3.843                                                   |
| 75.00<br>97.35                                                    | 2.841<br>2.779                               | 1.0435 "<br>1.075 <b>6</b> " | 3.606                                       | 4.146                                                   |
| 146.01                                                            | 2.571                                        |                              | 3 . 1 50                                    | 4.139                                                   |
| 194 · 70<br>243 · 35                                              | 2.313<br>1.901                               | 1.1134 "<br>1.1418 "         | •••                                         | 3 · 551<br>2 · 959                                      |
| 292.02                                                            | 1.541                                        | 1.1681 "                     |                                             | 2.481                                                   |

|                                         | LENELC                              | ENENO,                         |                                        | ENHC                             | I= NH,NO                             |
|-----------------------------------------|-------------------------------------|--------------------------------|----------------------------------------|----------------------------------|--------------------------------------|
|                                         | at 253.                             | 32 253                         |                                        | <b>3</b> 7 25 <sup>2</sup> .     | at 25".                              |
| Gans. Annua-<br>nium Suit<br>per Later. | G Castly<br>Descrived<br>per Later. | Lista<br>Listaret<br>per Listr | Sans. Lanno-<br>anum Sult<br>2017 Lann | i Cusia<br>Descoved<br>per Later | G. Castly<br>Descrived<br>per Later. |
| a                                       | 2 38                                | 2 3Č                           | 300                                    | 12 13                            | ID ŠC                                |
| 20                                      | 5 00                                | 3.79                           | 375                                    | <b>⊐</b> ∔ ;                     |                                      |
| 40                                      | 7 ∞                                 | 5 :=                           | 400                                    |                                  | II <b>4</b> 0                        |
| 60                                      | ತೆ∞                                 | 0 05                           | foc                                    |                                  | 12 15                                |
| ða                                      | 8 <u>5</u> 2                        | <del>,</del> ∞                 | ŠCC                                    |                                  | 12 13                                |
| 130                                     | g IS                                | 7 25                           | 1000                                   |                                  | II ŠI                                |
| 150                                     | 10 <u>30</u>                        | 5 55                           | 1400                                   |                                  | 10 03                                |
| 200                                     | 12 35                               | g \$5                          | 511                                    |                                  | 7 55                                 |
| In (N                                   | H., SO, at 2                        | <b>57</b> .                    | In v                                   | NH, SO.                          | at 52°.                              |
| Grans per 1                             |                                     | 17 :30 02.<br>14 34            |                                        | Cases                            | Sp. Cr<br>st Salatasana.             |
| 0 30                                    | c 208 - 0                           | 20.01                          | c 30                                   | 2:08                             | · •                                  |

| (NHest)+ | <u>د خما</u> | لمخ علاق  | NE 23. 4          | inth  | a Sausas |
|----------|--------------|-----------|-------------------|-------|----------|
| 0 00     | c 208        | gg ar     | c 30              | 2 :08 |          |
| C I 29   | 3 204        | 56 gr     | 15 05             | 1 000 | I 0020   |
| C 255    | o 199        | GC 92     | ₹0 <del>3</del> 5 | 1 750 | : 21:3   |
| 0 321    | c :5:        | 99 95     | φιό               | 2 542 | 1 0440   |
| 1 643    | s :50        | <u>99</u> | 170 4             | 3 423 | I DÁID   |
| 3 257    | 0 154        | 100 10    | 221 0             | 4 200 | 1 1:3Š   |
| 6 575    | : 144        | 100 34    | 340 0             | 5 284 | 1 1053   |
| 13 15    | c :4j        | 100 Š2    | 410 5             | 5 354 | 1 1904   |
| 26 30    | C 173        | :01 76    | 42 <u>8</u> 4     | 4 032 | 1 2043   |
| 849      | C 233        | 105 34    | 530 \$            | 2 152 | 1 2437   |
| 169 3    | C 333        | 110 32    | 500 D             | 1 20  | 1 2508   |
| 339 6    | C 450        | 119 IS    | 500 7             | o 30  | 1 2510   |

SOLUBILITY OF CALCIUM SULPHATE IN AQUEOUS SOLUTIONS OF CALCIUM SALTS AT 25".

(Camerica and Seidell - ) Prove: Chem 5, tax for Seidell and Seith - Dar 8, and Sa Camerica and Bell - ) Am Chem Soc 36, 1220-130

| In Calcium<br>Chloride. | -          | In Calcium<br>Nitrate. |           | In Calcium Hydroxide and<br>1977 (1984) |           |                                              |
|-------------------------|------------|------------------------|-----------|-----------------------------------------|-----------|----------------------------------------------|
| Grans per Live S        | Georgee    | Later No.              | W: of     | Gerk per                                | Later Sol | Side .                                       |
| CaC: LAN                | 4 Ca.N. 42 | (24)                   | : x. Š.i. | (10)                                    | into      | Pare                                         |
| 0 00 2 0                | -          | 2 08                   | o 998     | c                                       | 2 120     | CaSO, 2H <sub>2</sub> O                      |
| 749 I 2                 | 4 25       | I 24                   | 1 014     | C 202                                   | 2 030     | ••                                           |
| 1196 11                 | _ •        | I 20                   | 1 032     | 0 170                                   | 1 018     | ••                                           |
| 25 77 I I               | 0 IOC      | I I3                   | 1 007     | 0 340                                   | 1 853     | **                                           |
| 32 05 1 0               | -8 200     | 0 93                   | 1 137     | c 01                                    | 1 722     | **                                           |
| 51 53 1 0               | 2 300      | 0.76                   | 1 204     | 0 030                                   | 1 034     | ••                                           |
| 97 c2 c 8               | •          | o 57                   | 1 265     | 1.222                                   | 1 588     | CaSO <sub>1</sub> .2 <b>H,O</b> +<br>Ca(OH), |
| 19271 C.                | 500        | 0 40                   | 1 328     | 1.242                                   | 1 214     | Ca(OH),                                      |
| 280 30 0 2              | 544        | o 35                   | 1 352     | I 150                                   | 0 000     | ••                                           |
| 367 85 o d              | •          |                        |           | 1.100                                   | 0 00      | ••                                           |

# OALOIUM SULPHATE

-

### SOLUBILITY OF CALCIUM SULPHATE IN AQUEOUS SOLUTIONS OF MAGNESIUM CHLORIDE AND OF MAGNESIUM NITRATE AT 25°. (Cameron, Seidell, and Smith.)

| In Magnesium Chloride.            |        |                   | In Magnesium Nitrate.               |                     |           |  |
|-----------------------------------|--------|-------------------|-------------------------------------|---------------------|-----------|--|
| Grams per Liter of Sat. Solution. |        |                   | Gms. per 1                          | Gms. per Liter Sol. |           |  |
| MgCl <sub>2</sub> .               | CaSO4. | Н <sub>2</sub> О. | Mg(NO <sub>3</sub> ) <sub>2</sub> . | CaSO4.              | Solution. |  |
| 0.0                               | 2.08   | 997.9             | 0.0                                 | 2.08                | 0.9981    |  |
| 8.50                              | 4.26   | 996.5             | 25                                  | 5:77                | I .0205   |  |
| 19.18                             | 5.69   | 994 · 5           | 50                                  | 7.88                | 1 .0398   |  |
| 46.64                             | 7.59   | 989.1             | 100                                 | 9.92                | 1 .0786   |  |
| 121.38                            | 8.62   | 972.2             | 200                                 | 13.34               | 1 . 1498  |  |
| 206.98                            | 6.57   | 949 · 9           | 300                                 | 14.00               | I.2190    |  |
| 337.0                             | 2.77   | 908.7             | 400                                 | 14.68               | 1.2821    |  |
| 44I.I                             | 1.39   | 878.6             | 514                                 | 15.04               | 1.3553    |  |

### SOLUBILITY OF CALCIUM SULPHATE IN AQUEOUS SOLUTIONS OF MAG-NESIUM SULPHATE AT 25°. (Cameron and Bell – J. Physic. Chem. 10, 210, '06.)

| Grams per Liter Solution. |         | Sp. Gr. of                     | Grams per I   | Grams per Liter Solution. |                                 |  |
|---------------------------|---------|--------------------------------|---------------|---------------------------|---------------------------------|--|
| MgSO4.                    | CaSO4.  | Sp. Gr. of<br>Solutions at #°. | MgSO4.        | CaSO4.                    | Sp. Gr. of<br>Solutions at ##°. |  |
| 0.0                       | 2.046   | I .0032                        | 149.67        | I.597                     | 1.1377                          |  |
| 3.20                      | 1.620   | 1.0055                         | 165.7         | 1.549                     | 1.1479                          |  |
| 6.39                      | I . 507 | I.0000                         | 171.2         | I.474                     | 1.1537                          |  |
| 10.64                     | 1.471   | 1.0118                         | 198.8         | I . 422                   | 1.1813                          |  |
| 21.36                     | 1 · 478 | 1.0226                         | 232 . I       | I . 254                   | I . 2095                        |  |
| 42.68                     | 1.558   | I.0419                         | 265.6         | I .070                    | 1.2382                          |  |
| 64 . 14                   | 1.608   | 1.0626                         | <b>298</b> .0 | o,860                     | 1.2624                          |  |
| 85.67                     | 1.617   | 1.0833                         | 330.6         | 0.647                     | 1 . 2877                        |  |
| 128.28                    | I.627   | 1.1190                         | 355.0         | 0.501                     | I . 3023                        |  |

#### SOLUBILITY OF CALCIUM SULPHATE IN AQUEOUS SOLUTIONS OF POTAS-SIUM CHLORIDE, BROMIDE, AND IODIDE AT 21°. (Ditte – Ann. chim. phys. [7] 14, 294, '98.)

# In KCl Solutions. In KBr Solutions. In KI Solutions.

| Grams of the<br>Potassium Salt<br>per Liter. | Gms. CaSO <sub>4</sub><br>per Liter. | Gms. CaSO <sub>4</sub><br>per Liter. | Gms. CaSO <sub>4</sub><br>per Liter. |
|----------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| 0                                            | 2.05                                 | 2.05                                 | 2.05                                 |
| 10                                           | 3.6                                  | 3.1                                  | 2.8                                  |
| 20                                           | 4.5                                  | 3.6                                  | 3.2                                  |
| 40                                           | 5.8                                  | 4.5                                  | 3.9                                  |
| 60                                           | 6.6                                  | 5.2                                  | 4.5                                  |
| 80                                           | 7.2                                  | 5.9                                  | 4.85                                 |
| 100                                          | 7.5                                  | ő. <u>3</u>                          | 5.1                                  |
| 125                                          | double salt                          | 6.7                                  | 5.45                                 |
| 150                                          | •••                                  | 7.0                                  | 5.8                                  |
| 200                                          | •••                                  | 7 - 3                                | 5.95                                 |
| 250                                          | •••                                  | double salt                          | 6.00                                 |
| 300                                          | •••                                  | •••                                  | double salt                          |

SOLUBILITY OF CALCIUM SULPHATE IN AQUEOUS SOLUTIONS OF POTAS-SIUM NITRATE AND OF POTASSIUM SULPHATE AT 25°.

(Seidell and Smith - J. Physic. Chem. 8, 493, 'bq: Cameron and Breazeale - Hold. 8, 535, 'bq.)

| In Potassium Nitrate.      |           |               | In Po  | In Potassium Sulphate.       |           |  |  |  |
|----------------------------|-----------|---------------|--------|------------------------------|-----------|--|--|--|
| Gras. per Liner<br>Science |           | Witter a con- |        | Gras. per Liter<br>Solution. |           |  |  |  |
| <b>ENO</b>                 | Cases.    |               | KašUs. | Castle.                      | Solution. |  |  |  |
| 0.0                        | 2.08      | 0.9981        | 0.0    | 2.08                         | 0.9981    |  |  |  |
| 12.5                       | 3.28      | 1.0081        | 4.88   | 1.60                         | 1.0036    |  |  |  |
| 25.0                       | 4 08      | 1.0154        | 5.09   | 1.56                         | 1.0038    |  |  |  |
| 50.0                       | 5.26      | 1.0321        | 9.85   | I-45                         | 1.0075    |  |  |  |
| I00 · 0                    | 6.86      | 1.0625        | 19.57  | I - 49                       | 1.0151    |  |  |  |
| 150                        | 7.91      | 1-0924        | 28.35  | 1.55                         | I 0229    |  |  |  |
| 200                        | 8.69      | 1.1224        | 30.66  | I - 57                       | 1.0236    |  |  |  |
| 260                        | syngenite | 1.1539        | 32.47  | I.58*                        | • • •     |  |  |  |

 Solid phase syngenite. Results for the solubility of syngenite in solutions of potassium sulphase are also given in the original paper.

Solubility of Calcium Sulphate in Aqueous Solutions of Sodium Chloride at 26°.

(Cameron - J. Physic. Chem. 5, 556. 'o1: see this paper for references to other work, also Orkuf - J. russ. phys. chem. Ges. 37, 949, 'o2; Cloez - Bull. soc. chim. [3] 29, 167, 'o3; d'Anselme - Hol. [3] 29, 372, 'o3.)

| Grams per 100 cc. Solution. |        | Wt. of 1 cc.<br>Solution. | Grams per 10 | Wt. of 1 cc.<br>Solution. |           |
|-----------------------------|--------|---------------------------|--------------|---------------------------|-----------|
| NaCl.                       | CasO4. | Solution.                 | NaCl.        | Caso.                     | Solution. |
| 0.00                        | 0.2121 | o.9998                    | 17.650       | 0.712                     | 1.1100    |
| 9-115                       | o.666  | 1.0644                    | 22.876       | 0.679                     | 1 . 1.488 |
| 14.399                      | 0.718  | 1.0981                    | 26 . 417     | 0.650                     | I . 1707  |
| 14.834                      | 0.716  | I. 1012                   | 32 049       | 0.572                     | I . 2034  |

#### SOLUBILITY OF MIXTURES OF CALCIUM SULPHATE AND CALCIUM CAR-BONATE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AT 23°. (Cameron and Seidell - J. Physic. Chem. 5, 643, '01.)

| Grams per Liter Solution. |                                      |        | Grams per Liter Solution. |             |                     |  |
|---------------------------|--------------------------------------|--------|---------------------------|-------------|---------------------|--|
| NaCl.                     | Ca(HCO <sub>2</sub> ) <sub>2</sub> . | CaSC4. | NaCl.                     | Ca(HC()3)2. | CaSO <sub>6</sub> . |  |
| <b>o</b> . 00             | o ofo                                | 1.930  | 79 - 52                   | 0.000       | 6.424               |  |
| 3.63                      | 0.072                                | 2.720  | 121.90                    | 0.056       | 5.272               |  |
| II 49                     | o.o89                                | 3.446  | 193.80                    | o.o48       | 4.786               |  |
| 39.62                     | O.IOI                                | 5.156  | 267.60                    | 0.040       | 4 462               |  |

# SOLUBILITY OF MIXTURES OF CALCIUM SULPHATE AND SILVER SUL-PHATE IN WATER.

(Euler - Z. physik. Chem. 49, 313, '04.)

|                                                                 | Per Liter     | of Solution.         | Total Salt                | So Co al                 |  |
|-----------------------------------------------------------------|---------------|----------------------|---------------------------|--------------------------|--|
| t*.                                                             | Gms. Salt.    | Gms. Equiv.<br>Salt. | per 100 Gms.<br>Solution. | Sp. Gr. of<br>Solutions. |  |
| $17^{\circ} \begin{cases} CaSO_{4} \\ Ag_{2}SO_{4} \end{cases}$ | 2.31<br>7.235 | 0.034<br>0.0464      | o · 9473                  | 1.0083                   |  |
| 25° { CaSO<br>Ag <sub>2</sub> SO                                | 2.61<br>8.11  | o∍o383<br>o∍o520     | 1.062                     | 010. I                   |  |

101

# CALCIUM SULPHATE

# SOLUBILITY OF CALCIUM SULPHATE IN AQUEOUS SOLUTIONS OF SODIUM NITRATE AND OF SODIUM SULPHATE AT 25°. (Seidell, Smith, Cameron, Breazeale.)

| In                                   | Sodium I | Nitrate.                  | In Sodium Sulphate.                               |        |                           |  |
|--------------------------------------|----------|---------------------------|---------------------------------------------------|--------|---------------------------|--|
| Grams per Lit<br>NaNO <sub>2</sub> . |          | Wt. of r cc.<br>Solution. | Grams per Li<br>Na <sub>2</sub> SO <sub>4</sub> . |        | Wt. of 1 cc.<br>Solution. |  |
| 0                                    | 2.08     | 0.9981                    | 2.39                                              | 1.65   | 1.0013                    |  |
| 25                                   | 4.25     | 1.0163                    | 9.54                                              | 1.45   | 1.0076                    |  |
| 50                                   | 5 - 50   | I.0340                    | 14.13                                             | 1.39   | 1.0115                    |  |
| 100                                  | 7.10     | 1.0684                    | 24.37                                             | I · 47 | I .0205                   |  |
| 200                                  | 8.79     | 1.1336                    | 46.15                                             | 1.65   | 1.0391                    |  |
| 300                                  | 9.28     | 1.1916                    | 115.08                                            | 2.10   | 1.0965                    |  |
| 600                                  | 7.89     | 1.3639                    | 146.61                                            | 2.23   | I.1427                    |  |
| 655                                  | 7.24     | 1.3904                    | 257 . 10                                          | 2.65   | 1.2120                    |  |

# SOLUBILITY OF CALCIUM SULPHATE IN AQUEOUS AND ALCOHOLIC MONO POTASSIUM TARTRATE SOLUTIONS AT 20°. (Magnanini – Gazz. chim. ital. 31, II, 544, '01.)

| Solvent.                   | Gms. CaSO<br>per 100 Gms.<br>Solution. |                                                                      | Gms. CaSO 4<br>per 100 Gms.<br>Solution |
|----------------------------|----------------------------------------|----------------------------------------------------------------------|-----------------------------------------|
| Water<br>Aq. N/200 KHC4H4C | 0.2238                                 | 10% alcoholic N/200 I<br>Aq. N/200 KHC <sub>2</sub> H <sub>4</sub> O |                                         |
| 10 per cent alcohol        | 0.0070                                 | tartaric ac.<br>10% alc. N/400 KHC,                                  | 0.2566                                  |
|                            |                                        | tartaric ac.                                                         | 0.1086                                  |

# SOLUBILITY OF CALCIUM SULPHATE IN AQUEOUS SUGAR SOLUTIONS. (Stolle – Z. Ver. Zuckerind. 50, 331, '00.)

| Per cent Concen-               | Grams CaSO <sub>4</sub> Dissolved by 1 Liter of the Sugar Solutions at: |         |       |         |       |                  |  |
|--------------------------------|-------------------------------------------------------------------------|---------|-------|---------|-------|------------------|--|
| tration of Sugar<br>Solutions. | 30°.                                                                    | 40°.    | 50°.  | 60°.    | 70°.  | <del>80</del> °. |  |
| 0                              | • • •                                                                   | 2.157   | 1.730 | 1.730   | 1.652 | 1.710            |  |
| IO                             | 2 ·04I                                                                  | 1.730   | 1.730 | I.574   | 1.574 | 1.613            |  |
| 20                             | 1 .808                                                                  | 1.652   | 1.419 | 1.380   | 1.419 | 1.263            |  |
| 27                             | I.550                                                                   | 1 . 438 | 1.361 | 1 . 283 | 1.283 | 0. <b>972</b>    |  |
| 35                             | I . 263                                                                 | 1.050   | 1.088 | 1 . 108 | 0.914 | • • •            |  |
| 42                             | I .030                                                                  | •••     | 0.777 | 0.816   | 0.855 | 0.729            |  |
| 49                             | •••                                                                     | 0.564   | 0.739 | 0.564   | 0.603 | o.486            |  |
| 55                             | • • •                                                                   | o.486   | 0.505 | 0.486   | 0.369 | 0.330            |  |

# **CALCIUM SULPHIDE** CaS.

SOLUBILITY IN AQUEOUS SUGAR SOLUTIONS. (Stolle.)

|                                |         |         | ,       | (Stone.) |       |       |         |  |
|--------------------------------|---------|---------|---------|----------|-------|-------|---------|--|
| Per cent Concen-               |         |         |         |          |       |       |         |  |
| tration of Sugar<br>Solutions. | 30°.    | 40°.    | 50°.    | 60°.     | 70°.  | 80°.  | 90°.    |  |
| 0                              | 1.982   | 2.123   | 1.235   | I.390    | 1.696 | 2.032 | 2 . 496 |  |
| 10                             | 1.866 I | 1.316   | I.44I   | 1.673    | 1.560 | 1.634 | I.544   |  |
| 20                             | 2.187   | 1.696   | 1.802   | 1.905    | 1.879 | 1.892 | 1.930   |  |
| 27                             | 2.522   | 2.097   | 2.059   | 2.226    | 2.342 | 2.304 | 2.357   |  |
| 35                             | 2.689   | 2.265   | 2.304   | 2.406    | 2.342 | 2.857 | 2.947   |  |
| 42                             | 2.342   | 2.136   | 2.226   | 2.522    | 2.574 | 2.509 | 2.689   |  |
| 49                             | 2.445   | 2.200   | 2 . 458 | 2.638    | 2.728 | 2.818 | 3.063   |  |
| 55                             | 2.509   | 2 . 226 | 2.340   | 2.882    | 2.766 | 2.972 | 3.616   |  |

# CALCIUM SULPHITE CaSO,

SOLUBILITY IN WATER AND IN AQUEOUS SUGAR SOLUTIONS AT 18°. (Weisberg - Bull. soc. chim. [3] 15, 1097, '96.)

Grams CaSO<sub>2</sub> per 100 cc. Solution.

| Solvent.          | At 18°. | After Boiling<br>Solution 2 Hours. |
|-------------------|---------|------------------------------------|
| Water             | 0.0043  |                                    |
| 10 Per cent Sugar | 0.0083  | 0.0066                             |
| 30 Per cent Sugar | 0.0080  | 0.0069                             |

# CALCIUM TARTRATE CaC,H,O,.4H,O.

SOLUBILITY IN WATER. (Cantoni and Zachoder — Bull. soc. chim. [3] 33, 747, '05.)

| t°. | Gms. CaC <sub>4</sub> H <sub>4</sub> O <sub>6-4</sub> H <sub>2</sub> O<br>per 100 cc. Sol. | t°. | Gms. CaC <sub>4</sub> H <sub>4</sub> O <sub>8</sub> .4H <sub>2</sub> O<br>per 100 cc. Sol. | t°. | Gms. CaC4H4O8.4H2O<br>per 100 cc. Sol. |
|-----|--------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------|-----|----------------------------------------|
| 0   | 0.0365                                                                                     | 30  | 0.0631                                                                                     | 70  | 0.1430                                 |
| IO  | 0.0401                                                                                     | 40  | 0.0875                                                                                     | 80  | 0.1798                                 |
| 20  | 0.0475                                                                                     | 50  | 0.1100                                                                                     | 85  | 0.2190                                 |
| 25  | 0.0525                                                                                     | 60  | 0.1262                                                                                     |     |                                        |

100 gms. aq. Ca. tartrate solution contain 0.0185 g. CaC, H.O., 4H,O at 18°, and 0.029489 at 25°.

100 gms. 95% alcohol solution contain 0.0187 g. CaC4H4O6.4H2O at 18°, and 0.02352 at 25°. (Partheil and Hübner - Archiv. Pharm. 241, 413, '03.) 100 gms. aq. Ca. tartrate solution contain 0.0364 g. CaC, H.O. at 20°. 100 gms. 10% alcohol solution contain 0.0160 g. CaC4H4O6 at 20°.

100 gms. 10% alcohol + 5% tartaric acid solution contain 0.1632 g. CaC,H,O, at 20°. (Magnanini - Gazz. chim. ital. 31, II, 544, '01.) (Magnanini - Gazz. chim. ital. 31, II, 544, 'or.)

SOLUBILITY OF CALCIUM TARTRATE IN AQUEOUS ACETIC ACID (Herz and Muhs – Ber. 36, 3715, '03; see also Enell – Pharm. Centrallh. 38, 181; Z. anal. Chem. 38, 368, '99.)

|        | Gms. CH <sub>3</sub> COOH<br>per 100 cc. Sol. |              |        | Gms. CH <sub>3</sub> COOH<br>per 100 cc. Sol. | Residue from<br>50.052 cc. Sol. |
|--------|-----------------------------------------------|--------------|--------|-----------------------------------------------|---------------------------------|
| 0      | 0                                             | 0.0217       | 3.80   | 22.80                                         | 0.2042                          |
| 0.57   | 3.42                                          | 0.1082       | 5.70   | 34.20                                         | 0.1844                          |
| 1.425  | 8.55                                          | 0.1635       | 10.09  | 60.54                                         | 0.1160                          |
| 2.85   | 17.10                                         | 0.1970       | 16.505 | 93.03                                         | 0.0337                          |
| The re | sidue was dri                                 | ed at 70° C. |        |                                               |                                 |

# CALCIUM BITARTRATE CaH2(C4H4O6)2.

SOLUBILITY IN WATER AND IN AQUEOUS SOLUTIONS OF ACIDS AND OF SALTS. (Warington - J. Chem. Soc. 28, 946, '75.)

In Hydrochloric Acid. In other Acids and in Salt Solutions at 14°.

| Conc. of HCl<br>Gms. per | per 100 0                  | H <sub>2</sub> (C <sub>4</sub> H <sub>4</sub> O <sub>6</sub> ) <sub>2</sub><br>ims. Solvent. | Acid or Salt.    | Gms.Acid or Salt O<br>per 100 cc. Sol. | ms. CaH2(C4H4O6)2<br>per 100 cc. Sol. |
|--------------------------|----------------------------|----------------------------------------------------------------------------------------------|------------------|----------------------------------------|---------------------------------------|
| 100 Gms. Sol.            | At 22°.                    | At 80°.                                                                                      |                  |                                        | per 100 cc. 501.                      |
| 0                        | 0.600                      | 4.027                                                                                        | Acetic Acid      | 0.81                                   | 0.422                                 |
| 0.68                     | 3.01                       | 5-35                                                                                         | Tartaric Acid    | 1.03                                   | 0.322                                 |
| 2.15                     | 6.88                       | 11.35                                                                                        | Citric Acid      | 0.84                                   | 0.546                                 |
| 4.26                     | 11.19                      | 20.23                                                                                        | Sulphuric Acid   | 0.685                                  | 1.701                                 |
| 8.36                     | 22.75                      | 40.93                                                                                        | Hydrochloric Aci | d 0.504                                | 1.947                                 |
| 16.13                    | 48.31                      | 80.12                                                                                        | Nitric Acid      | 0.845                                  | 1.969                                 |
|                          |                            |                                                                                              | Potassium Acetat | te 1.387                               | 0.744                                 |
| 100 gms. H               | I2O dissolve<br>ate at 14° | 0.422 gms.                                                                                   | Potassium Citrat | te 1.397                               | 0.843                                 |

103

# CALCIUM VALERATE Ca[CH<sub>1</sub>(CH<sub>1</sub>),COO]<sub>2</sub>.H<sub>2</sub>O. CALCIUM (Iso) VALERATE Ca[(CH<sub>4</sub>)<sub>2</sub>.CH.CH<sub>2</sub>.COO]<sub>2</sub>.3H<sub>2</sub>O.

SOLUBILITY OF EACH IN WATER. (Lumsden – J. Chem. Soc. 81, 355, '02; see also Furth – Monatsh. Chem. 9, 313, '88; Sedlitzky – Ibid, 8, 566, '87.)

104

| Calcium Valerate. |                |                     | te.  | (               | Calcium            | Iso Valerate.                    |
|-------------------|----------------|---------------------|------|-----------------|--------------------|----------------------------------|
| t°.               | per 10         | (CaHeO2)2<br>o Gms. | t*.  | -               | o Gms.             | Solid<br>Phase.                  |
| 0                 | Water.<br>9.82 | Solution.<br>8.94   | 0    | Water.<br>26.05 | Solution.<br>20.66 | Ca(C.H.O.) H.O                   |
| IO                | 9.25           | 8.47                | 10   | 22.70           | 18.50              |                                  |
| 20                | 8.80           | 8.09                | 20   | 21.80           | 17.90              | "                                |
| 30                | 8.40           | 7.75                | 30   | 21.68           | 17.82              | "                                |
| 40                | 8.05           | 7.45                | 40   | 22.00           | 18.18              | **                               |
| 50                | 7.85           | 7.28                | 45.5 | 22.35           | 18.42              | 66                               |
| 57                | 7.75           | 7.19                | 50   | 19.95           | 16.63              | $Ca(C_{3}H_{9}O_{2})_{2}.H_{2}O$ |
| 60                | 7.78           | 7.22                | 60   | 18.38           | 15.52              |                                  |
| 70                | 7.80           | 7.24                | 70   | 17.40           | 14.82              | "                                |
| 80                | 7.95           | 7.36                | 8o   | 16.88           | 14.44              | "                                |
| 90                | 8.20           | 7.58                | 90   | 16.65           | 14.28              | 46                               |
| 100               | 8.78           | 8.07                | 100  | 16.55           | 14.20              | "                                |

# CAOUTCHOUC.

SOLUBILITY IN ORGANIC SOLVENTS.

(Hanausek - J. pharm. chim. [5] 15, 509, '87.) .

| Solvent.          | Ceara. | Tete Noire. | Sierra Leone |
|-------------------|--------|-------------|--------------|
| Ether             | 2.5    | 3.6         | 4.5          |
| Turpentine        | 4.5    | 5.0         | 4.6          |
| Chloroform        | 3.0    | 3.7         | 3.0          |
| Petroleum         | I.5    | 4.5         | 4.0          |
| Benzene           | 4.4    | 5.0         | 4.7          |
| Carbon Bisulphide | 0.4    | 0.0         | 0.0          |

# CAMPHORIC ACID C<sub>4</sub>H<sub>14</sub>(COOH)<sub>2</sub>.

100 grams of water dissolve 0.8 gram C<sub>2</sub>H<sub>14</sub>(COOH), at 25°, and 10 grams at the b. pt. (U.S.P.)

**CARBAZOLE** (Di Phenylene imid)  $(C_{4}H_{4})_{2}NH$ .

100 grams abs. alcohol dissolve 0.92 gms. (C<sub>6</sub>H<sub>4</sub>)<sub>2</sub>NH at 14°, and 3.88 grams at b. pt.

100 grams toluene dissolve 0.55 gm.  $(C_6H_4)_2NH$  at 16.5°, and 5.46 grams at b. pt.

#### CARBAMIDES.

SOLUBILITY IN SEVERAL SOLVENTS.

as Methyl Phenyl Carbamide (m. pt. 82°), Benzyl Carbamide (m. pt. 149°). o Tolyl Carbamide(m.pt. 185°) and p Tolyl Carbamide(m.pt. 173°). (Walker and Wood - J. Chem. Soc. 73, 626, '98.)

| Solvent. | t°.    | Grams Carb        | amide per 100 | cc. Sat. Solutio | n.       |
|----------|--------|-------------------|---------------|------------------|----------|
| Solvent. |        | as Methyl Phenyl. | Benzyl.       | 👂 Tolyl.         | o Talyl. |
| Water    | 45     | 74                | 1.71          | 0.307            | 0.251    |
| Acetone  | 23     | 29.4              | 3.10          | 2.66             | 0.462    |
| Ether    | 22.5   | 2.28              | 0.053         | 0.062            | 0.0162   |
| Benzene  | 44 . 2 | 12.4              | 0.0597        | 0.043            | 0.0155   |

# CARBON DIOXIDE CO2.

SOLUBILITY IN WATER AND IN AQUEOUS SODIUM CHLORIDE SOLUTIONS. (Bohr -- Wied. Ann. Physik. [3] 68, 503, '99; Geffcken -- Z. physik. Chem. 49, 271, '04; Just -- Ibid.

|     | So    | 37, 354, '01.)<br>Solubility in Water. |       |                     | In 17.62%<br>NaCl. |  |
|-----|-------|----------------------------------------|-------|---------------------|--------------------|--|
| t°. | 9.    | β.                                     | 1.    | NaCl.<br><i>β</i> . | β.                 |  |
| 0   | 0.335 | 1.713                                  |       | I.234               | 0.678              |  |
| 5   | 0.277 | 1.424                                  |       | 1.024               | 0.577              |  |
| IO  | 0.231 | 1.194                                  |       | 0.875               | 0.503              |  |
| 15  | 0.197 | 1.019                                  | 1.070 | 0.755               | 0.442              |  |
| 20  | 0.169 | 0.878                                  |       | 0.664               | 0.393              |  |
| 25  | 0.145 | 0.759                                  | 0.826 | 0.583               | 0.352              |  |
| 30  | 0.126 | 0.665                                  |       | 0.517               | 0.319              |  |
| 40  | 0.097 | 0.530                                  |       | 0.414               | 0.263              |  |
| 50  | 0.076 | 0.436                                  |       | 0.370               | 0.235              |  |
| 60  | 0.058 | 0.359                                  |       | 0.305               | 0.183              |  |

q = wt. of gas dissolved by 100 grams of solvent at a total pressure of 760 mm.  $\beta = \text{the Bunsen Absorption Coefficient which signifies the volume (v) of the gas (reduced to 0° and 760 mm.) taken up by unit volume (V) of the liquid when the pressure of the gas itself minus the vapor tension of the solvent is 760 mm.}$  $\beta = \frac{v}{v}$ 

$$V(1 + 0.00367 t)$$

l = the **Ostwald Solubility Expression** which represents the ratio of the volume (v) of gas absorbed at any pressure and temperature, to the volume (V) of the absorbing liquid, i.e.  $l = \frac{v}{V}$ . This expression differs from the Bunsen Absorption Coefficient,  $\beta$ , in that the volume (v) of the dissolved gas is not reduced to  $\circ^{\circ}$  and  $76\circ$  mm. The solubility l is therefore the volume of gas dissolved by unit volume of the solvent at the temperature of the experiment. The two expressions are related thus:

$$=\beta(1+0.00367 l), \beta = \frac{1}{(1+0.00367 l)}$$

SOLUBILITY IN WATER AT PRESSURES ABOVE ONE ATMOSPHERE. (Wroblewski - Compt. rend. 94, 1335, '82.)

| Pressure             | Coefficient of | Saturation * at: | Pressure             | Coefficient of Saturation * at: |        |  |
|----------------------|----------------|------------------|----------------------|---------------------------------|--------|--|
| in Atmos-<br>pheres. | 0°.            | 12.4°,           | in Atmos-<br>pheres. | 0°.                             | 12.4°. |  |
| I                    | 1.797          | 1.086            | 20                   | 21.65                           | 17.11  |  |
| 5                    | 8.65           | 5.15             | 25                   | 30.55                           | 20.31  |  |
| IO                   | 16.03          | 9.65             | 30                   | 33.74                           | 23.25  |  |

#### \* Coefficient of Absorption is no doubt intended.

SOLUBILITY OF CO2 IN AQUEOUS SOLUTIONS OF ACIDS AND SALTS

|                  |                         |           | (Geffc       | ken.)           |                         |          |              |
|------------------|-------------------------|-----------|--------------|-----------------|-------------------------|----------|--------------|
| Aq.<br>Solvent.  | Gms. Acid<br>per Liter. | CO2 Disso | alved, 1 at: | Aq.<br>Solvent. | Gms. Salt<br>per Liter. | CO2 Diss | olved, 1 at: |
| HCl              | 18.23                   | I.043     | 0.806        | CsCl            | 84.17                   | 1.006    | 0.781        |
| **               | 36.46                   | 1.028     | 0.799        | KCl             | 37.30                   | 0.976    | 0.759        |
| "                | 72.92                   | 1.000     | 0.795        | KCl             | 74.60                   | 0.897    | 0.700        |
| HNO <sub>3</sub> | 31.52                   | 1.078     | 0.840        | KI              | 83.06                   | 0.992    | 0.775        |
| "                | 63.05                   | 1.086     | 0.853        | KI              | 166.12                  | 0.923    | 0.727        |
| "                | 126.10                  | I.100     | 0.877        | KBr             | 59.55                   | 0.986    | 0.768        |
| H_SO4            | 24.52                   | 810.I     | 0.794        | KBr             | 119.11                  | 0.914    | 0.713        |
|                  | 49.04                   | 0.978     | 0.770        | KNO3            | 50.59                   | 1.005    | 0.784        |
| "                | 98.08                   | 0.917     | 0.730        | KNO3            | 101.19                  | 0.946    | 0.749        |
| **               | 147.11                  | 0.870     | 0.698        | RbCl            | 60.47                   | 0.989    | 0.769        |
| **               | 196.15                  | 0.828     | 0.667        | RbCl            | 120.95                  | 0.921    | 0.788        |

105

# CARBON DIOXIDE

100

# SOLUBILITY IN AQUEOUS SOLUTIONS OF SALTS. (Mackenzie – Wied. Ann. Physik. [2] I, 450, '77.)

| Salt in           | Gms. Salt per      | Density of    | Absorption ( | oefficient a at: |    |
|-------------------|--------------------|---------------|--------------|------------------|----|
| Solution.         | 100 Gms. Solution. | Solution 15°. | 8°.          | 15°. 22°.        | •  |
| KCl               | 6.05               | I .02I        | o.988        | 0.777 0.67       | 0  |
| "                 | 8.646              | I .053        | 0.918        | 0.777 0.64       | 9  |
| "                 | II.974             | I.080         | 0.864        | 0.720 0.59       | 7  |
| "                 | 22.500             | I . 549       | o.688        | 0.571 0.48       | ò  |
| NaCl              | 7.062              | 1.038         | o.899 (6.4°) | 0.735            |    |
| "                 | 12.995             | I.080         | 0.633 (6.4°) | 0.557 0.48       | 2  |
| "                 | 17.42              | 1.123         | 0.518 (6.4°) | 0.431 0.38       | 9  |
| "                 | 26.00              | 1.195         | 0.347 (6.4°) | 0.297 0.26       | 3  |
| NH <sub>c</sub> l | 6.465              | 1.021         | I.023        | 0.825 0.71       |    |
| "                 | 8.723              | I .047        | I.000        | 0.791 0.70       | 2  |
| "                 | 12.727             | 1.053         | 0.922        | 0.798 0.68       | 4  |
| "                 | 24.233             | I .072        | 0.813 (10°)  | 0.738 0.60       | 0  |
|                   |                    |               | 8°. 16.5°.   | 22°. 30°         | ۰. |
| BaCl,             | 7.316              | 1.068         | 0.969 0.744  | 0.680 0.5        | 66 |
| "                 | 9.753              | I.092         | 1.021 0.645  |                  |    |
| "                 | 14.030             | 1.137         | 0.618        |                  |    |
| "                 | 25.215             | 1.273         | 0.495 0.618  | 0.383 0.3        | īς |
| SrCL              | 9.511              | 1.087         | 0.779 0.663  |                  | ÷  |
| " -               | 12.325             | 1.1150        | 0.737 0.586  | 0.507 0.5        | 39 |
| "                 | 17.713             | 1.173         | 0.606 0.473  |                  | 67 |
| "                 | 31 . 194           | 1.343         | 0.285 0.245  |                  |    |
| CaCL              | 4.365              | 1.036         | 0.942 0.759  | 0.673 0.5        | 9Ğ |
| " -               | 5.739              | 1.049         | 0.855 0.726  |                  |    |
| "                 | 8.045              | 1.068         | 0.838 0.674  |                  | •  |
| "                 | 15.793             | 1.139         | 0.632 0.520  | • •              |    |
|                   |                    |               |              |                  |    |

# SOLUBILITY OF CARBON DIOXIDE IN ALCOHOL. (Bohr — Wied. Ann. Physik [4] 1, 247, '...)

| (Boar - Wied Ann. Physic [4] I, 247, 00.)                                    |               |                                          |                                         |       |  |  |  |  |
|------------------------------------------------------------------------------|---------------|------------------------------------------|-----------------------------------------|-------|--|--|--|--|
| In                                                                           | 99 per cent A | Alcohol.                                 | In 98.7 per cent Alcohol.               |       |  |  |  |  |
| t°. CO <sub>2</sub> (at o° and 760 mm.) per 1 cc.<br>Alcohol. Sat. Solution. |               | cc. CO <sub>2</sub> (at o° a<br>Alcohol. | nd 760 mm.) per 1 cc.<br>Sat. Solution. |       |  |  |  |  |
| -65                                                                          | 38.41         | 35 - 93                                  | 39.89                                   | 37.22 |  |  |  |  |
| - 20                                                                         | 7.5I          | 7.41                                     | 7.25                                    | 7.16  |  |  |  |  |
| - 10                                                                         | 5.75          | 5.69                                     | 5.43                                    | 5.38  |  |  |  |  |
| 0                                                                            | 4 · 44        | 4.40                                     | 4.35                                    | 4.31  |  |  |  |  |
| + 10                                                                         | 3 · 57        | 3.55                                     |                                         | •••   |  |  |  |  |
| 20                                                                           | 2.98          | 2.96                                     | • • •                                   | •••   |  |  |  |  |
| 25                                                                           | 2.76          | 2.74                                     | ••••                                    | •••   |  |  |  |  |
| 30                                                                           | 2 . 57        | 2.56                                     | • · •                                   | •••   |  |  |  |  |
| 40                                                                           | 2.20          | 2 . 19                                   | •••                                     | •••   |  |  |  |  |
| 45                                                                           | 2.01          | 2.00                                     | •••                                     | •••   |  |  |  |  |

SOLUBILITY IN AQUEOUS ALCOHOL AT 20°. (Müller - Wied, Ann. Physik, [2] 37, 30, '80; Lubarsch - Ibid, [2] 37, 525, '80.)

| free march             |                            | Jane. 1-1 214 22                      |                        |                            | -94                                   |  |
|------------------------|----------------------------|---------------------------------------|------------------------|----------------------------|---------------------------------------|--|
| Density of<br>Alcohol. | Per cent Alcohol<br>By Wt. | Abs. Coef.<br>of CO <sub>2</sub> , a, | Density of<br>Alcohol. | Per cent Alcohol<br>By Wt. | Abs. Coef.<br>of CO <sub>2</sub> , a. |  |
| 0.998                  | 1.07                       | 0.861                                 | 0.922                  | 49.0                       | 0.982                                 |  |
| 0.969                  | 22.76                      | 0.841                                 | 0.870 (18.80)          | ) 71.1                     | 1.293                                 |  |
| 0.960 (22.4            | 28.46                      | 0.792                                 | 0.835 (16°)            | 85.3                       | 1.974                                 |  |
| 0.956                  | 31.17                      | 0.801                                 | 0.795 (19°)            | 99.7                       | 2.719                                 |  |
| 0.935 (17°)            | 42.15                      | 0.877                                 |                        |                            |                                       |  |

SOLUBILITY OF CARBON DIOXIDE IN ORGANIC SOLVENTS. (Just - Z. physik. Chem. 37, 354, 'or.)

| Solvent.                                      |       | , Ostwald H | Expression.* | Solvent.                            | Sol. of CO2, | Ostwald En | pression.* |
|-----------------------------------------------|-------|-------------|--------------|-------------------------------------|--------------|------------|------------|
| Solvent.                                      | 122.  | 120.        | 115.         | Solvent.                            | 125-         | 120.       | 415.       |
| CS <sub>2</sub>                               | 0.870 | 0.889       | 0.945        | C <sub>s</sub> H,OH                 | 2.498        |            |            |
| C.H.NH                                        | 1.324 | I.434       | 1.531        | C2H5OH(95%)                         | ) 2.706      | 2.923      | 3.130      |
| C <sub>s</sub> H <sub>u</sub> OH              | 1.831 | 1.941       | 2.058        | C <sub>6</sub> H <sub>5</sub> COH   | 2.841        | 3.057      | 3.304      |
| C <sub>6</sub> H <sub>5</sub> Br              | 1.842 | 1.964       | 2.092        | CHCl <sub>s</sub>                   | 3.430        | 3.681      | 3.958      |
| CCL                                           | 2.294 | 2.502       | 2.603        | CH_OH                               | 3.837        | 4.205      | 4.606      |
| C <sub>6</sub> H <sub>5</sub> CH <sub>3</sub> | 2.305 | 2.426       | 2.557        | CH <sub>3</sub> COOH                | 4.691        | 5.129      | 5.614      |
| C.H.                                          | 2.425 | 2.540       | 2.716        | (CH <sub>3</sub> CO) <sub>2</sub> O | 5.206        | 5.720      | 6.18       |
| C <sub>6</sub> H <sub>5</sub> NO <sub>2</sub> | 2.456 | 2.655       | 2.845        | (CH <sub>3</sub> ) <sub>2</sub> CO  | 6.295        | 6.921      |            |
|                                               |       |             | + 0          |                                     |              |            |            |

\* See p. 105.

Determinations are also given for the solubility in glycerine, iod benzene, o and m toluidine, eugenol, benzene tri chloride, cumol, carvene, di chlor hydrine, iso butyl alcohol, benzyl chloride, meta xylol, ethylene bromide, chlor benzene, propylene bromide, amyl bromide, carvol, amyl chloride, iso butyl chloride, butyric acid, ethylene chloride, pyridine, amyl formate, propionic acid, amyl acetate, iso butyl acetate, and in methyl acetate.

See Woukoloff - Compt. rend. 108, 674; 109, 62, '89, for the solubility of CO<sub>2</sub> in CS<sub>2</sub> and CHCl<sub>3</sub> at different pressures.

# CARBON MONOXIDE CO.

#### SOLUBILITY IN WATER. (Winkler - Ber. 34, 1416, 'or.)

| t°. | β, "Absorp.<br>Coef." | β', "Solu-<br>bility." | q.     | t°.  | β, "Absorp.<br>Coef." | β', "Solu-<br>bility." | q.     |
|-----|-----------------------|------------------------|--------|------|-----------------------|------------------------|--------|
| 0   | 0.03537               | 0.03516                | 0.0044 | . 40 | 0.01775               | 0.01647                | 0.0021 |
| 5   | 0.03149               | 0.03122                | 0.0039 | 50   | 0.01615               | 0.01420                | 8100.0 |
| IO  | 0.02816               | 0.02782                | 0.0035 | 60   | 0.01488               | 0.01197                | 0.0015 |
| 15  | 0.02543               | 0.02501                | 0.0031 | 70   | 0.01440               | 0.00098                | 0.0013 |
| 20  | 0.02319               | 0.02266                | 0.0028 | 80   | 0.01430               | 0.00762                | 0.0010 |
| 25  | 0.02142               | 0.02076                | 0.0026 | 90   | 0.01420               | 0.00438                | 0.0006 |
| 30  | 0.01998               | 0.01915                | 0.0024 | 100  | 0.01410               | 0.00000                | 0.0000 |
|     |                       |                        |        |      |                       |                        |        |

 $\beta$  = vol. of CO absorbed by 1 volume of the liquid at a partial pres-

sure of 760 mm. See page 105.  $\beta' = \text{vol. of CO}$  (reduced to 0° and 760 mm.) absorbed by 1 volume of the liquid under a total pressure of 760 mm.

q = grams of CO dissolved by 100 grams H<sub>2</sub>O at a total pressure of 760 mm.

# CARBON MONOXIDE

108

# Solubility of Carbon Monoxide in Aqueous Alcohol Solutions at 20° and 760 mm. Pressure.

(Lubarach -- Wied. Annalen Physik. [2] 37, 525, '89.)

# Wt.% Alcohol. Vol.% Absorbed CO. Wt.% Alcohol. Vol.% Absorbed CO. 0.000 2.41 28.57 1.50 9.09 1.87 33.33 1.94

| 9.09  | I.87 | <b>33</b> · 33 | I.94 |
|-------|------|----------------|------|
| 16.67 | I.75 | 50.00          | 3.20 |
| 23.08 | 1.68 |                |      |

# SOLUBILITY OF CARBON MONOXIDE IN ORGANIC SOLVENTS. (Just – Z. physik. Chem. 37, 361, '01.)

Results in terms of the Ostwald Solubility Expression, see p. 105.

| Solvent.          | l <u>ss</u> . | <i>l</i> 20.    | Solvent.          | l25.    | l <sub>20</sub> . |
|-------------------|---------------|-----------------|-------------------|---------|-------------------|
| Water             | 0.02404       | 0.02586         | Toluene           | 0.1808  | 0.1742            |
| Anilin            | 0.05358       | 0.05055         | Ethyl Alcohol     | 0. 1921 | 0.1901            |
| Carbon Disulphide | 0.08314       | 0.08112         | Chloroform        | 0. 1954 | 0. 1897           |
| Nitro Benzene     | 0.09366       | 0.09105         | Methyl Alcohol    | 0. 1955 | 0.1830            |
| Benzene           | 0.1707        | 0. 1645         | Amylacetate       | 0.2140  | 0.2108            |
| Acetic Acid       | 0.1714        | 0.1689          | Acetone           | 0.2225  | 0, 2128           |
| Amyl Alcohol      | 0.1714        | 0.1 <b>70</b> 6 | Iso Butyl Acetate | 0.2365  | 0.2314            |
| Xylene            | 0. 1781       | 0. 1744         | Ethyl Acetate     | 0.2516  | 0.2419            |

100 volumes of petroleum absorb 12.3 vols. CO at 20°, and 13.4 vols. at 10°.

(Guiewasz and Walfisz - Z. physik. Chem. 1, 70, '87.)

# Solubility of Carbon Monoxide in Mixtures of Acetic Acid and Other Solvents at 25°.

(Skirrow - Z. physik. Chem. 41, 148, 'oz.)

Results in terms of the Ostwald Solubility Expression, see p. 105.

| Mixture of<br>Acetic Ac. and: | in M  | LCOOH<br>lixture.<br>By Vol. | CO.<br>125. | Mixture of<br>Acetic Ac. and : |      | COOH<br>xture.<br>By Vol. | CO.<br>125. |
|-------------------------------|-------|------------------------------|-------------|--------------------------------|------|---------------------------|-------------|
| Anilin                        | 100.0 | 100.0                        | 0.173       | Chloroform                     | 56.4 | 64.5                      | 0.196       |
| . "                           | 86.5  | <u>90</u> .8                 | 0.110       | "                              | 0.0  | 0.0                       | 0.206       |
| "                             | 58.3  | 68.5                         | 0.070       | Nitro Benzene                  | 88.4 | 84.8                      | 0.156       |
| "                             | 13.8  | 25.1                         | 0.058       | "                              | 49.0 | 66.3                      | 0.130       |
| "                             | 0.0   | 0.0                          | 0.053       | "                              | 0.0  | 0.0                       | 0.093       |
| Benzene                       | 67.5  | 63.4                         | 0.199       | Toluene                        | 74·7 | 71.0                      | 0.191       |
| "                             | 33.6  | 29.6                         | 0.198       | "                              | 56.9 | 52.6                      | 0.195       |
| "                             | 19.2  | 16.5                         | 0.190       | "                              | 20.5 | 17.8                      | 0.190       |
| 66                            | 0.0   | 0.0                          | 0.174       | "                              | 0.0  | 0.0                       | 0.182       |

# Solubility of Carbon Monoxide in Mixtures of Acetone and Other Solvents at 25°.

109

(Skirrow.)

| Mixture of %<br>Acetone and: | (CH <sub>3</sub> ) <sub>2</sub> CC<br>By Wt. | bin Mixtu<br>By Vol. | re. CO.<br>/25. | Mixture of<br>Acetone and: | %(CH <sub>3</sub> )<br>Mixt<br>By Wt. | ure. | CO.<br>125- |
|------------------------------|----------------------------------------------|----------------------|-----------------|----------------------------|---------------------------------------|------|-------------|
| Anilin                       | 100.0                                        | 100.0                | 0.238           | Chloroform                 | 66.6                                  | 78.0 | 0,226       |
| "                            | 79.2                                         | 85.9                 | 0.179           | u                          | 26.5                                  | 40.4 | 0.212       |
| u                            | 44.9                                         | 56.7                 | 0.110           | "                          | 0.0                                   | 0.0  | 0.207       |
| "                            | 0.0                                          | 0.0                  | 0.053           | β Naphthol                 | 86.0                                  | 93.9 | 0.100       |
| Carbon Bisulphide            | 82.0                                         | 83.8                 | 0.236           | · a                        | 73.I                                  | 87.1 | 0.160       |
| "                            | 50.5                                         | 61.8                 | 0.227           | Nitro Benzene              | 78.4                                  | 88.5 | 0.207       |
| "                            | 26.0                                         | 35.7                 | 0.187           | "                          | 46.8                                  | 69.5 | 0.157       |
| "                            | 14.5                                         | 21.2                 | 0.144           | "                          | 0.0                                   | 0.0  | 0.000       |
| "                            | 0.0                                          | 0.0                  | 0.006           | Phenanthrene               | 87.2                                  | 95.4 | 0.205       |
| Naphthalene                  | 86.7                                         | 93.5                 | 0.199           | "                          | 75.0                                  | 90.2 | 0.183       |
| • "                          | 72.6                                         | 85.4                 | 0.187           |                            |                                       |      |             |

# SOLUBILITY OF CARBON MONOXIDE IN MIXTURES OF BENZENE AND OTHER SOLVENTS AT 25°. (Skirrow – Z. physik. Chem. 41, 144, '02.)

The solubility of the CO given in terms of the Ostwald Expression, see p. 105.

| Mixture of<br>Benzene and:      |                       | H <sub>6</sub> in<br>ture.<br>By Vol. | CO.<br>125-             | Mixture of<br>Benzene and: | %Cel<br>Mixt<br>By Wt. |                     | CO.<br>125-             |
|---------------------------------|-----------------------|---------------------------------------|-------------------------|----------------------------|------------------------|---------------------|-------------------------|
| Naphthalene<br>"                | 100.0<br>88.5<br>66.2 | 100.0<br>92.6<br>76.3                 | 0.174<br>0.164<br>0.141 | Anilin<br>"                | 87.3<br>71.7<br>42.6   | 89.1<br>75.2        | 0.156                   |
| Phenanthrene                    | 89.2<br>72.6          | 95.1<br>85.8                          | 0.144<br>0.127          | и<br>и                     | 21.2                   | 47.0<br>24.3<br>0.0 | 0.095<br>0.068<br>0.053 |
| a Naphthalene<br>"Ethyl Alcohol | 96.5<br>87.9<br>47.7  | 98.1<br>93.1<br>44.9                  | 0.149<br>0.139<br>0.181 | Nitro Benzene<br>"         | 71.8<br>45.1<br>0.0    | 80.1<br>56.4<br>0.0 | 0.152<br>0.127<br>0.093 |
| "                               | 0.0                   | 0.0                                   | 0.192                   |                            |                        |                     |                         |

# Solubility of Carbon Monoxide in Mixtures of Toluene and Other Solvents at 25°.

(Skirrow.)

| Mixture of<br>Toluene and: | % CeHe<br>Mix<br>By Wt. | CH <sub>3</sub> in<br>ture.<br>By Vol. | CO.<br>125. | Mixture of<br>Toluene and: | %CeH<br>Mix<br>By Wt. | sCH <sub>a</sub> in<br>ture.<br>By Vol. | CO.<br>125- |
|----------------------------|-------------------------|----------------------------------------|-------------|----------------------------|-----------------------|-----------------------------------------|-------------|
| Anilin                     | 100.0                   | 100.0                                  | 0.182       | a Naphthol                 | 95.5                  | 97.I                                    | 0.171       |
| "                          | 94.4                    | 93.5                                   | 0.169       | - 44                       | 91.2                  | 94.2                                    | 0.162       |
| **                         | 80.1                    | 80.3                                   | 0.148       | Nitro Benzene              | 81.7                  | 85.7                                    | 0.160       |
| "                          | 55.4                    | 55.6                                   | 0.115       | **                         | 50.8                  | 58.I                                    | 0.131       |
| "                          | 25.4                    | 25.6                                   | 0.077       | 46                         | 23.7                  | 29.3                                    | 0.108       |
| "                          | 0.0                     | 0.0                                    | 0.053       | "                          | 0.0                   | 0.0                                     | 0.093       |
| Naphthalene                | 92.9                    | 94.8                                   | 0.169       | Phenanthrene               | 94.4                  | 97.0                                    | 0.170       |
| ""                         | 84.9                    | 88.7                                   | 0.161       | **                         | 88.8                  | 93.9                                    | 0.161       |
| "                          | 77.3                    | 82.5                                   | 0.153       | 46                         | 78.4                  | 87.5                                    | 0.147       |

# CARBON MONOXIDE

### 110

#### SOLUBILITY OF CARBON MONOXIDE IN MIXTURES OF ORGANIC SOLVENTS AT 25°. (Skirtow.)

|                  | (                        |                      |                          |                            |
|------------------|--------------------------|----------------------|--------------------------|----------------------------|
| Mixture Co       | emposed of:              | % of Latte<br>By Wt. | er in Mixture<br>By Vol. | • CO.<br>l <sub>25</sub> . |
| Chloroform and   | Methyl Alcohol           | 0.0                  |                          | 0.207                      |
| "                | 66                       | 13.0                 |                          | 0.202                      |
| "                | 66                       | 100                  |                          | 0.196                      |
| Carbon Bisulphi  | de and Ethyl Di Chloride |                      | 100                      | 0.147                      |
| "                | "                        |                      | 75                       | 0.157                      |
| ٩6               | 66                       |                      | 51                       | 0.160                      |
| "                | 66                       |                      | 18.4                     | 0.140                      |
| "                | 66                       |                      | 0.0                      | 0.083                      |
| Methyl Alcohol a | and Glycerine            | 0.0                  | 0.0                      | 0.190                      |
| • "              | <b>66</b>                | 39.6                 | 30 . I                   | 0.000                      |
| "                | **                       | 60.5                 | 50.I                     | 0.052                      |
| "                | "                        | 77.I                 | ŏ8.g                     | 0.025                      |
| "                | **                       | 100.0                | 100.0                    | very small                 |
|                  |                          |                      |                          |                            |

NOTE. — From the results shown in the preceding five tables, it is concluded that the solubility of carbon monoxide in various mixtures of organic solvents is, in general, an additive function.

# CARBON BISULPHIDE CS,.

#### SOLUBILITY IN WATER.

(Chancel and Parmentier -- Compt. rend. 100, 773, 85; Rex -- Z. physik. Chem. 55, 355, 'o6.)

|              | Grams C            | S2 per 100                      | -            | Grams CS2 per 100  |                                 |  |
|--------------|--------------------|---------------------------------|--------------|--------------------|---------------------------------|--|
| <b>t °</b> . | cc. Solu-<br>tion. | Gms. H <sub>2</sub> O<br>(Rex). | <b>t °</b> . | cc. Solu-<br>tion. | Gms. H <sub>2</sub> O<br>(Rex). |  |
| o            | 0 . 204            | 0.258                           | 30           | 0.155              | 0.195                           |  |
| 5            | 0.199              | •••                             | 35           | 0.137              | • • •                           |  |
| 10           | 0.194              | 0.239                           | 40           | O.III              |                                 |  |
| 15           | 0.187              | • • •                           | 45           | 0.070              | • • •                           |  |
| 20           | 0.179              | O.IOI                           | 49           | 0.014              | • • •                           |  |
| 25           | 0.169              | •••                             | -            |                    |                                 |  |

roo cc. H<sub>2</sub>O dissolve 0.174 cc. CS<sub>2</sub> at 22°; Vol. of solution = 100.208, Sp. Gr. = 0.9981.

100 cc. CS<sub>2</sub> dissolve 0.961 cc. H<sub>2</sub>O at 22°; Vol. of solution= 100.961, Sp. Gr. = 1.253. (Herz - Ber. 31, 2670, '98.)

Aq. Solutions of Ethyl Alcohol at 17°. Methyl Alcohol. (Tuchschmidt and Folleuins - Ber. 4, 583, '71.) (Rothmund - Z. physik. Chem. 26, 475, '98.) Wt. per cent CS<sub>2</sub> in: Wt. per Gms. CS<sub>2</sub> Wt. per Gms. CS2 t°. cent Alcohol. per 100 cc. Solvent. cent Alcohol. per 100 cc. Solvent. CH3OH CS<sub>2</sub> Layer. Layer. 100 œ 91.37 50 10 45.1 98.3 98.5 182 84.12 50.8 97.2 30 20 98.15 76.02 132 20 25 54.2 96.4 48.40 58.4 96.95 100 2 30 95.5 47.90 93.54 70 ο 35 64.0 93·5 40.5 (crit. temp.) 80.5

SOLUBILITY OF CARBON BISULPHIDE IN:

SOLUBILITY OF CARBON OXYSULPHIDE IN WATER. (Winkler; see Landolt and Börnstein's Tabellen, 3d ed. p. 602, 1906.)

III

| t°. | β.    | 9.    | <b>t °</b> . | ₿.    | 4.    |
|-----|-------|-------|--------------|-------|-------|
| ο   | 1.333 | 0.356 | 20           | 0.561 | 0.147 |
| 5   | 1.056 | 0.281 | 25           | 0.468 | O.I22 |
| IO  | 0.835 | 0.22I | 30           | 0.403 | 0.104 |
| 15  | 0.677 | 0.179 |              |       |       |

For  $\beta$  and q see Carbon Dioxide, page 105.

# CARBON TETRACHLORIDE. See p. 201.

# CARVOXIME C10H4:NOH.

t\*.

25 35.2 SOLUBILITY IN & LIMONBNE. (Goldschmidt and Cooper - Z. physik. Chem. 26, 714, '98.)

| <b>t °</b> . | Gms. C <sub>10</sub> H <sub>4</sub> :NOH<br>per 100 Gms.<br>r Limonene. | Solid Phase. | t°.           | Gms. C <sub>10</sub> H <sub>4</sub> :NOH<br>per 100 Gms.<br>r Limonene. | Solid Phase. |
|--------------|-------------------------------------------------------------------------|--------------|---------------|-------------------------------------------------------------------------|--------------|
| 24.6         | 44.6                                                                    | l Carvoxime  | 48            | 198.7                                                                   | l Carvoxime  |
| 30.0         | 59 - 2                                                                  | l Carvoxime  | <b>49</b> · 4 | 199.7                                                                   | r Carvoxime  |
| 30.3         | 63.3                                                                    | r Carvoxime  | 55-4          | 325.1                                                                   | l Carvoxime  |
| 38.4         | 104 . 3                                                                 | l Carvoxime  | 55.9          |                                                                         | r Carvoxime  |
| 39·4         | 103 . 1                                                                 | r Carvoxime  | 58.8          | •                                                                       | r Carvoxime  |
| 43 · I       | 130.8                                                                   | l Carvoxime  | 63.2          | 126.93                                                                  | r Carvoxime  |

# **OERIUM ACETATE, BUTYRATE, FORMATE**, etc.

SOLUBILITY IN WATER. (Wolff - Z. anorg. Chem. 45, 102, '05.)

| Selt.        | Formula.                                              | Grams Anhydrous Salt per 100 Gms. Solution at: |              |              |  |
|--------------|-------------------------------------------------------|------------------------------------------------|--------------|--------------|--|
|              |                                                       | 11°. (                                         | 15°.         | 76°.         |  |
| Acetate      | $Ce(C_{3}H_{3}O_{2})_{2}I_{2}H_{2}O$                  |                                                | 19.61        | 12.97        |  |
| Butyrate     | $Ce(C_4H_7O_2)_3$ , and $3H_2O$                       | 3.544                                          | 3.406        | 1.984        |  |
| Iso Butyrate | $Ce(C_{4}H_{7}O_{2})_{3}H_{2}O$                       |                                                | 6.603(20.4°) | 3.39         |  |
| Formate      | Ce(CHO <sub>2</sub> ) <sub>3</sub>                    | • • •                                          | 0.398(13°)   | 0.374(75.3°) |  |
| Propionate   | $Ce(C_{3}H_{5}O_{2})_{3}H_{2}O_{3}$ and $3H_{2}O_{3}$ | 0                                              | 18.99        | 15.93        |  |

# CERIUM AMMONIUM NITRATE (Ceri) Ce(NO<sub>3</sub>)<sub>4</sub>.2NH<sub>4</sub>NO<sub>3</sub>.

SOLUBILITY IN WATER.

|                                |       | (Wolff.)            |                                                                                          |  |
|--------------------------------|-------|---------------------|------------------------------------------------------------------------------------------|--|
| Gms. per 100 Gms.<br>Solution. |       | Atomic<br>Relation. | Gms. Ce(NO <sub>3</sub> ) <sub>4</sub> .2NH <sub>4</sub> NO <sub>3</sub><br>per 100 Gms. |  |
| NH4.                           | Ce.   | NH4 : Ce.           | Solution. Water.                                                                         |  |
| 4.065                          | 15.16 | 2.08 : I            | 58.49 140.9                                                                              |  |
| 4.273                          | 16.10 | 2.06 : I            | 61.79 161.7                                                                              |  |
| 4.489                          | 16.69 | 2.08 : 1            | 64.51 174.9                                                                              |  |
|                                |       | <b>6 6</b> -        |                                                                                          |  |

| 45·3  | 4.489 | 16.69        | 2.08 : I       | 64.51        | 174.9          |
|-------|-------|--------------|----------------|--------------|----------------|
| 64 5  | 4.625 | {17.40 Ce    | 2.06 : 1 Ce    |              |                |
| 04.3  | 4.023 | 15.03 Ce IV  | 2.39 : 1 Ce IV | 66.84        | 201.6          |
| 85.6  | 4.778 | {18.16 Ce    | 2.04 : 1 Ce    |              |                |
| - 5.0 | 4.110 | 115.79 Ce IV | 2.34 : 1 Ce IV | 69 <b>40</b> | 226.8          |
| 112   | 6.117 | {22.82 Ce    | 2.08 : 1 Ce    | ••           |                |
|       | /     | 16.22 Ce IV  | 2.95 : 1 Ce IV | 88.03        | 735 · <b>4</b> |

# CERIUM AMMONIUM NITRATE 112

٠

• .

•

# **GERIUM AMMONIUM NITRATE** (Cero) Ce(NO<sub>2</sub>)<sub>3</sub>.2NH<sub>4</sub>NO<sub>3</sub>.4H<sub>2</sub>O.

# SOLUBILITY IN WATER.

| _ ^ | ω.  | J# | ۰. |
|-----|-----|----|----|
| · · | W C |    |    |

| t°. Gms. per 100 Gms.<br>Solution. | Gms. per 100 Gms.<br>Solution. |           | Atomic Relation. | Gms. Ce(NO <sub>3</sub> ) <sub>2</sub> .2NH <sub>4</sub> NO <sub>3</sub><br>per 100 Gms. |       |
|------------------------------------|--------------------------------|-----------|------------------|------------------------------------------------------------------------------------------|-------|
|                                    | NH <sub>4</sub> : Ce.          | Solution. | Water.           |                                                                                          |       |
| 8.75                               | 4.787                          | 18.56     | I.999 : I        | 70.2                                                                                     | 235.5 |
| 25.0                               | 5.09                           | 19.80     | I.995 : I        | 74.8                                                                                     | 296.8 |
| 45.0                               | 5.53                           | 21.06     | 2.037 : I        | 80.4                                                                                     | 410.2 |
| 60.0                               | 6.01                           | 22.77     | 2.054 : I        | 87.2                                                                                     | 681.2 |
| 65.06                              | 6.11                           | 23.42     | 2.022 : I        | 89.1                                                                                     | 817.4 |

# **CERIUM AMMONIUM SULPHATE** Ce<sub>1</sub>(SO<sub>4</sub>)<sub>3</sub>.(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>.8H<sub>2</sub>O.

# Solubility in Water.

(Wolff.)

| Gms.<br>Ceg(SO4)s.(NH4)sSO4<br>per 100 Gms.<br>Solution. Water. | Solid<br>Phase.     | Gma.<br>t°. Ces(SO4)s.(NH4)sSO4 Solid<br>per 100 Gms. Phase.<br>Solution. Water.      |
|-----------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------|
| 22.3 5.06 5.33<br>35.1 4.93 5.18<br>45.2 4.76 4.99              | .8 <b>H</b> 2O<br>" | 45.0 2.91 2.99 Anhydride<br>55.25 2.16 2.21 "<br>75.4 1.46 1.48 "<br>85.2 1.17 1.18 " |

# **GERIUM SULPHATE** Ce<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>.

# SOLUBILITY OF THE SEVERAL HYDRATES IN WATER.

(Koppel – Z. anorg. Chem. 41, 377, '04; the previous determinations by Muthman and Rolig – Z. anorg. Chem. 16, 455, '08, and by Wyrouboff – Bull. soc. chim. [3] 25, 121, '01, are shown by Koppel to be inaccurate.)

| t°.  | Gms.<br>Ce2(SO4)3<br>per 100<br>Gms.<br>Solution. | Mols.<br>Ce <sub>2</sub> (SO <sub>4</sub> ) <sub>2</sub> pe<br>100 Mols.<br>H <sub>2</sub> O. | <sup>r</sup> Solid Phase. | ť°.   | Gms.<br>Ceg(SO4)3<br>per 100<br>Gms.<br>Solution. | Mols.<br>Ce <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> per<br>100 Mols.<br>H <sub>2</sub> O. | Solid Phase.   |
|------|---------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------|-------|---------------------------------------------------|------------------------------------------------------------------------------------------------|----------------|
| 0    | 14.20                                             | 0.525                                                                                         | Ce2(SO4)3.12H2O           | 20.5  | 8.69                                              | 0.302                                                                                          | Ce2(SO4)3.8H2O |
| 18.8 | 14.91                                             | 0.555                                                                                         | **                        | 40    | 5.613                                             | <b>o</b> .188                                                                                  | **             |
| 19.2 | 15.04                                             | 0.561                                                                                         | **                        | 60    | 3.88                                              | 0.129                                                                                          | ••             |
| 0    | 17.35                                             | 0.665                                                                                         | Ce2(SO4)3-9H2O            | 45    | 8.116                                             | 0.280                                                                                          | Cc2(SO4)3.5H2O |
| 15   | 10.61                                             | 0.376                                                                                         | ••                        | 60    | 3.145                                             | 0.103                                                                                          | ••             |
| 21   | 8.863                                             | 0.308                                                                                         | **                        | 8o    | I . 19                                            | 0.0382                                                                                         | **             |
| 31.6 | 6.686                                             | 0.227                                                                                         | **                        | 100.5 | 0.46                                              | 0.0149                                                                                         | •              |
| 45.6 | 4.910                                             | 0.164                                                                                         | **                        | 35    | 7.8                                               | 0.27                                                                                           | Ce2(SO4)3-4H2O |
| 50   | 4.465                                             | 0.148                                                                                         | **                        | 40    | 5.71                                              | 0.19                                                                                           |                |
| 60   | 3.73                                              | 0.123                                                                                         | ••                        | 50    | 3.31                                              | 0.11                                                                                           | 4              |
| 65 · | 3 · <b>4</b> 7                                    | 0.114                                                                                         | **                        | 65    | ī.85                                              | <b>o</b> .o6                                                                                   | 44             |
| 0    | 15.95                                             | 0.605                                                                                         | Ce2(SO4)3.8H2O            | 82    | o.98                                              | 0.032                                                                                          | 44             |
| 15   | <b>9</b> • <b>9</b> 5                             | 0.350                                                                                         | **                        | 100.5 | 0.42                                              | 0.014                                                                                          | •              |

# OHLOBAL HYDRATE C.HCI,O.H.O.

SOLUBILITY IN WATER, ETHYL ALCOHOL, CHLOROPORM, AND IN TOLUENE.

113

(Speyers - Am. J. Sci. (4) 14. 404. '04)

Calculated from the original results, which are given in terms of gram molecules of chloral hydrate per 100 gram mols, of solvent,

|              | In W          | ater.  |      | leahal.        |         | www.  | In Th  | hume. |
|--------------|---------------|--------|------|----------------|---------|-------|--------|-------|
| <b>t °</b> . | W.            | S.     | W.   | Š.             | W.      | S.    | W      |       |
| 0            | 1.43 <b>3</b> | 189.7  | 1.11 | 123.3          | 1.530   | 3.7   | 808. o | 3.4   |
| 5            | 1.460         | 233.0  | 1.16 | 130.0          | 1.515   | 4.0   | 0.000  | 4.0   |
| IO           | 1.485         | 275 .O | 1.23 | 140.0          | I.510   | 5.0   | 0.910  | 7.0   |
| 15           | 1.510         | 330.0  | I.30 | 160.0          | 1 . 505 | 9.0   | 0.015  | 11.0  |
| 20           | 1.535         | 383 .o | 1.36 | 185 . <b>0</b> | I.510   | 19.0  | 0.04   | 21.0  |
| 25           | 1.555         | 433.0  | I.42 | 215.0          | 1.520   | 34.0  | 0.07   | 30.0  |
| 30           | 1.580         | 480.0  | I.49 | 245.0          | 1.540   | 56.0  | 1.01   | 50.0  |
| 35           | 1.59          | 516.0  | 1.55 | 280.0          | 1.570   | 80.0  | 1.13   | 8o.o  |
| 40           | 1.605         | ••••   | 1.60 | 320.0          | 1.590   | 110.0 | 1-40   | 110.0 |
| 45           | 1.620         | •••    | •••  | •••            | • • •   | • • • | • • •  | • • • |

 $W = wt. of i cc. saturated solution, S = Gms. C_H(Cl_H)() per 100$ grams solvent.

#### CHLORINE CI.

# SOLUBILITY IN WATER.

(Winkler - Landolt and Börnstein's Tabellen, 3d ed. p. 439, 601, '00; Renselowan - Net. 1149, chim 30 50, '84; 40 60, '85; Z. physik, ('hem. 2, 443, 'MA.)

| <b>\$ *</b> . | <b>\$</b> '.  | 9.     | <b>t *</b> . | Cima (1) per<br>110, Cima Byl), | 6-101<br>Fh-14- |
|---------------|---------------|--------|--------------|---------------------------------|-----------------|
| ο             | 4.610         | 1.46   | -0.24        | C 41)2                          | Ice + C   Baij  |
| 3             | 3 . 947       | 1.25   | 0            | 1, 51,7 1, 5(M)                 | C18 mg          |
| 3<br>6        | 3.411         | 1.08   | 2            | 13 GAA                          | "               |
| 9             | 3.031         | 0.95   | 4            | · 7 ;x                          | **              |
| <b>9</b> .6   | 2.980         | C 94   | 6            | 1, 1.9 ;                        | **              |
| 12.0          | 2 773         | C 55   | *            | 1 11 Y                          | **              |
| 10            | 3 245         | S 117  | 9            | 1. If a so if the               | 40              |
| 15            | 2 635         | 5 8.49 | Ŷ,           | 1 2.9                           | "               |
| 20            | 2 2 10        | 5 729  | 27. 7        | 1, 10,                          | 11              |
| 25            | 1 1/2         | 2 641  |              |                                 |                 |
| 35            | : : : : ; : , | 2 7.72 |              |                                 |                 |
| 40            | 1 4:4         | 5 6 9  |              |                                 |                 |
|               | : 25.6        | 2 33   |              |                                 |                 |
| 5.4.          | : 11.         | 5 . 27 |              |                                 |                 |
| 75            | 2. 2.62       | 5 2.9  |              |                                 |                 |
| 82            | 2 42          | 5 223  |              |                                 |                 |
| y.            | 2. der.       | 2.22   |              |                                 |                 |
| 150           | ·             |        |              |                                 |                 |
|               |               |        |              |                                 |                 |

B = 200 of 10 and 10 and 10 and 10 and 1 constraint and a set \$2 for all total constraints and a set \$2 for all total constraints of a for and \$2 for all \$2 for al

.

.

#### SOLUBILITY IN WATER. (Goodwin — Ber. 15, 3039, '82.)

The saturated aqueous solution of the chlorine was cooled until chlorhydrate separated; the temperature was then gradually raised and portions withdrawn for analysis at intervals. Slightly different results were obtained for solutions in contact with much, little, or no chlorhydrate. The following results are taken from an average curve.

| <b>t °</b> . | Solubility<br>Coefficient. | t°.  | Solubility<br>Coefficient. | t°. | Solubility<br>Coefficient. |
|--------------|----------------------------|------|----------------------------|-----|----------------------------|
| 2.5          | 1.76                       | 11   | 3.0                        | 25  | 2.06                       |
| 5.0          | 2.00                       | 12.5 | 2.75                       | 30  | I.8                        |
| 7.5          | 2.25                       | 15   | 2.6                        | 40  | 1.35                       |
| 10           | 2.7                        | 20   | 2.3                        | 50  | I.O                        |

#### SOLUBILITY OF CHLORINE IN AQUBOUS SOLUTIONS OF HYDROCHLORIC ACID AND OF POTASSIUM CHLORIDE. (Goodwin.)

| Coefficient of Solubility in: |                         |                        |                         |                             |  |  |  |
|-------------------------------|-------------------------|------------------------|-------------------------|-----------------------------|--|--|--|
| t°.                           | HCl<br>(1.046 Sp. Gr.). | HCl<br>(1.08 Sp. Gr.). | HCl<br>(1.125 Sp. Gr.). | KCl<br>(20 g. per 100 cc.). |  |  |  |
| 0                             | 4 · I                   | 6.4                    | 7.3                     | 1.5                         |  |  |  |
| 5                             | 5.1                     | 5.2                    | 6.7                     | 2.0                         |  |  |  |
| 10                            | <b>4</b> .I             | 4.5                    | б. 1                    | 2.2                         |  |  |  |
| 15                            | 3.5                     | 3.9                    | 5.5                     | 1.6                         |  |  |  |
| 20                            | 3.0                     | 3 · 4                  | 4.7                     | I.2                         |  |  |  |
| 25                            | 2.5                     | 3.0                    | 4.0                     | I.O                         |  |  |  |
| 30                            | 2.0                     | 2.4                    | • • •                   | 0.9                         |  |  |  |
| 40                            | 1.25                    | 1.6                    | •••                     | •••                         |  |  |  |
|                               |                         |                        |                         |                             |  |  |  |

Goodwin also gives results for solutions of NaCl, CaCl<sub>2</sub>, MgCl<sub>2</sub>, SrCl<sub>3</sub>, Fe<sub>2</sub>Cl<sub>2</sub>, CoCl<sub>2</sub>, NiCl<sub>2</sub>, MnCl<sub>2</sub>, CdCl<sub>2</sub>, LiCl, and in mixtures of some of these, but the concentrations of the salt solutions are not stated.

Solubility of Chlorine in Aqueous Solutions of Sodium Chloride.

(Kumpf -- Wied. Ann. Beibl. 6, 276, '82; Kohn and O'Brien -- J. Soc. Chem. Ind. 17, 100, '98.)

| <b>t</b> °. | Coefficient of Solubility in: |              |              |              |  |  |
|-------------|-------------------------------|--------------|--------------|--------------|--|--|
|             | 9.97% NaCl.                   | 16.01% NaCl. | 19.66% NaCl. | 26.39% NaCl. |  |  |
| 0           | 2.3                           | 1.9          | I.7          | 0.5          |  |  |
| 5           | 2.0                           | I.6          | I.4          | 0.44         |  |  |
| 10          | I.7                           | I.3          | 1.15         | 0.4          |  |  |
| 15          | I.4                           | 1.06         | 0.95         | o.36         |  |  |
| 20          | I.2                           | 0.9          | o.8          | 0.34         |  |  |
| 25          | o.94                          | 0.75         | 0.65         | O.3          |  |  |
| 50          |                               | • • •        | • • •        | O · 2        |  |  |
| 8o          | •••                           | •••          | • • •        | 0.05         |  |  |

100 cc. of 6.2 per cent CaCl<sub>2</sub> solution dissolve 0.245 gram Cl at 12°. 100 cc. of 6.2 per cent MgCl<sub>2</sub> solution dissolve 0.233 gram Cl at 12°. 100 cc. of 6.2 per cent MnCl<sub>2</sub> solution dissolve 0.200 gram Cl at 12°. For coefficient of solubility see page 105.

# CHLORINE MONOXIDE CI.O.

100 volumes of water at 0° absorb 200 volumes of Cl<sub>2</sub>O gas.

#### CHLORINE TRIOXIDE CLO.

SOLUBILITY IN WATER AT APPROX. 760 MM. PRESSURE.

(Brandan - Lichig's Ann. 151, 340. Yo.)

| <b>t</b> *.                             |       |       | a1 <sup>6</sup> . |       |
|-----------------------------------------|-------|-------|-------------------|-------|
| Gms. CLO, per 100 gms. H <sub>2</sub> O | 4.765 | 5.012 | 5-445             | 5.651 |

Garzarolli and Thurnbalk — Liebig's Ann. 209, 184, '81, say that Cl<sub>2</sub>O<sub>4</sub> does not exist, and above figures are for mixtures of Cl<sub>2</sub>O and Cl.

# OHLOBOFORM CHCI,

SOLUBILITY IN WATER. (Chancel and Parmentier -- Compt. rend. 100, 473, 85; Rez -- Z. physik. Chem. 55, 355, '06.)

| <b>t*</b> . | Gras. CHCla per<br>Liter of Solution. | Density<br>of Solutions. | <b>t*</b> . | Guas. CHCla per<br>100 Guas. HgO (Rex). |
|-------------|---------------------------------------|--------------------------|-------------|-----------------------------------------|
| ο           | 9.87                                  | 1.00378                  |             |                                         |
| 3.2         | 8.90                                  | •••                      | 0           | 1.062                                   |
| 17.4        | 7.12                                  | 1.00284                  | 10          | o.895                                   |
| 29.4        | 7.05                                  | I .00280                 | 20          | 0.822                                   |
| 41.6        | 7.12                                  | I .00284                 | 30          | 0.776                                   |
| 54-9        | 7.75                                  | I .00309                 |             |                                         |

100 cc. H<sub>2</sub>O dissolve 0.42 cc. CHCl<sub>3</sub> at  $22^{\circ}$ ; Vol. of sol. = 100.39 cc., Sp. Gr. = 1.0002.

<sup>1</sup>100 cc. CHCl<sub>3</sub> dissolve 0.152 cc. H<sub>2</sub>O at 22°; Vol. of sol. = 99.62 cc., Sp. Gr. = 1.4831.

(Hers - Ber. 31, 2670, '98.)

#### SOLUBILITY OF CHLOROFORM IN AQUEOUS ETHYL ALCOHOL, METHYL ALCOHOL, AND ACETONE MIXTURES AT 20°. (Bancroft -- Phys. Rev. 3, 20, '95, '96.)

| In Ethyl Alcohol.     |                                | In Meth               | yl Alcohol.            | In Acetone.        |           |  |
|-----------------------|--------------------------------|-----------------------|------------------------|--------------------|-----------|--|
| Per s cc.             | 5 cc. C2HsOH. Per 5 cc. CH2OH. |                       | c. CH <sub>2</sub> OH. | Per 5 cc. (CHa)gCO |           |  |
| cc. H <sub>2</sub> O. | cc. CHCla.                     | cc. H <sub>2</sub> O. | cc. CHCla.             | cc. HaO.           | cc. CHCh. |  |
| 10                    | 0.20                           | IO                    | 0 · IO                 | 5.0                | 0.16      |  |
| 8                     | 0.3                            | 5                     | o.48                   | 4.0                | 0.22      |  |
| 6                     | 0.515                          | 4                     | o.80                   | 3.0                | 0.33      |  |
| 4                     | 1.13                           | 2                     | 4.0                    | 2.0                | 0.58      |  |
| 2                     | 2.51                           | I - 49                | 7.0                    | I.O                | 0.955     |  |
| I                     | 4.60                           | 1.35                  | 8.o                    | o.79               | 1.12      |  |
| 0.91                  | 5.0                            | 1.12                  | 10.0                   | 0 · 505            | 1.60      |  |
| 0.76                  | 6.0                            |                       |                        | 0.30               | 2.50      |  |
| 0.55                  | 8.o                            |                       |                        | 0.21               | 3.50      |  |
| 0.425                 | IO.O                           |                       |                        | 0.19               | 4.0       |  |
| 0.20                  | 20.0                           |                       |                        | 0.16               | 5.0       |  |
| 0.125                 | 30.24                          |                       |                        | 0.12               | 10.0      |  |

# OHROMIUM ALUMS

SOLUBILITY OF CHROMIUM ALUMS IN WATER AT 25°. (Locke – Am. Ch. J. 26, 174, '01.)

116

|                                                    |                                                       | Per 100 cc. Water.  |                    |                          |
|----------------------------------------------------|-------------------------------------------------------|---------------------|--------------------|--------------------------|
| Alum                                               | Formula.                                              | Grams<br>Anhdyrous. | Grams<br>Hydrated. | Gram<br>Mols.            |
| Potassium Chromium Alum<br>Tellurium Chromium Alum | $K_2Cr_2(SO_4)_4.24H_2O$<br>$Te_2Cr_2(SO_4)_4.24H_2O$ | 12.51<br>10.41      | 24.39<br>16.38     | 0.044 <b>I</b><br>0.0212 |

# **CHROMIUM CHLORIDE** (ic) CrCl<sub>2</sub>.6<sup>1</sup>/<sub>2</sub>H<sub>2</sub>O.

100 grams H<sub>3</sub>O dissolve 130 grams (green modification) at 15°. (Recours - Compt. rend. 102, 518, '86.)

# CHROMIUM DOUBLE SALTS.

SOLUBILITY IN WATER.

(Jörgensen - J. pr. Chem. [2] 20, 105, '79; [2] 30, 1, '84; [2] 42, 208, '90; Struve - Ibid. [2] 61, 457,

| Name of Salt.                                              | Formula.                                                                                                                                 | t °.      | Gms. per<br>100 Gms.<br>H <sub>2</sub> O. |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------|
| Chloro Tetra Amine Chromium<br>Chloride                    | CrCl(NH <sub>2</sub> ) <sub>4</sub> (OH <sub>2</sub> )Cl <sub>2</sub>                                                                    | 15        | -                                         |
| Chloro Purpureo Chromium Chloride                          | CrCl(NH <sub>2</sub> ) <sub>5</sub> Cl <sub>2</sub>                                                                                      | 15<br>16  | 6.3<br>0.65                               |
| Luteo Chromium Nitrate<br>Chloro Purpureo Chromium Nitrate | Cr(NH <sub>3</sub> ) <sub>6</sub> (NO <sub>3</sub> ) <sub>3</sub><br>CrCl(NH <sub>3</sub> ) <sub>6</sub> (NO <sub>3</sub> ) <sub>5</sub> | ۲<br>17.5 | 2.6<br>1.4                                |
| Chromic Potassium Molybdate                                | 3K,O.Cr,O, 12M0O, 20H,O                                                                                                                  | 17        | 2.5                                       |

# CHROMIUM TRIOXIDE CrO.

Solubility in Water.

(Mylius and Funk - Wiss. Abh. p. t. Reichanstalt, 3, 451, '00.)

| t°         | Gms. CrO <sub>3</sub> per 100<br>g. Solution. | Mols. CrO <sub>3</sub> per<br>100 Mols. H <sub>2</sub> O. | Solid Phase. |
|------------|-----------------------------------------------|-----------------------------------------------------------|--------------|
| 0          | 62.08                                         | 29 4                                                      | CrO,         |
| 15         | 62.38                                         | 29.8                                                      | « <b>-</b>   |
| 18         | 62.45                                         | 29.91                                                     | "            |
| 50         | 64.55                                         | 32.7                                                      | **           |
| <b>9</b> 9 | 67 . 39                                       | 37.1                                                      | 66           |

Density of solution saturated at  $18^\circ = 1.705$ .

# **CHROMIUM SULPHATES** (ous and ic).

1

SOLUBILITY IN WATER (ous at °).

| Salt.    | Gms. per 100<br>Gms. H <sub>2</sub> O. | Solid Phase.                                                        | Authority.                                    |
|----------|----------------------------------------|---------------------------------------------------------------------|-----------------------------------------------|
| Chromous | 12.35                                  | CrSO <sub>4</sub> ,7H <sub>2</sub> O                                | (Moissan — Bull. soc. chim. [2] 37, 296, '82) |
| Chromic  | 120.0                                  | Cr <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> .18H <sub>2</sub> O | (Etard — Compt. rend. 84, 1990, '77.)         |

# CHRYSAROBIN C<sub>30</sub>H<sub>26</sub>O<sub>7</sub>.

SOLUBILITY IN SEVERAL SOLVENTS. (U. S. P.)

| Solvent.                    | Gms. per 10<br>25°.   | o Gms. Solvent at:<br>80°. | Solvent.                                                 | Gms. per 100 Gms.<br>Solvent at 25°.    |
|-----------------------------|-----------------------|----------------------------|----------------------------------------------------------|-----------------------------------------|
| Water<br>Alcohol<br>Benzene | 0.021<br>0.324<br>4.0 | o .046<br>o .363 (60°)<br> | Chloroform<br>Ether<br>Amyl Alcohol<br>Carbon Disulphide | 5 · 55<br>o · 873<br>3 · 33<br>e o · 43 |

CHRYSET C.E.

SULTEDITY IN TOLIENE AND IN ARE ALCOROL.

The Berner

100 gans tainene destaire 2.24 gan Jagar at 18" and 3.38 gans 48 ICC<sup>2</sup>. 100 gens als almini dissilve clore gen. Dy Ha at 21" and 2.270 gen.

at 5. pt.

.

# CENCHORA ALKALOEDE. See aist Quimine. 7. 206.

Solvening of Cincherene. Concherences (Cincher, and (Conchere IN SEVERAL SHEVENES AT 18"-22".

Mile-Apol 23 al 25 15 se an Franc-) was the first to be Gauss & the Alexand are not Jointe Salaria

| Sarven.<br>Cannea    |                | ansar Ianadar<br>Bays Isbays                   |              | in the los |                      |
|----------------------|----------------|------------------------------------------------|--------------|------------|----------------------|
|                      | · 3.18. A-     |                                                | Ewas.        | Ant: 1010  | Canadana<br>Canadana |
| Etter                | : 1:           | = ===                                          | I ÍID        | : 57       | 0 776                |
| Ether sal vill H.C.  | : ::;          | = 523                                          | 5 115        | - 754      | I 020                |
| H.C. st. vit Ener    | : ==           | : : : : : : : : : : : : : : : : : : :          | 2 2007       | = 254-     | C 231                |
| Benzene              | : :545         | 2000                                           | : 254        | : 700      | 2 451                |
| Chieven              | : ):-:         | 1 321                                          | :x-          | :          | 130-                 |
| Acetic Ether         | : :-::         | 2 3003                                         | 4 35         | 2 400      | 1 701                |
| Perrueum Ether       | = = <u>335</u> | 5 5475                                         | = =i==       | 2 22:1     | 0.3241               |
| Carbie Terra Chieria | e :: : : : : : | : : <b>:</b> ::::::::::::::::::::::::::::::::: | : 2:;        | 2 520      | 0 505                |
| Water                | 5 5135         | -                                              | 0 574        | 2 2520     | C 0308               |
| Giverine :: :        | s 55           |                                                | 5 <b>5</b> 5 | •          | •••                  |

100 grams chloroform dissolve 0.555 gm. cinchonine at 50°. 100 grams abs. ether dissolve 0.264 gm. cinchonidine at 52°.

Kiber - Z ami. Ct. 18, 141. (4.)

# SOLUBILITY OF CINCHONINE AND CINCHOTINE SULPEATE, TARTRATE, BITARTRATE, OXALATE, AND HYDROCHLORIDE IN WATER.

First and Börringer - Ber. 14, 1996 - St.

| Cinchonine Salts                                                                                                                                                                                                                                                                           |                            |                                     | Cinchotine Salts                                                                                                                                            | <b>L</b>             |                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------|
| Farmula                                                                                                                                                                                                                                                                                    | <b>t '</b> .               | Gras. per<br>soc Gras.<br>BrO.      | Farmala.                                                                                                                                                    | <b>t*</b> .          | Gins per<br>tor (inst.<br>Hal).      |
| 2:C <sub>B</sub> H <sub>B</sub> N:O SO,H <sub>2</sub> :H:O<br>2:C <sub>B</sub> H <sub>B</sub> N:O C,H:O, 2:HO<br>C <sub>B</sub> H <sub>B</sub> N:O:C <sub>4</sub> H;O, 2:HO<br>2:C <sub>B</sub> H <sub>B</sub> N:O:C <sub>4</sub> H;O, 2:HO<br>C <sub>B</sub> H <sub>B</sub> N:O:HCI:2:H;O | 13<br>16<br>16<br>20<br>10 | 1-52<br>3-0<br>0-00<br>0-00<br>4-10 | 2 C.,H.,N.O SO,H., 2H,O<br>2 C.,H.,N.O C.H.O., 2H,O<br>C.,H.,N.O C.H.O., 4H,O<br>2 C.,H.,N.O C.H.O., 4H,O<br>2 C.,H.,N.O C.H.O., 14,O<br>C.,H.,N.O.HCI.2H,O | 13<br>10<br>10<br>10 | 3.28<br>1.70<br>1.28<br>1.10<br>2.12 |

SOLUBILITY OF CINCHONINE SULPHATE AND OF CINCHONIDINE SUL-PHATE IN SEVERAL SOLVENTS.

(U. S. P.)

| Solvent.   | Gms. 'C <sub>11</sub> H <sub>22</sub> N <sub>2</sub> C<br>per 100 G: | 213H2SO42H2O | Gms. (CipHipNik()'aHp9(), tHp)<br>per 100 (ims. Solvent. |           |  |
|------------|----------------------------------------------------------------------|--------------|----------------------------------------------------------|-----------|--|
|            | At 25°.                                                              | At So        | At as                                                    | AL N'     |  |
| Water      | 1.72                                                                 | 3 I          | 1.00                                                     | 4 80      |  |
| Alcohol    | 10 0                                                                 | 19.2 (60°)   | I - 4                                                    | 3.1 (00°) |  |
| Ether      | 0 04                                                                 |              | 0.01                                                     | •••       |  |
| Chloroform | I.45                                                                 | • • •        | 0.11                                                     | •••       |  |
| Glycerine  | 6.7 (15°)                                                            | •••          | •••                                                      | •••       |  |

# CINNAMIC ACID C.H.CH:CH.COOH.

SOLUBILITY OF CINNAMIC ACID IN AQUEOUS SOLUTIONS OF SODIUM ACETATE, BUTYRATE, FORMATE, AND SALICYLATE AT 26.4°. (Philip – J. Chem. Soc. 87, 992, '05.)

Calculated from the original results, which are given in terms of molecular quantities per liter.

| JIDS. INS. JEIK |           |            |         |               |  |
|-----------------|-----------|------------|---------|---------------|--|
| per Liter.      | CH_COONA. | CaH7COONa. | HCOONa. | CeH.OH.COONa. |  |
| 0               | 0.56      | o.56       | 0.56    | o.56          |  |
| I               | I.50      | I . 30     | 0.92    | 0.62          |  |
| 2               | 2.12      | 1.85       | I.12    | 0.70          |  |
| 3               | 2.52      | 2.25       | I . 27  | 0.73          |  |
| 4               | 2.85      | 2.60       | I . 40  | 0.77          |  |
| 5               | 3.05      | 2.90       | 1 · 47  | o.80          |  |
| 8               | • • •     | • • •      | • • •   | 0.90          |  |
|                 |           |            |         |               |  |

Gms. Na Salt Gms. CoHoCH:CH.COOH per Liter in Solutions of:

I liter of aqueous solution contains 0.491 gm.  $C_6H_6CH:CH.COOH$  at 25° (Paul).

SOLUBILITY OF CINNAMIC ACID IN AQUEOUS SOLUTIONS OF ANILIN AND OF PARA TOLUIDIN AT 25°. (Lowenherz – Z. physik. Chem. 25, 394, '98.)

Original results in terms of molecular quantities per liter.

| In Aqueous Anilin.<br>Grams per Liter. |                  | In Aqueous p Toluidin.                                          |                                            |  |
|----------------------------------------|------------------|-----------------------------------------------------------------|--------------------------------------------|--|
|                                        |                  | Grams per Liter.                                                |                                            |  |
| CoHaNH2.                               | CoHoCH : CHCOOH. | C <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> NH <sub>2</sub> . | C <sub>6</sub> H <sub>6</sub> CH : CHCOOH. |  |
| 0                                      | 0.49             | 0                                                               | o.49                                       |  |
| I                                      | I . 20           | I                                                               | I.52                                       |  |
| 2                                      | 1.65             | 2                                                               | 2.20                                       |  |
| 3                                      | 2.02             | 3                                                               | 2.83                                       |  |
| 4                                      | 2.35             | 4                                                               | 3 - 35                                     |  |
| 6                                      | 2.92             | 5                                                               | 3.80                                       |  |

# SOLUBILITY OF CINNAMIC ACID IN METHYL, ETHYL, AND PROPYL Alcohols.

(Timofeiew - Compt. rend. 112, 1137, '91.)

| t°.  | Grams CoHsCH:CH.COOH per 100 Grams of: |        |                                   |  |  |
|------|----------------------------------------|--------|-----------------------------------|--|--|
|      | снон.                                  | C2HOH. | C <sub>2</sub> H <sub>7</sub> OH. |  |  |
| 0    | 20.65                                  | 15.61  | 10.63                             |  |  |
| 19.5 | 28.91                                  | 22.03  | 15.41                             |  |  |

#### SOLUBILITY OF BROM CINNAMIC ACIDS.

| a | Brom    | and $\beta$ Brom Cinnamic       | Aci |
|---|---------|---------------------------------|-----|
|   |         | in Water at 25°.                |     |
|   | (Paul — | Z. physik. Chem. 14, 111, '94.) |     |

id a Brom Cinnamic Acid in Aq. Solutions of Oxalic Acid at 25°. (Noyes – Z. physik. Chem. 6, 245, '90.)

| Acid.                                                                                               |        | c. Solution.<br>Millimols. | Normality (COOH)2. |                                          |              | per Liter.<br>)2. C6H5CH:<br>CBrCOOH. |
|-----------------------------------------------------------------------------------------------------|--------|----------------------------|--------------------|------------------------------------------|--------------|---------------------------------------|
| a, C <sub>6</sub> H <sub>5</sub> CH: CBrCOOH<br>$\beta$ , C <sub>6</sub> H <sub>5</sub> CBr: CHCOOH | 3.9325 | 17.32                      | 0<br>0.0275        | Br : COOH.<br>0.0176<br>0.0140<br>0.0129 | 0.0<br>2.448 | CBrCOOH.<br>3.995<br>3.178<br>2.928   |

.

# CITRIC ACID C<sub>3</sub>H<sub>4</sub>(OH)(COOH), H<sub>2</sub>O.

# SOLUBILITY IN SEVERAL SOLVENTS. (U. S. P.; Bourgoin - Ann. chim. phys. [5] 13, 406, '78.)

| Solvent.         | s. Ga  | L. Calle OH COO | HDa.HaO per 100 Gans. |
|------------------|--------|-----------------|-----------------------|
| Survey.          | • •    | Solution.       | Solvent.              |
| Water            | 25     | 64.8            | 185                   |
| Water            | b. pt. | 70.3            | 250                   |
| Alcohol (90%)    | 25     | 34.6            | 75-9                  |
| Alcohol (U.S.P.) | 44     | 39.2            | 64.5                  |
| Alcohol (Abs.)   | "      | 43-2            | 52.8                  |
| Ether            | 66     | 2.2I            | 2.26                  |
| Ether (U.S.P.)   | "      | 5.2             | 5-55                  |

# COBALT BROMIDE CoBr.

-

.

| SOLUBILITY II<br>(Etard — Ann. chim. ph |      |                   |                   |
|-----------------------------------------|------|-------------------|-------------------|
| <b>٤</b> ².                             | 59°. | 75 <sup>0</sup> - | 97 <sup>8</sup> - |
| Gms. CoBr, per 100 gms. solution        | 66.7 | 66.8              | 68.1 (blue)       |

# COBALT DOUBLE SALTS.

SOLUBILITY IN WATER. (Jörgensen – J. pr. Chem. [2] 18, 205, '78; 19, 49, '70; Kurnakoff – J. russ. phys. chem. Ges. 24, 629, '92.)

| Name.                                | Formula.                                                               | <b>t°</b> . | Gms. Salt<br>per 100<br>Gms. HgO. |
|--------------------------------------|------------------------------------------------------------------------|-------------|-----------------------------------|
| Chloro purpureo cobaltic bromide     | CoCl(NH <sub>3</sub> ) <sub>5</sub> Br <sub>2</sub>                    | 14.3        | 0.467                             |
| Bromo purpureo cobaltic bromide      | CoBr(NH <sub>3</sub> ) <sub>5</sub> Br <sub>2</sub>                    | 16          | 0.19                              |
| Chloro tetra amine cobaltic chloride | CoCl(NH <sub>2</sub> ) <sub>4</sub> (OH <sub>2</sub> )Cl <sub>2</sub>  |             | 2.50                              |
| Chloro purpureo cobaltic chloride    | CoCl(NH <sub>3</sub> ) <sub>s</sub> Cl <sub>2</sub>                    | 0           | 0.232                             |
| Chloro purpureo cobaltic chloride    | CoCl(NH <sub>a</sub> ) <sub>5</sub> Cl <sub>2</sub>                    | 15.5        | 0.41                              |
| Chloro purpureo cobaltic chloride    | CoCl(NH <sub>2</sub> ) <sub>5</sub> Cl <sub>2</sub>                    | 46 6        | I.03                              |
| Luteo cobaltic chloride              | Co(NH <sub>3</sub> ) Cl <sub>3</sub>                                   | 0           | 4.26                              |
| Luteo cobaltic chloride              | Co(NH <sub>3</sub> ) <sub>6</sub> Cl <sub>3</sub>                      | 46.6        | 12.74                             |
| Roseo cobaltic chloride              | Co(NH <sub>a</sub> ) <sub>s</sub> (OH <sub>a</sub> )Cl <sub>a</sub>    | 0           | 16.12                             |
| Roseo cobaltic chloride              | Co(NH <sub>a</sub> ) <sub>s</sub> (OH <sub>a</sub> )Cl <sub>a</sub>    | 16.2        | 24.87                             |
| Chloro purpureo cobaltic iodide      | CoCl(NH <sub>3</sub> ) <sub>3</sub> I <sub>2</sub>                     | 19.2        | 2.0                               |
| Chloro purpureo cobaltic nitrate     | CoCl(NH <sub>a</sub> ) <sub>s</sub> (NO <sub>a</sub> ) <sub>2</sub>    | 15          | I.25                              |
| Chloro purpureo cobaltic sulphate    | CoCl(NH <sub>3</sub> ) <sub>5</sub> SO <sub>4</sub> .2H <sub>2</sub> O | 17.3        | 0.75                              |
| Nitrato purpureo cobaltic nitrate    | Co(NO <sub>3</sub> )(NH <sub>3</sub> )(NO <sub>3</sub> )               | 10          | 0.36                              |

# COBALT CHLORATE Co(ClO<sub>3</sub>)<sub>2</sub>.

# SOLUBILITY IN WATER. (Meusser – Ber. 35, 1419, '02.)

| t*.  | Gms.<br>Co(ClO <sub>3</sub> ) <sub>3</sub><br>per 100 Gms.<br>Solution. | Mols.<br>Co(ClO <sub>2</sub> )2<br>per 100<br>Mols. H2O | Solid<br>Phase.              | t°.       | Gms.<br>Co(ClO <sub>2</sub> ) <sub>2</sub><br>per 100 Gms.<br>Solution. | Mols.<br>Co(ClO <sub>3</sub> ) <sub>3</sub><br>per 100<br>Mols. H <sub>2</sub> O. | Phase.          |
|------|-------------------------------------------------------------------------|---------------------------------------------------------|------------------------------|-----------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------|
| - 12 | 29.97                                                                   | 3.41                                                    | Ice                          | 18        | 64 . 19                                                                 | 14.28                                                                             | Cu(ClO3)2-4H2O. |
| - 21 | 53.30                                                                   | 9.08                                                    | Co(ClO <sub>3</sub> )2.6H2O. | 21        | 64 . 39                                                                 | 14.51                                                                             | **              |
| - 19 | 53.61                                                                   | 9.20                                                    | **                           | 35        | 67.09                                                                   | 16.10                                                                             | ••              |
| ò    | 57 . 45                                                                 | 10.75                                                   | "                            | 47        | 69.66                                                                   | 18.29                                                                             | ••              |
| 10.5 | 61.83                                                                   | 12.90                                                   | **                           | 61        | 76.12                                                                   | 25.39                                                                             | ••              |
| Den  | sity of sol                                                             | ution ea                                                | turated at T                 | <u>ءہ</u> | ат 86 т                                                                 |                                                                                   |                 |

Density of solution saturated at  $18^{\circ} = 1.861$ .

119

# COBALT CHLORIDE CoCl.

SOLUBILITY IN WATER. (Etard - Compt. rend. 113, 699, '91; Ann. chim. phys. [7] 2, 537, '94.)

| t°.  | Gms.<br>CoCl <sub>2</sub> per<br>100 Gms.<br>Solution. | Solid<br>Phase. | t°. | Gms.<br>CoCl <sub>2</sub> per<br>100 Gms.<br>Solution. | Solid<br>Phase.                            |
|------|--------------------------------------------------------|-----------------|-----|--------------------------------------------------------|--------------------------------------------|
| - 10 | 27.0                                                   | CoCl.6H2O (red) | 35  | 38.0                                                   | CoCl.H.O (violet)                          |
| 0    | 29.5                                                   |                 | 40  | 41.0                                                   | - 7.                                       |
| + 10 | 31.5                                                   | "               | 50  | 47.0                                                   | "                                          |
| 20   | 33 · 5                                                 | "               | 60  | 47 • 5                                                 | CoCl <sub>2</sub> .H <sub>2</sub> O (blue) |
| 25   | 34 · 5                                                 | "               | 80  | 49 . 5                                                 | - 74                                       |
| 30   | 35 · 5                                                 | "               | 100 | 51.0                                                   | "                                          |

SOLUBILITY OF COBALT AMMONIUM CHLORIDES IN WATER. (Kurnakoff - J. russ. phys. chem. Ges. 24, 629, '93; J. Chem. Soc. 64, ii, 509, '93.)

| Selt.                    | Grams per 100 Grams H2O at: |           |        |  |  |
|--------------------------|-----------------------------|-----------|--------|--|--|
|                          | ø.                          | 16.9°.    | 46.6°. |  |  |
| CoCl. 5NH                | 0.232                       | -         | 1.031  |  |  |
| CoCl.5NH.H.O<br>CoCl.6NH | 16.12<br>4.26               | 24.87<br> |        |  |  |
| COC.3.01113              | 4.20                        | • • •     | 12.74  |  |  |

# SOLUBILITY OF COBALT CHLORIDE IN AQUEOUS HYDROCHLORIC ACID SOLUTIONS AT 0°. (Engel — Ann. chim. phys. [6] 7, 355, '89.)

| Milligram Mols.<br>per 10 cc. Sol. |         | Sp. Gr. of | Gms. per 100 Gms.<br>Solution. | Gms. per<br>Solu    | 100 cc.<br>tion. |
|------------------------------------|---------|------------|--------------------------------|---------------------|------------------|
| CoCla.                             | HCl.    | Solutions. | CoCl <sub>2</sub> . HCl.       | CoCl <sub>2</sub> . | HCI.             |
| 62.4                               | 0       | I.343      | 30.17 0.00                     | 40.5                | 0                |
| 58.52                              | 3.7     | 1.328      | 28.62 0.102                    | 38.0                | 0.135            |
| 50.8                               | 11.45   | I . 299    | <b>25</b> .39 0.321            | 33.0                | 0.417            |
| 37.25                              | 25.2    | 1 . 248    | 19.43 0.738                    | 24 . 2              | 0.919            |
| 12.85                              | 55.0    | 1.167      | 7.15 1.718                     | 8.34                | 2.00             |
| 4.75                               | 74.75   | I . I 50   | 2.68 2.369                     | 3.08                | 2.72             |
| 12.0                               | 104 . 5 | I . 229    | 6.34 3.099                     | 7.79                | 3.81             |
| 25.0                               | 139.0   | 1.323      | 12.27 3.829                    | 16.24               | 5.07             |

# SOLUBILITY OF COBALT CHLORIDE IN AQUEOUS ALCOHOL AT 11.5°. (Bödtker – Z. physik. Chem. 22, 509, '97.)

10 gms. of CoCl<sub>2</sub>.6H<sub>2</sub>O were added to 20 cc. of alcohol and in addition the amounts of CoCl, shown in the second column. The solutions were shaken 2 hours, 5 cc. withdrawn, and the amount of dissolved CoCl, determined by evaporation and weighing.

| Vol. % Gms. CoCl<br>Alcohol. Added. | Gms. per 5 cc. Solution.<br>H <sub>2</sub> O. CoCl <sub>2</sub> . | Vol. % Gms. CoCl <sub>2</sub><br>Alcohol. Added. | Gms. per 5 cc. Sol.<br>HgO. CoCl <sub>2</sub> . |
|-------------------------------------|-------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|
| 91.3 0.0                            | 1.325 1.168                                                       | 99.3 0.612                                       | 0.764 1.459                                     |
| 98.3 0.0                            | 1.134 1.214                                                       | 99.3 0.813                                       | 0.688 I.568                                     |
| 98.3 0.0                            | 1.068 1.181                                                       | 99.3 I.022                                       | 0.634 1.713                                     |
| 99.3 0.0                            | I.045 I.199                                                       | 99.3 I.240                                       | 0.553 1.831                                     |
| 99.3 0.194                          | 0.899 1.204                                                       | 99.3 I.446                                       | 0.483 I.943                                     |
| 99.3 0.400                          | 0.829 1.325                                                       | 99.3 I.650                                       | 0.500 2.183                                     |
| 100 gms. sat.                       | solution in alcohol                                               | (0.792 Sp. Gr.) cc                               | ntain 23.66 gms.                                |
| CoCl. Šp. Gr. =                     |                                                                   |                                                  | J. pr. Chem. 91, 207, '64.)                     |

| Solven  |                                                                                                                |                                     | oo Gms. Solvent               |                          | Authority.                                                                                                     |                   |
|---------|----------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------|-------------------|
|         |                                                                                                                | CoCl <sub>2</sub> .                 | CoCl2.2H2O                    |                          | the second s | The second        |
| Acetone |                                                                                                                |                                     |                               |                          | zynski — Ber. 2                                                                                                |                   |
|         |                                                                                                                | .5 9.28                             | 17.06                         |                          | zynski — Ber. 2                                                                                                |                   |
|         | 25                                                                                                             |                                     |                               |                          | Elroy — J. Anal.                                                                                               |                   |
| "       | 18                                                                                                             | - 15                                |                               |                          | Ber. 37, 4332, 'o                                                                                              | 4.)               |
| Ethyl A | cetate 14                                                                                                      |                                     |                               | (St. von Lasca           |                                                                                                                |                   |
|         | 79                                                                                                             |                                     |                               |                          |                                                                                                                |                   |
| Ether   |                                                                                                                |                                     |                               |                          | physik. Chem. :                                                                                                |                   |
| Glycol  |                                                                                                                | . 10.7(per                          | 100 g.sol.)                   | (de Coninck-I            | sull.acad.roy.Be                                                                                               | lg1que, 359,'05 J |
|         | Solid Phas                                                                                                     | (Met                                | BILITY IN<br>usser — Ber. 34, | 2435, '01.)              |                                                                                                                |                   |
| t°.     | G.                                                                                                             | 3)2.4H2O.<br>M.                     | G.                            | M.                       | G.                                                                                                             | M.                |
| 0       | 0.54                                                                                                           | 0.028                               | 0.32                          | 0.014                    |                                                                                                                |                   |
| 18      | 0.83                                                                                                           | 0.038                               | 0.45                          | 0.020                    | I.03                                                                                                           | 0.046             |
| 30      | 1.03                                                                                                           | 0.046                               | 0.52                          | 0.023                    | 0.80                                                                                                           | 0.040             |
| 50      | 1.46                                                                                                           | 0.065                               | 0.67                          | 0.030                    | 0.85                                                                                                           | 0.030             |
| 60      | 1.86                                                                                                           | 0.084                               | 0.07                          |                          | 0.03                                                                                                           |                   |
| 65      | 2.17                                                                                                           | 0.004                               |                               |                          |                                                                                                                |                   |
| 75      |                                                                                                                | 0.090                               | 0.84                          | 0.038                    | 0.75                                                                                                           | 0.033             |
| 100     |                                                                                                                |                                     | 1.02                          | 0.045                    | 0.60                                                                                                           | 0.031             |
|         | Come Co                                                                                                        | (IO <sub>3</sub> ) <sub>2</sub> per |                               | solution.                | M = Mols                                                                                                       |                   |
|         | Mols. H                                                                                                        |                                     | 100 gms.                      | solution.                | M - MOIS                                                                                                       | . CO(103)2        |
| DOBAL   |                                                                                                                |                                     | BILITY IN                     |                          |                                                                                                                |                   |
| -       |                                                                                                                | - Compt. rend. 1                    | the second second             |                          | [7] 2, 537, '94.)                                                                                              |                   |
|         | the second s | of these res                        | ults 15 doul                  |                          |                                                                                                                |                   |
| tº. p   | Gms. Col <sub>2</sub><br>er 100 Gms.<br>Solution.                                                              | Solid Pha                           | ise. t                        | °. per 100 G<br>Solution | ms. Solid                                                                                                      | Phase.            |
|         | 55.5                                                                                                           | Col.H2O (                           | green) 2                      | 5 67.5                   | Col.H.                                                                                                         | O (olive)         |
| - 10    | 58.0                                                                                                           | - 11                                | 3                             | 0 70.0                   |                                                                                                                | •                 |
| 0       |                                                                                                                |                                     | 4                             | 0 75.0                   | CoL.H.                                                                                                         | O (yellow)        |
|         | 61.5                                                                                                           |                                     | 4                             | - 13 -                   |                                                                                                                |                   |
| 0       |                                                                                                                | "                                   | 45                            |                          |                                                                                                                |                   |
| 0<br>10 | 61.5                                                                                                           |                                     |                               | 0 79.0                   |                                                                                                                | u<br>u<br>u       |

# COBALT NITRATE Co(NO<sub>3</sub>)<sub>2</sub>. SOLUBILITY IN WATER. (Funk – Wiss. Abh. p. t. Reichanstalt 3, 439, '00.)

| t.    | Gms.<br>Co(NO <sub>3</sub> )2<br>per 100 Gms.<br>Solution. | Mols.<br>Co(NO <sub>3</sub> ) <sub>2</sub><br>per 100<br>Mols. H <sub>2</sub> O. | Solid Phase.    | t°. | Gms.<br>Co(NO <sub>3</sub> ) <sub>2</sub><br>per 100 Gms.<br>Solution. | Mols.<br>Co(NO <sub>3</sub> );<br>per 100<br>Mols. H <sub>2</sub> C | Soud Phase    |
|-------|------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------|-----|------------------------------------------------------------------------|---------------------------------------------------------------------|---------------|
| -26   | 39.45                                                      | 6.40                                                                             | Co(NO3)2.9H2O   | 41  | 55.96                                                                  | 12.5                                                                | Co(NO3)2.6H2O |
| - 20. | 5 42.77                                                    | 7.35                                                                             | "               | 56  | 62.88                                                                  | 16.7                                                                |               |
| -21   | 41.55                                                      | 6.98                                                                             | Co(NO3)2.6H2O   | 55  | 61.74                                                                  | 15.8                                                                | Co(NO3)2.3H2O |
| -10   | 43.69                                                      | 7.64                                                                             | **              | 62  | 62.88                                                                  | 16.7                                                                | *             |
| - 4   | 44.85                                                      | 7.99                                                                             |                 | 70  | 64.89                                                                  | 18.2                                                                | **            |
| 0     | 45.66                                                      | 8.26                                                                             |                 | 84  | 68.84                                                                  | 21.7                                                                | **            |
| +18   | 49.73                                                      | 9.71                                                                             |                 | 91  | 77.21                                                                  | 33.3                                                                |               |
| De    | and the second                                             | In the second                                                                    | strengt of at a | 00  |                                                                        |                                                                     |               |

Density of solution saturated at  $18^\circ = 1.575$ .

# COBALT NITRATE

SOLUBILITY OF COBALT NITRATE IN GLYCOL. (de Coninck — Bull. acad. roy. Belgique, 359, '05.)

122

100 grams saturated solution contain 80 gms. Cobalt Nitrate.

# COBALT RUBIDIUM NITRITE Rb,Co(NO2),H2O.

100 grams H<sub>2</sub>O dissolve 0.005 gram of the salt.

(Rosenbladt - Ber. 19, 2531, '86.'

# COBALT SULPHATE CoSO4.7H2O.

# SOLUBILITY IN WATER.

(Mulder; Tobler - Liebig's Ann. 95, 193, '55; Koppel - Wetzel - Z. physik. Chem. 52, 395, '05.)

| <b>t °</b> . |                | CoSO4<br>o Gms.<br>Water. | Mols. CoSO <sub>4</sub><br>per 100<br>Mols. H <sub>S</sub> O. | <b>t °</b> . | Gms. C<br>per 100<br>Solution. | Gms.    | Mols. CoSO <sub>4</sub><br>per 100<br>Mols. H <sub>2</sub> O. |
|--------------|----------------|---------------------------|---------------------------------------------------------------|--------------|--------------------------------|---------|---------------------------------------------------------------|
| 0            | 20.35          | 25.55                     | 2.958                                                         | 35           | 31.40                          | 45 . 80 | 5.31                                                          |
| 5            | 21.90          | 28.o3                     | 3.251                                                         | 40           | 32.81                          | 48.85   | 5.664                                                         |
| 10           | 23.40          | 30.55                     | 3.540                                                         | 50           | 35.56                          | 55.2    | • • •                                                         |
| 15           | 24 . 83        | 33.05                     | 3.831                                                         | 60           | 37.65                          | 60.4    | • • •                                                         |
| 20           | 26 . 58        | 36.21                     | 4 . 199                                                       | 70           | 39.66                          | 65.7    | •••                                                           |
| 25           | 28 . 24        | <b>39 · 37</b>            | 4.560                                                         | 80           | 41 . 18                        | 70.0    | • • •                                                         |
| 30           | <b>29</b> . 70 | 42.26                     | 4.903                                                         | 100          | <b>45</b> · 35                 | 83.0    | • • •                                                         |

# Solubility of Mixtures of CoSO4.7H3O and Na3SO4.10H3O IN WATER.

(Koppel; Wetzel.)

| <b>t *</b> . | Gms. per<br>100 Gms. Solution. |         | Gm<br>100 Gn    | Gms. per<br>100 Gms. H <sub>2</sub> O. |        | s. H <sub>2</sub> O. | Solid Phase.                                        |
|--------------|--------------------------------|---------|-----------------|----------------------------------------|--------|----------------------|-----------------------------------------------------|
|              | CoSO4.                         | NasSO4. | CoSO4.          | Na <sub>2</sub> SO <sub>4</sub> .      | CoSO4. | NasSO4.              |                                                     |
| 0            | 16.56                          | 7.63    | 21 .85          | 10.07                                  | 2.54   | I . 27               | $CoSO_{4.7}H_{2}O +$                                |
| 5            | 17.46                          | 9 · 59  | <b>2</b> 3 · 94 | 13.15                                  | 2.77   | 1.67                 | Na <sub>2</sub> SO <sub>4</sub> .10H <sub>2</sub> O |
| 10           | 17.90                          | 11.73   | 25.41           | 16.67                                  | 2.94   | 2.II                 | ••                                                  |
| 20           | 17.59                          | 16.43   | 26.65           | 24.91                                  | 3.09   | 3.15                 | CoNa2(SO4)2-4H2O                                    |
| 25           | 17.06                          | 15.70   | 25.36           | 23.32                                  | 2.95   | 2.97                 | ••                                                  |
| 30           | 15.94                          | 14.93   | 23.15           | 21.61                                  | 2.70   | 2.74                 |                                                     |
| 35           | 15.73                          | 14.52   | 22.54           | 20.85                                  | 2.62   | 2.64                 | ••                                                  |
| 40           | 14.87                          | 14.22   | 20.98           | 20.05                                  | 2.46   | 2.53                 | ••                                                  |
| 18.5         | 18.75                          | 15.61   | 28.61           | 23.82                                  | 3.32   | 3.02                 | CoNa2(SO4)2-4H2O                                    |
| 20           | 19.30                          | 15.10   | 29.42           | 23.01                                  | 3.41   | 2.92                 | + CoSO4.7HzO                                        |
| 25           | 20.30                          | 13.60   | 30.74           | 20 - 58                                | 3.56   | 2.61                 | **                                                  |
| 30           | 21.67                          | 12.05   | 32.70           | 18.17                                  | 3.79   | 2.30                 | **                                                  |
| 35           | 22.76                          | 10.43   | 34.06           | 15.61                                  | 3.95   | 1.98                 | "                                                   |
| 40           | 24.05                          | 9.16    | 35.01           | 13.72                                  | 4.81   | I.74                 | 44                                                  |
| 18.5         | 16.87                          | 16.97   | 25.50           | 25.65                                  | 2.96   | 3.25                 | CoNa2(SO4)2-4H2O                                    |
| 20           | 15.41                          | 18.12   | 23.18           | 27.26                                  | 2.69   | 3.45                 | +Na2SO4.10H2O                                       |
| 25           | 10.63                          | 23.26   | 16.07           | 35 . 17                                | 1.86   | 4.46                 |                                                     |
| 30           | 6.01                           | 28.67   | 9.20            | 43.74                                  | I .07  | 5.54                 | "                                                   |
| 35           | 4.56                           | 32.14   | 7.19            | 50.79                                  | 0.835  | 6.44                 | CoNa2(SO4)2.4H2O                                    |
| 40           | 4.72                           | 31.78   | 7 . 45          | 50.10                                  | o.864  | 6.34                 | + Na2SO4                                            |

SOLUBILITY OF COBALT SULPHATE IN METHYL AND ETHYL ALCOHOL AND IN GLYCOL.

123

| Solvent.        |         | tº. | Gms. per 100 Gms.<br>Solvent. |            | Observer.                                             |  |
|-----------------|---------|-----|-------------------------------|------------|-------------------------------------------------------|--|
|                 |         |     | CoSO4.                        | CoSO4.7H2C | 5.                                                    |  |
| Methyl Alcohol  | (abs.)  | 3   |                               | 42.8       | (de Bruyn-Z. physik. Ch. 10, 784, '92.)               |  |
| u               |         | 15  |                               | 50.9       |                                                       |  |
| "               | "       | 18  | 1.04                          | 54.5       |                                                       |  |
| "               | (93.5%) | 3   |                               | 13.3       |                                                       |  |
| "               | (50%)   | 3   |                               | 1.8        | **                                                    |  |
| Ethyl Alcohol ( |         | 3   |                               | 2.5        |                                                       |  |
| Glycol          |         |     | per 100<br>soluti             |            | (de Coninck— Bull. acad. roy. Belgique,<br>359, '05.) |  |

COCAINE C17H21NO4.

# COCAINE HYDROCHLORIDE C17H21NO4.HCI.

SOLUBILITY IN SEVERAL SOLVENTS. (U. S. P.; at 18°-22°; Müller — Apoth.-Ztg. 18, 248, '03.)

| Solvent.       |       |      | C <sub>17</sub> H <sub>21</sub> NO <sub>4</sub> .H |                | t°.     | C <sub>17</sub> H <sub>21</sub> NO <sub>4</sub> .<br>per 100 Gms.<br>Solvent. |
|----------------|-------|------|----------------------------------------------------|----------------|---------|-------------------------------------------------------------------------------|
| Water          | 25    | 0.17 | 250                                                | Ether+H_O      | 18-22   | 34.0                                                                          |
| Water          | 80    | 0.38 | 1000                                               | H,O+Ether      | 18-22   | 0.254                                                                         |
| Alcohol        | 25    | 20.0 | 38                                                 | Benzene        | 18-22   | 100                                                                           |
| Ether (U.S.P.) | 25    | 26.3 |                                                    | CCI,           | 17      | 18.5                                                                          |
| Ether          | 18-22 | 11.6 |                                                    | Acetic Ether   | 18-22   | 58.99                                                                         |
| Chloroform     | 18-22 | 100+ |                                                    | Petroleum Ethe | r 18-22 |                                                                               |

CODEINE C18H21NO3.H2O, also the Phosphate and Sulphate.

# COLCHICINE C22H25NO6.

SOLUBILITY IN SEVERAL SOLVENTS. (U. S. P.; at 18°-22°, Müller.)

|                                  |       | Gra            | Grams. per 100 Grams Solvent.                   |                                                 |            |  |  |
|----------------------------------|-------|----------------|-------------------------------------------------|-------------------------------------------------|------------|--|--|
| Solvent.                         | t°.   | C18H21NO3 H2O. | Codeine<br>H <sub>3</sub> PO <sub>4-2</sub> Aq. | Codeine<br>H <sub>2</sub> SO <sub>4-5</sub> Aq. | C22H25NO6. |  |  |
| Water                            | 18-22 |                |                                                 |                                                 | 9.616      |  |  |
| Water                            | 25    | 1.13           | 44.9                                            | 3.3                                             | 4.5        |  |  |
| Water                            | 80    | 1.70           | 217.0                                           | 16.0                                            | 5.0        |  |  |
| Alcohol                          | 25    | 62.5           | 0.383                                           | 0.006                                           |            |  |  |
| Alcohol                          | 60    | 108.7          | 1.03                                            | 0.27                                            |            |  |  |
| Ether                            | 25    | 8.0            | 0.075                                           |                                                 | 0.64       |  |  |
| Ether                            | 18-22 | * ***          |                                                 |                                                 | 0.126      |  |  |
| Ether sat. with H <sub>2</sub> O | 18-22 |                |                                                 |                                                 | 0.18       |  |  |
| H <sub>2</sub> O sat. with Ether | 18-22 |                |                                                 |                                                 | 12.05      |  |  |
| Benzene                          | 18-22 |                |                                                 |                                                 | 0.939      |  |  |
| Benzene                          | 25    |                |                                                 |                                                 | 1.15       |  |  |
| Chloroform                       | 25    | 151.5          | 0.015                                           |                                                 | 100+       |  |  |
| Carbon Tetra Chloride            | 17    | 1.328          |                                                 |                                                 | 0.121      |  |  |
| Acetic Ether                     | 18-22 |                |                                                 |                                                 | 1.342      |  |  |
| Petroleum Ether                  | 18-22 | ***            |                                                 |                                                 | 0.058      |  |  |

# COLLIDINE (2, 4, 6, Tri Methyl Pyridine) C<sub>2</sub>H<sub>2</sub>N(CH<sub>2</sub>)<sub>2</sub>.

. .

#### SOLUBILITY IN WATER. /n ......

| ŧ°.      | Gms. Collid   | lin per 100 Gms. | t°.  | Gms. Collid | Gms. Collidin per 100 Gms. |  |  |
|----------|---------------|------------------|------|-------------|----------------------------|--|--|
| <b>6</b> | Aq. Layer.    | Collidin Layer.  | τ.   | Aq. Layer.  | Collidin Layer.            |  |  |
| 5.7      | (crit. t.) 17 | . 20             |      |             |                            |  |  |
| 10       | 7.82          | 41.66            | 80   | I.73        | 86.12                      |  |  |
| 20       | 3.42          | 54.92            | 100  | 1.78        | 88.07                      |  |  |
| 30       | 2.51          | 62.8o            | I 20 | 1.82        | 88.98                      |  |  |
| 40       | 1.93          | 70.03            | 140  | 2.19        | 89.10                      |  |  |
| 60       | 1.76          | 80.19            | 160  | 2.93        | 87.2                       |  |  |
|          | •             |                  | 180  | 3.67        | •••                        |  |  |

# **COPPER ACETATE** Cu(C<sub>2</sub>H<sub>2</sub>O<sub>2</sub>)<sub>2</sub>.H<sub>2</sub>O.

100 grams of glycerine dissolve 10 grams of copper acetate at 15.5°.

# COPPER BROMIDE (ous) Cu<sub>2</sub>Br<sub>2</sub>.

SOLUBILITY OF CUPROUS BROMIDE IN AQUEOUS SOLUTIONS OF POTAS-SIUM BROMIDE AT 18°-20°.

(Bodländer and Storbeck - Z. anorg. Chem. 31, 460, '02.)

|      | Mi        | llimols per | Liter.   |           | Grams. per Liter. |           |          |                |
|------|-----------|-------------|----------|-----------|-------------------|-----------|----------|----------------|
| KBr. | Total Cu. | Total Br.   | Cu (ic). | Cu (ous). | KBr.              | Total Cu. | Cu (ic). | Cu (ous).      |
| 0    | 0.3157    | 0.4320      | 0.2006   | 0.1061    | 0                 | 0.0201    | 0.0133   | 0.0067         |
| 25   | 0.119     |             | 0.012    | 0.107     | 2.98              | 0.0076    | 0.0007   | 0.0068         |
| 40   | 0.200     | •••         | 0.013    | 0. 187    | 4.76              | 0.0127    | 0.0007   | 0.0119         |
| 60   | 0.310     | •••         | 0.025    | 0.285     | 7.15              | 0.0197    | 0.0015   | 0.0181         |
| 80   | 0.423     | • • •       | 0.012    | 0.411     | 9.53              | 0.0266    | 0.0007   | 0.0261         |
| 100  | 0.584     | •••         | •••      | 0.584     | 11.91             | 0.0371    |          | 0.0371         |
| 120  | 0.693     | •••         | •••      | 0.693     | 14.29             | 0.0441    | •••      | 0.0441         |
| 500  | 8.719     | •••         |          | 8.719     | 59.55             | 0.5540    | •••      | <b>0</b> .5540 |

# COPPER CHLORATE (ic) Cu(ClO<sub>3</sub>)<sub>2.4</sub>H<sub>2</sub>O.

SOLUBILITY IN WATER. (Meusser – Ber. 35, 1420, '02.)

| <b>t*</b> . | Gms.<br>Cu(ClO <sub>3</sub> ) <sub>2</sub><br>per 100 Gms.<br>Solution. | Mols.<br>Cu(ClO <sub>3</sub> ) <sub>2</sub><br>per 100 Mols<br>H <sub>3</sub> O. | Solid<br>. Phase.                                     | t°     | Gms.<br>Cu(ClO <sub>3</sub> ) <sub>2</sub><br>per 100 Gms.<br>Solution. | Mols.<br>Cu(ClO <sub>3</sub> )3<br>per 100 Mols<br>H3O. | Solid<br>Phase.             |
|-------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------|--------|-------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------|
| -12         | 30.53                                                                   | 3.43                                                                             | Ice                                                   | 18     | 62.17                                                                   | 12.84                                                   | Cu(ClO <sub>2</sub> )2.4H2O |
| -31         | 54.59                                                                   | 9.39                                                                             | Cu(ClO <sub>3</sub> ) <sub>3</sub> .4H <sub>3</sub> O | 45     | 66.17                                                                   | 15.28                                                   | **                          |
| -21         | 57.12                                                                   | 10.41                                                                            | **                                                    | 59.6   | 69.42                                                                   | 17.73                                                   | 44                          |
| +o.8        | 58.51                                                                   | 11.02                                                                            | 44                                                    | 71     | 76.9                                                                    | 25.57                                                   | 44                          |
| De          | neity of e                                                              | olution e                                                                        | aturated at                                           | - 20 _ | 7 605                                                                   |                                                         |                             |

Density of solution saturated at  $18^{\circ} = 1.695$ .

# **COPPER OHLORIDE** (ic) CuCl<sub>1</sub>.

• .

# SOLUBILITY IN WATER.

(Reicher and Deventer - Z. physik. Chem. 5, 560, '90; see also Etard - Ann. chim. phys. [7] 2, 528, '94.)

|         | Gms. CuCl <sub>2</sub><br>er 100 Gms.<br>Solution. | <b>t*</b> . | Gms. CuCl <sub>2</sub><br>per 100 Gms.<br>Solution. | t°. | Gms. CuCl <sub>2</sub><br>per 100 Gms.<br>Solution. |
|---------|----------------------------------------------------|-------------|-----------------------------------------------------|-----|-----------------------------------------------------|
| 0       | 41.4                                               | 25          | 44.0                                                | 50  | 46.65                                               |
| 10      | 42.45                                              | 30          | <b>44</b> · 55                                      | δo  | 47.7                                                |
| 20      | 43.5                                               | 40          | 45.6                                                | 80  | 49.8                                                |
|         |                                                    |             | -                                                   | 100 | 51.9                                                |
| Density | r of colutio                                       | n cotur     | nted at a <sup>o</sup> m                            | T   |                                                     |

Density of solution saturated at  $0^\circ = 1.511$ , at  $17.5^\circ = 1.579$ .

Solubility of Cupric Chloride in Aqueous Solutions of Hydrochloric Acid at 0°.

| Milligram Mols. per 10 cc. Sol. Sp Gr. of Gms. per 100 (<br>CuCl <sub>2</sub> . HCl. Solutions. CuCl <sub>2</sub> . | HCl. CuCl <sub>2</sub> . HCl.                        |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

# (Engel — Ann. chim. phys. [6] 17, 351, '89.)

# Solubility of Cuprous Chloride in Aqueous Solutions of Hydrochloric Acid.

(Engel - Ibid. [6] 17, 372, '89; Compt. rend. 121, 529, '95.)

| Milligram Mol<br><u> <u> </u>Cu<sub>2</sub>Cl<sub>2</sub>.<br/>Results at</u> | s. per 10 cc. Sol.<br>HCl.<br>o°. | Sp. Gr. of<br>Solutions. |         | HCl.    | Gms. per 10<br>CugCl <sub>2</sub> . | o Gms. Sol<br>HCl. |
|-------------------------------------------------------------------------------|-----------------------------------|--------------------------|---------|---------|-------------------------------------|--------------------|
| 0.475                                                                         | 8.975                             | I .05                    | 0.471   | 0.327   | o.448                               | 0.312              |
| I.5                                                                           | 17.5                              | I.049                    | 1.486   | 0.638   | 1.418                               | o 6 <b>08</b>      |
| 2.9                                                                           | 26.0                              | 1.065                    | 2 . 872 | o.948   | 2.697                               | 0.932              |
| 4.5                                                                           | 34.5                              | 1.080                    | 4 · 457 | 1.257   | 4.127                               | 1.164              |
| 8.25                                                                          | 47.8                              | 1.135                    | 8.172   | I.743   | 7 . 199                             | 1.535              |
| 15.5                                                                          | 68.5                              | 1.261                    | 15.7    | 2 . 497 | 12.46                               | 1.980              |
| 33.0                                                                          | 104 0                             | I . 345                  | 32.68   | 3.827   | 24.30                               | 2.845              |
| <b>Results</b> at                                                             | 15°-16°.                          |                          | -       |         | •                                   | •                  |
| 7 · 4                                                                         | 54.4                              | 1.19                     | 7.33    | 1.983   | 6.159                               | 1.666              |
| 10.8                                                                          | 68.9                              | I.27                     | 10.69   | 2.511   | 8.422                               | I.977              |
| 12.8                                                                          | 75.0                              | 1.29                     | 12.68   | 2.734   | 9.826                               | 2.119              |
| 16 O                                                                          | 92.0                              | 1.38                     | 15.84   | 3.346   | 11.48                               | 2.424              |

# COPPER CHLORIDE, AMMONIUM CHLORIDE MIXTURES IN AQUEOUS Solution at 30°.

(Meerburg - Z. anorg. Chem. 45, 3, '05.)

| Grams per 100<br>Gms. Sat. Solution. |                     | Grams<br>Gms. So    | i per 100<br>lid Phase. | Solid Phase                                                                  |  |
|--------------------------------------|---------------------|---------------------|-------------------------|------------------------------------------------------------------------------|--|
| CuCl <sub>2</sub> .                  | NH <sub>4</sub> Cl. | CuCl <sub>2</sub> . | NH <sub>4</sub> Cl.     |                                                                              |  |
| 0                                    | 29.5                | • • •               |                         | NHC                                                                          |  |
| 1.9                                  | 28.6                | 6.0                 | 48 . 2                  | NH <sub>4</sub> Cl + CuCl <sub>2</sub> 2NH <sub>4</sub> Cl.2H <sub>6</sub> O |  |
| 3.6                                  | 25.9                | 37.0                | 34.9                    | CuCl3.2NH4Cl.3H3O                                                            |  |
| 10.5                                 | 16.5                | 21.7                | 23.I                    | *                                                                            |  |
| 19.9                                 | 9.4                 | 28.5                | 18.4                    | *                                                                            |  |
| 29.4                                 | 4.9                 | 35.1                | 15.3                    | -                                                                            |  |
| 4I .4                                | 2 I                 | 43 I                | 13.3                    | 4                                                                            |  |
| 43.2                                 | 2.0                 | 51.9                | 6.6                     | CuClg.2NHgCl.3HgO + CuClg.3HgO                                               |  |
| 43.9                                 | 0                   | •••                 |                         | CuCl <sub>2-2</sub> H <sub>2</sub> O                                         |  |

# COPPER AMMONIUM CHLORIDE

126

# COPPER AMMONIUM CHLORIDE CuCl, 2NH, Cl.2H,O.

# SOLUBILITY IN WATER. (Meerburg.)

|         |                                                                            | (                                                        |     |                                                            |                                                          |
|---------|----------------------------------------------------------------------------|----------------------------------------------------------|-----|------------------------------------------------------------|----------------------------------------------------------|
| t •.    | Gms.<br>CuCl <sub>2.2</sub> NH <sub>4</sub> C<br>per 100 Gms.<br>Solution. |                                                          | t°. | Gms.<br>CuCl <sub>2</sub> .2NH4<br>per 100 Gm<br>Solution. |                                                          |
| - 10.5  | 3.87                                                                       | Ice                                                      | 30  | 27.70                                                      | CuCl <sub>2</sub> .2NH <sub>4</sub> Cl.2H <sub>2</sub> O |
| — 10, Š | 20.12                                                                      | Ice                                                      | 40  | 30.47                                                      |                                                          |
| -11     | 20.3                                                                       | $Ice + CuCl_2 \cdot 2NH_4Cl \cdot 2H_2O$                 | 50  | 33.24                                                      | "                                                        |
| -10     | 20.46                                                                      | CuCl <sub>2</sub> .2NH <sub>4</sub> Cl.2H <sub>2</sub> O | 60  | 36.13                                                      | **                                                       |
| 0       | 22.02                                                                      | 66                                                       | 70  | 39.35                                                      | 44                                                       |
| 12      | 24.26                                                                      | 66                                                       | 80  | 43.36                                                      | **                                                       |
| 20      | 25.95                                                                      | **                                                       |     |                                                            |                                                          |

# SOLUBILITY OF CUPROUS CHLORIDE IN AQUBOUS SOLUTIONS OF CUPRIC SULPHATE AT ABOUT 20°. (Bodländer and Storbeck – Z. anorg. Chem. 31, 22, '02.)

|        | (         |            |         |          |        |           |           |         |          |
|--------|-----------|------------|---------|----------|--------|-----------|-----------|---------|----------|
|        | Mil       | limols per | Liter.  |          |        | Gra       | ms per Li | ter.    |          |
| CuSO4. | Total Cu. | Total Cl.  | Cu(ic). | Cu(ous). | CuSO4. | Total Cu. | Total Cl. | Cu(ic). | Cu(ous). |
| 0      | 2,880     | 5.312      | 2.258   | 0.622    | 0.0    | 0. 183    | 0. 188    | 0.143   | 0.040    |
| 0.987  |           |            |         |          |        | 0.229     |           |         |          |
| 1.975  |           |            |         |          |        | 0.290     |           |         |          |
| 2.962  |           |            |         |          |        | 0.330     |           |         |          |
| 4·937  | 7.276     | 4.329      | 6.546   | 0.730    | 0.788  | 0.463     | 0.154     | 0.416   | 0.046    |

Solubility of Cuprous Chloride in Aqueous Solutions of Potassium Chloride at  $18^{\circ}-20^{\circ}$  except determinations in 3rd, 7th, 8th, and last line, which are at  $16^{\circ}$ .

(Bodländer and Storbeck.)

|      |                      |           | · · · · · | ounender e |        | /                |           |         |         |
|------|----------------------|-----------|-----------|------------|--------|------------------|-----------|---------|---------|
|      | Millimols per Liter. |           |           |            |        | Grams per Liter. |           |         |         |
| KCI. | Total Cu.            | Total Cl. | Cu(ic).   | Cu(ous).   | KCI.   | Total Cu.        | Total Cl. | Cu(ic). | Cu(ous) |
| 0    | 2.851                | 5.436     | 2.222     | 0. 629     | 0.0    | 0. 181           | 0. 193    | 0. 141  | 0.040   |
| 2.   | 5 1.955              | 6.015     | 1.421     | 0.534      | 0.186  | 0.124            | 0.213     | 0.090   | 0.034   |
| 5    | 1.522                | 7.525     | 1.008     | 0.514      | 0.373  | 0.097            | 0.267     | 0.069   | 0.033   |
| 10   | 1.236                | 11.735    | 0.475     | 0.761      | 0.746  | 0.079            | 0.416     | 0.030   | 0.048   |
| 20   | 1.446                | 21.356    | 0.324     | 1.122      | I.492  | 0.092            | 0.759     | 0.021   | 0.071   |
| 50   | 2.411                | not det.  | 0.1088    | 2.302      | 3.730  | 0.153            | not det.  | 0.007   | 0.146   |
| 100  | 4.702                | "         | 0.000     | 4.702      | 7.460  | 0.299            | "         | 0.000   | 0.299   |
| 200  | 9.485                | "         | 0.000     | 9.485      | 14.920 | 0.603            | "         | 0.000   | 0.603   |
| 1000 | 97.0                 | "         | 0.000     | 97.0       | 74.60  | 6.170            | "         | 0.000   | 6.170   |
| 2000 | 384.0                | "         | 0.000 3   | 384.0      | 149.2  | 24.42            | "         | 0.000   | 24.420  |

# Solubility of Copper Chloride in Aqueous Solutions of Sodium Chloride.

| (Hunt — A | Am. J. S | 5ci. [2] 4 | 9, 154, '70.) |
|-----------|----------|------------|---------------|
|-----------|----------|------------|---------------|

| t°. | Grams CuCl <sub>2</sub> per 100 cc. Solution of: |           |          |  |  |  |  |  |
|-----|--------------------------------------------------|-----------|----------|--|--|--|--|--|
|     |                                                  | 15% NaCl. | 5% NaCl. |  |  |  |  |  |
| 11  | 8.9                                              | 3.6       |          |  |  |  |  |  |
| 40  | 11.9                                             | 6.0       | I.I      |  |  |  |  |  |
| 90  | 16.9                                             | 10.3      | 2.6      |  |  |  |  |  |

.

# Solubility of Copper Chloride and Potassium Chloride Double Salts and Mixtures in Water.

127

| _              | Ci per 1 Gra                      | m Solution.        | Mols. per 100       | Mols. HrO. | Solid                                                                           |  |
|----------------|-----------------------------------|--------------------|---------------------|------------|---------------------------------------------------------------------------------|--|
| <b>t°</b> .    | Present as<br>CuCl <sub>2</sub> . | Present as<br>KCl. | CuCl <sub>2</sub> . | KCI.       | Phase.                                                                          |  |
| 39 · 4         | O . I 20                          | 0.107              | 5.56                | 9.93       | CuCl <sub>2-2</sub> KCl.2H <sub>2</sub> O + KCl                                 |  |
| <b>4</b> 9 · 9 | 0.129                             | 0.115              | 6.39                | II · 4     | **                                                                              |  |
| 60.4           | 0.142                             | 0.125              | 7.71                | 13.6       | **                                                                              |  |
| 79 · I         | o.168                             | 0.142              | 11.1                | 18.8       | 44                                                                              |  |
| 90.5           | o · 188                           | 0.154              | 14.9                | 24 . 4     | 44                                                                              |  |
| 93.7           | 0.194                             | 0.156              | 16.2                | 26.0       | $CuCl_2.KCl + KCl$                                                              |  |
| 98.8           | 0.197                             | 0.162              | 17.5                | 28.7       | **                                                                              |  |
| 0              | 0.214                             | 0.021              | 9.84                | I.94       | $CuCl_{2.2}KCl_{.2}H_{2}O + CuCl_{2.2}H_{2}O$                                   |  |
| 39.6           | 0.232                             | 0.049              | 12.0                | 5.44       | "                                                                               |  |
| 50 I           | 0.233                             | 0.059              | 13.7                | 6.90       | **                                                                              |  |
| 52.9           | 0.241                             | 0.002              | 14.8                | 7.63       |                                                                                 |  |
| 60.2           | 0.246                             | o.066              | 15.8                | 8.49       | CuCl2.KCl + CuCl2.2H2O                                                          |  |
| 72.6           | 0.255                             | 0.063              | 1Ğ.8                | 8.35       | ••                                                                              |  |
| 64.2           |                                   |                    | 14.9                | 11.6       | CuCl <sub>2-3</sub> KCl. <sub>2</sub> H <sub>2</sub> O + CuCl <sub>2</sub> .KCl |  |
| 72.5           | •••                               | •••                | 14.8                | 15.0       | CuCl <sub>2</sub> .KCl                                                          |  |

(Meyerhoffer - Z. physik. Chem. 5, 102, '90.)

SOLUBILITY OF CUPRIC CHLORIDE IN SEVERAL SOLVENTS.

(Etard — Ann. chim. phys. [7] 2, 564, '94; de Bruyn — Z. physik. Chem. 10, 783, '92; de Coninck — Compt. rend. 131, 59, '90; St. von Laszczynski — Ber. 27, 2285, '94.)

| Solvent.           |               | Grams CuCl <sub>2</sub> per 100 Grams Sat. Solution at: |            |                      |              |  |  |  |
|--------------------|---------------|---------------------------------------------------------|------------|----------------------|--------------|--|--|--|
| Solvent.           | °.            | 15 <sup>0</sup> .                                       | 20°.       | 40°.                 | 80°.         |  |  |  |
| Methyl Alcohol     | 36            | 40.5 (de B.)                                            | 36.5       | 37.0                 | •••          |  |  |  |
| Ethyl Alcohol      | 32            | 35.0 (de B.)                                            | 35.7       | 39.0                 | •••          |  |  |  |
| Propyl Alcohol     | 29            | •••                                                     | 30.5       | 30.5                 |              |  |  |  |
| Iso Propyl Alcohol | · · •         | • • •                                                   | •••        | 16.0                 | 30.0         |  |  |  |
| n Butyl Alcohol    | 15            | •••                                                     | 15.3       | 16.0                 | 16.5         |  |  |  |
| Allyl Alcohol      | 23            | •••                                                     | 23.0       | • • •                | •••          |  |  |  |
| Ethyl Formate      | 10            |                                                         | 9.0        | 8.0                  | •••          |  |  |  |
| Ethyl Acetate      | • • •         | • • •                                                   | 3.0        | 2.5                  | I.3 (72°)    |  |  |  |
| Acetone (abs.)     | 8. <b>86*</b> | 8.92†                                                   | 2.88 (18°) | •••                  | 1 · 40 (56°) |  |  |  |
| Acetone (80%)      | •••           | •••                                                     | 18.9‡      | • • •                | •••          |  |  |  |
| Ether              | •••           | 0.043 (11°)                                             | 0.11       | • • •                | •••          |  |  |  |
| € (CuCl₂.2         | Aq.)          | † (CuCl3.2 Aq.)                                         | ‡ (23° C   | uCl <sub>2-2</sub> A | q.)          |  |  |  |

For the solubility of cupric chloride in mixtures of a number of organic solvents, see de Coninck.

#### COPPER CHLORIDE

# SOLUBILITY OF CUPRIC CHLORIDE IN AQUBOUS ALCOHOL AT 11.5°. (Bödtker – Z. physik. Chem. 22, 507, '97.)

10 gms. of CuCl<sub>2</sub>2H<sub>2</sub>O and the indicated amounts of CuCl<sub>2</sub> were added to 20 cc. portions of alcohol. The solutions shaken two hours, 5 cc. portions withdrawn.

| Vol. %         | Gms. CuCl <sub>2</sub><br>Added. | Gms. per | 5 cc. Solution.     | Vol. %         | Gms. CuCl <sub>2</sub><br>Added. | Gms. per 5 c      | c. Solution.        |
|----------------|----------------------------------|----------|---------------------|----------------|----------------------------------|-------------------|---------------------|
| Alcohol.       | Added.                           | Ĥ₂O.     | CuCl <sub>2</sub> . | Alcohol.       | Added.                           | H <sub>2</sub> O. | CuCl <sub>2</sub> . |
| 89.3           | 0.0                              | o.794    | 1.137               | <b>99 · 3</b>  | 0.223                            | 0.330             | I . 295             |
| 92.0           | 0.0                              | o.648    | I.090               | <b>9</b> 9 · 3 | o.887                            | 0.247             | 1.639               |
| 96.3           | 0.0                              | 0.478    | 1.116               | 99.3           | I . 540                          | 0.191             | 2.086               |
| <b>9</b> 9 · 3 | 0.0                              | 0.369    | 1.208               | 99 · 3         | I.957                            | 0.164             | 2.400               |

# **COPPER NITRATE** (ic) Cu(NO<sub>2</sub>)<sub>2</sub>.

SOLUBILITY IN WATER. (Funk — Wiss. Abh. p. t. Reichanstalt, 3, 440, '...)

| <b>t°</b> . | Gms.<br>Cu(NO <sub>2</sub> ) <sub>2</sub><br>per 100 Gms.<br>Solution. | Mols.<br>Cu(NO <sub>3</sub> ) <sub>2</sub><br>per 100<br>Mols. H <sub>2</sub> O | Solid Phase.                                         | t°.   | Gms.<br>Cu(NO <sub>3</sub> ) <sub>2</sub><br>per 100 Gms.<br>Solution. | Mols.<br>Cu(NO <sub>8</sub> ) <sub>2</sub><br>per 100<br>Mols. H <sub>2</sub> O | Solid Phase.  |
|-------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------|-------|------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------|
| -23         | 36.08                                                                  | 5.42                                                                            | Cu(NO <sub>3</sub> ) <sub>3</sub> ,9H <sub>3</sub> O | 20    | 55.58                                                                  | 12.0                                                                            | Cu(NO3)2.6H2O |
| - 20        | 40.92                                                                  | 6.65                                                                            | **                                                   | 26.4  | 63.39                                                                  | 16.7                                                                            | "             |
| -21         | 39.52                                                                  | 6.27                                                                            | Cu(NO3)3.6H2O                                        | 25    | 60.0I                                                                  | 14.4                                                                            | Cu(NO3)2.3H2O |
| 0           | 45.00                                                                  | 7.87                                                                            | 66 -                                                 | 40    | 61.51                                                                  | 15.2                                                                            | **            |
| +10         | 48.79                                                                  | 9.15                                                                            | "                                                    | 60    | 64.17                                                                  | 17.2                                                                            | 44            |
| 18          | 53.86                                                                  | 11.20                                                                           | 44                                                   | 8o    | 67.51                                                                  | 20.0                                                                            | **            |
|             |                                                                        |                                                                                 |                                                      | 114.5 | 77 . 59                                                                | 33·3                                                                            | - 65          |

Density of solution saturated at  $18^\circ = 1.681$ .

# **COPPER SULPHATE** CuSO<sub>4.5</sub>H<sub>2</sub>O.

SOLUBILITY IN WATER. (Etard — Ann. chim. phys. [7] 2, 528, '04; Patrick and Aubert — Trans. Kansas Acad. Sci. 10, '74; at 15°, Cohen — Z. Electrochem. 9, 433, '03; at 25°, Trevor — Z. physik. Chem. 7, 470, '91.)

| t°. | Gms. CuSO <sub>4</sub> pe | er 100 Gms. | t°.  | Gms. CuSO, per 100 Gms. |              |  |
|-----|---------------------------|-------------|------|-------------------------|--------------|--|
|     | Solution.                 | Water.      |      | Solution.               | Water.       |  |
| 0   | 12.5                      | 14.3        | 60   | 28.5                    | 40. <b>0</b> |  |
| 10  | 14.8                      | 17.4        | 80   | 35.5                    | 55.0         |  |
| 20  | 17.2                      | 20.7        | 100  | 43.0                    | 75.4         |  |
| 25  | 18.5                      | 22.7        | I 20 | 44 ·O                   | 78.6         |  |
| 30  | 20.0                      | 25.0        | 140  | 44 - 5                  | 80.2         |  |
| 40  | 22.5                      | 28.5        | 160  | 44.0                    | 78.6         |  |
| 50  | 25.0                      | 33 · 3      | 180  | 43.0                    | 75 • 4       |  |
|     |                           |             |      |                         |              |  |

SOLUBILITY OF COPPER SULPHATE IN AQUEOUS SOLUTIONS OF SUL-PHURIC ACID AT 0°.

(Engel - Compt. rend. 104, 507, '87.)

| Milligram Equiv. per 10<br>Gms. H <sub>2</sub> O. |        | Sp. Gr. of<br>Solutions. | Grams per 100 Grams<br>H <sub>2</sub> O. |        |  |
|---------------------------------------------------|--------|--------------------------|------------------------------------------|--------|--|
| H <sub>2</sub> SO <sub>4</sub> .                  | CuSO4. | Solutions.               | H <sub>2</sub> SO <sub>4</sub> .         | CuSO4. |  |
| 0. <b>0</b>                                       | 18.6   | I.144                    | 0.00                                     | 14.85  |  |
| 4.14                                              | 17.9   | I.I43                    | 2.03                                     | 14.29  |  |
| 14.6                                              | 19.6   | <b>1</b> .158            | 7.16                                     | 15.65  |  |
| 31.0                                              | 12.4   | 1.170                    | 15.20                                    | 9.90   |  |
| 54.2                                              | 8.06   | 1.195                    | 26.57                                    | 6.43   |  |
| 56.25                                             | 7.75   | I.2II                    | 27 . 57                                  | 6.19   |  |
| 71.8                                              | 5.0    | I.224                    | 35.2                                     | 3.99   |  |

#### SOLUBILITY OF COPPER SULPHATE IN AQUBOUS SOLUTIONS OF AMMO-NIUM SULPHATE AT 0°. (Engel - Compt. rend. 102, 114, '86.)

| Milligram Equiv. per<br>10 cc. Solution. |                     | Sp. Gr. of<br>Solutions, | Grams per<br>100 cc. Solution. |                     |  |
|------------------------------------------|---------------------|--------------------------|--------------------------------|---------------------|--|
| (NH4),SO4.                               | CuSO <sub>4</sub> . | Solutions.               | (NH4),SO4.                     | CuSO <sub>4</sub> . |  |
| 0.0                                      | 18.52               | I.I44                    | 0.0                            | 14.79               |  |
| 5.45                                     | 20.15               | I . 190                  | 3.61                           | 16.09               |  |
| 7.0                                      | 10.5                | 1.108                    | 4.63                           | 8.38                |  |
| 7.4                                      | 9.I                 | I.099                    | 4.90                           | 7.26                |  |
| 8.45                                     | 6.425               | 1.0815                   | 5.59                           | 5.13                |  |
| 11.35                                    | 3.7                 | I.07I                    | 7.51                           | 2.95                |  |
| 18.6                                     | 1.178               | 1.082                    | 12.31                          | 0.94                |  |
| 31.2                                     | I.O                 | 1.116                    | 20.65                          | 0.80                |  |

# MIXTURES OF COPPER AMMONIUM SULPHATE AND NICKEL AMMONIUM SULPHATE IN WATER AT 13°-14°. (Fock - Z. Kryst. Min. 28, 394, '97.)

.

# $CuSO_4$ . (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>. 6H<sub>2</sub>O — NiSO<sub>4</sub>. (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>. 6H<sub>2</sub>O.

| Mol. % in Solution. |          | Mols. per 10 | o Mols. H <sub>2</sub> O. | Mol. % in Solid Phase. |          |
|---------------------|----------|--------------|---------------------------|------------------------|----------|
| Cu. Salt.           | Ni Salt. | Cu Salt.     | Ni Salt.                  | Cu. Salt.              | Ni Salt. |
| 0.00                | 100.00   | 0.00         | 0.521                     | 0. <b>00</b>           | 100.00   |
| 33.34               | 66.66    | 0.1476       | 0.295                     | IO.29                  | 89.71    |
| 56.05               | 43 . 95  | 0.2664       | 0.2089                    | 30.59                  | 69.41    |
| 73.89               | 26.20    | 0.4165       | 0.1449                    | 52.23                  | 47.77    |
| 79.92               | 20.08    | 0.4785       | O . I 2O2                 | 78.80                  | 21.20    |
| 100.00              | 0.00     | I .0350      | 0.00                      | 100.0                  | 0.00     |

#### MIXTURES OF COPPER AMMONIUM SULPHATE AND ZINC AMMONIUM SULPHATE IN WATER AT 13°-14°. (Fock.)

# $CuSO_4$ (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>.6H<sub>2</sub>O - ZnSO<sub>4</sub> (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>.6H<sub>2</sub>O.

| Mol. % in             | Solution. | Mols. per 10 | o Mols. H <sub>2</sub> O. | Mol. % in | Solid Phase. |
|-----------------------|-----------|--------------|---------------------------|-----------|--------------|
| Cu. Salt.             | Zn Salt.  | Cu Salt.     | Zn Salt.                  | Cu. Salt. | Zn Salt.     |
| 4 · 97                | 95.03     | 0.0422       | o.8069                    | 2.39      | 97.61        |
| 10.65                 | 89.35     | o.0666       | 0.5638                    | 4.52      | 95.48        |
| 19.24                 | 80.76     | 0.1218       | 0.5115                    | 9.03      | 90.97        |
| 30 . 19               | 69.81     | 0.2130       | 0.4924                    | 14.67     | 85.33        |
| <b>44</b> · <b>44</b> | 55.56     | 0.3216       | 0 4022                    | 22.62     | 77.38        |
| 100.00                | 0.00      | I .035       | 0.000                     | 100       | 0.000        |

#### SOLUBILITY OF COPPER SULPHATE IN AQUEOUS SOLUTIONS OF MAGNESIUM SULPHATE AT 0°. (Diacon - Jahrenber, Chem. 61, '66.)

|                                      |        | (Diacon — Jamesoer, Ch                                                      | cm. 01, 00.)        |        |                                       |
|--------------------------------------|--------|-----------------------------------------------------------------------------|---------------------|--------|---------------------------------------|
| Grams per 100 Gms. H <sub>2</sub> O. |        | . Solid                                                                     | Grams per 10        | Solid  |                                       |
| CuSO.                                | MgSO4. | Phase.                                                                      | CuSO <sub>4</sub> . | MgSO4. | Phase.                                |
| 0                                    | 26.37  | MgSO <sub>4</sub> .6H <sub>2</sub> O                                        | 12.03               | 15.67  | CuSO <sub>6</sub> . <h<sub>2O</h<sub> |
| 2.64                                 | 25.91  | **                                                                          | 13.61               | 8.64   | •                                     |
| <b>4</b> .75                         | 25.30  | ••                                                                          | 14.99               | 0.00   | -                                     |
| 9.01                                 | 23.30  | MgSO <sub>4</sub> .6H <sub>2</sub> O + CuSO <sub>4-5</sub> H <sub>2</sub> O |                     |        |                                       |

# COPPER SULPHATE

1 30

| Gms. per 100                  | Gms. HgO.           | Mols. per 100 | Mols. H <sub>2</sub> O. | Mol. % Cu    | Mol. % Cu         |  |  |  |
|-------------------------------|---------------------|---------------|-------------------------|--------------|-------------------|--|--|--|
| CuSO4.                        | MnSO <sub>4</sub> . | Cu.           | Mn.                     | in Solution. | in Crystals.      |  |  |  |
| Triclinic Crystals with 5H2O. |                     |               |                         |              |                   |  |  |  |
| 20.2                          | 0                   | 2.282         | 0                       | 100          | 100               |  |  |  |
|                               |                     |               |                         | 90.5         | 99 · 3            |  |  |  |
| 19.76                         | 3.69                | 2.23          | 0.44                    | 83.5         | •••               |  |  |  |
|                               |                     |               |                         | 74.I         | 97 · 3            |  |  |  |
|                               |                     |               |                         | 57 · 7       | 95 . I            |  |  |  |
|                               |                     |               |                         | 31.0         | 81.3              |  |  |  |
| 13.65                         | 31.52               | I.54          | 3.76                    | 29.0         |                   |  |  |  |
| •••                           |                     | •             |                         | 26.1         | 70.4              |  |  |  |
| 11.61                         | 39.41               | 1.31          | 4.70                    | 21 .8        | •••               |  |  |  |
|                               |                     | -             | -                       | 21.2         | 42.6              |  |  |  |
|                               |                     |               |                         | 20.0         | 34·4 <sup>•</sup> |  |  |  |
| 9.39                          | 46.77               | <u>оо</u> . 1 | <b>5</b> · 59           | 15.9         | 22.9              |  |  |  |
|                               |                     |               |                         | 13.45*       | 15.2*             |  |  |  |
| 6.47                          | 53 · 39             | 0.73          | 6.37                    | 10.27        | 10.5              |  |  |  |
|                               |                     |               |                         | 5.0          | 4.9               |  |  |  |
| 3.01                          | 58.93               | 0.34          | 7.03                    | 4.6          | •••               |  |  |  |
|                               |                     |               |                         | 2.31         | 2.15              |  |  |  |
| 0.0                           | 61.83               | 0.0           | 7 · 375                 | 0.0          | 100.0             |  |  |  |
| Monoclinio                    | c Crystals with 7I  | <b>I1</b> 0.  |                         |              |                   |  |  |  |
|                               |                     |               |                         | 20.0         | 28.2              |  |  |  |
| 9.39                          | 46.77               | 1.06          | 5.58                    | 15.9         | 23.5              |  |  |  |
|                               |                     |               | 00                      | 13.45        | 20.8              |  |  |  |
| 6.47                          | 53·39               | 0.73          | 6.37                    | 10.27        | 16.0              |  |  |  |
| ••                            | 50 07               |               |                         | 4.6*         | 5.8*              |  |  |  |
| 0.0                           | ó7 .07 ±            | 0.0           | 8±*                     | o.o          | 100               |  |  |  |
|                               |                     |               |                         |              |                   |  |  |  |

COPPER SULPHATE, MANGANESE SULPHATE, MIXED CRYSTALS AT 25°. (Stortenbecker – Z. physik. Chem. 34, 112, '∞.)

• Indicates points of labil equilibrium.

COPPER SULPHATE, ZINC SULPHATE, MIXED CRYSTALS IN WATER. (Stortenbecker - Z. physik. Chem. 22, 62, '97.)

|                      |                                | (ownerstern b.            | puyan cara any c          | - y/./                         |
|----------------------|--------------------------------|---------------------------|---------------------------|--------------------------------|
| Mols. per 100<br>Cu. | Mols. H <sub>2</sub> O.<br>Zn. | Mol. % Cu<br>in Solution. | Mol. % Cu<br>in Crystals. |                                |
| 2.28                 | ο                              | 100                       | 100 `                     |                                |
| 1.83                 | 2.08                           | 46.8                      | 94.9                      |                                |
| 1.41                 | 3.60                           | 28 · I                    | 86.4                      | Triclinic Crystals with 5H2O.  |
| 1.19                 | 5.01                           | 19.2                      | 77.9                      | )                              |
| 1.86<br>1            | 3.36                           | 36.2                      | 40.4                      |                                |
| I.22                 | 4.45                           | 21.5                      | 29 . 5-31 . 9             |                                |
| I.OI                 | 4.72                           | 17.6                      | 24 · I-28 ·               |                                |
| 0.82                 | 5.03                           | 14.0                      | 19.0-22.                  | Monoclinic Crystals with 7H2O. |
| 0.51                 | 5.59                           | 8.36                      | 12.4-14.9                 |                                |
| 0.30                 | 5.56                           | 4.87                      | 7.02                      |                                |
| 0.0                  | 6.42                           | 0.0                       | 0                         | )                              |
| 1.19                 | 5.01                           | 19.2                      | 5.01                      |                                |
| 0.51                 | 5.59                           | 8.36                      | I.97                      | Rhombic Crystals with 7H2O.    |
| 0.267                | 5.77                           | 4.42                      | 1.15                      | [                              |
| 0.0                  | 5 · <b>94</b>                  | 0.0                       | 0.00                      | J                              |
|                      |                                |                           |                           |                                |

SOLUBILITY OF COPPER SULPHATE, SODIUM SULPHATE MIXTURES IN WATER.

131

(Koppel - Z. physik. Chem. 42, 8, 'o1-'o2; Massol and Maldes - Compt. rend. 133, 287, 'o1.)

| t°.   | Gms. per 100 Gms.<br>Solution. |         | Mols. per 100 Mols.<br>H <sub>3</sub> O. |         | Solid Phase.                                                                                                                                       |  |
|-------|--------------------------------|---------|------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
|       | ĆuSO4.                         | NasSO4. | CuSO4.                                   | NasSO4. |                                                                                                                                                    |  |
| 0     | 13.40                          | 6.23    | I.88                                     | o.98    | CuSO4.5H2O + Na2SO4.10H2O                                                                                                                          |  |
| IO    | 14.90                          | 9.46    | 2.23                                     | 1.56    | ••                                                                                                                                                 |  |
| 15    | 15.18                          | 11.64   | 2.23                                     | 2.02    |                                                                                                                                                    |  |
| 17.7  | 14.34                          | 13.34   | 2.24                                     | 2.34    | CuSO4-Na2SO4.6H2O                                                                                                                                  |  |
| 23.0  | 14.36                          | 12.76   | 2.23                                     | 2.21    | •                                                                                                                                                  |  |
| 40.15 | 13.73                          | 12.26   | 2.10                                     | 2 . IO  | 44                                                                                                                                                 |  |
| 17.7  | 14.99                          | 13.48   | 2.37                                     | 2.39    | CuSO4-Na2SO4.6H2O + CuSO4.5H2O                                                                                                                     |  |
| 23    | 16.41                          | 11.35   | 2.57                                     | 1.99    | "                                                                                                                                                  |  |
| 40.15 | 20.56                          | 8.0     | 3.25                                     | I.47    | **                                                                                                                                                 |  |
| 18    | 13.53                          | 13.84   | 2.10                                     | 2.41    | $CuSO_4.Na_5SO_4.6H_2O + Na_5SO_{4.10}H_2O$                                                                                                        |  |
| 20    | 11.34                          | 15.70   | 1.76                                     | 2.73    | **                                                                                                                                                 |  |
| 25    | 6.28                           | 21.20   | 0.98                                     | 3.70    | 46                                                                                                                                                 |  |
| 30    | 2.607                          | 28.38   | 0.43                                     | 5.21    | 44                                                                                                                                                 |  |
| 33.9  | I.475                          | 32.30   | 0.25                                     | 6.18    | "                                                                                                                                                  |  |
| 37.2  | I.494                          | 31.96   | 0.25                                     | 6.08    | "                                                                                                                                                  |  |
| 30    | 5.38                           | 22.17   | -                                        |         |                                                                                                                                                    |  |
| 30.1  | 3.69                           | 25.37   |                                          |         | CuSO <sub>4</sub> .Na <sub>2</sub> SO <sub>4</sub> .6H <sub>2</sub> O + increasing<br>amts. of Na <sub>2</sub> SO <sub>4</sub> .10H <sub>2</sub> O |  |
| 30    | 1.57                           | 32.09   |                                          |         | )                                                                                                                                                  |  |

SOLUBILITY OF COPPER POTASSIUM SULPHATE CuK<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>.6H<sub>2</sub>O in WATER AT 25°.

100 gms. H<sub>2</sub>O dissolve 11.14 gms. CuK<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>.

(Trevor - Z. physik. Chem. 7, 470, '91.

SOLUBILITY OF COPPER SULPHATE IN METHYL AND ETHYL ALCOHOL, ETC.

(de Bruyn - Z. physik. Chem. 10, 786, '92; de Coninck - Bull. acad. roy. Belgique, 257, '05.)

| Solvent.<br>Methyl Alcohol Abs. | t°.<br>18          | Gms. per 1<br>CuSO <sub>4</sub> .<br>I.05 | 00 Gms. Solvent<br>CuSO4.5H2O.<br>15.6 | Alcoh             | Y IN AQUEOUS<br>OL AT 15°.<br>'s Ann. 118, 365, '61.)            |
|---------------------------------|--------------------|-------------------------------------------|----------------------------------------|-------------------|------------------------------------------------------------------|
| " 93·55<br>" 50%                | % 18<br>1 <b>8</b> |                                           | 0.93<br>0.40                           | Wt. %<br>Alcohol. | Gms. CuSO <sub>4</sub> .5H <sub>2</sub> O<br>per 100 g. Solvent. |
| " Åbs.                          | 3                  | •••                                       | 13.4                                   | 10                | 15.3                                                             |
| Ethyl Alcohol Abs.              | 3                  |                                           | I.I                                    | 20                | 3.2                                                              |
| Glycol                          | 14.                | 6                                         | 7.6*                                   | 40                | 0.25                                                             |
| Glycerine                       | 15.                | •                                         | 30.0<br>100 g. sol.                    |                   |                                                                  |

# COPPER SULPHIDE CuS.

•

SOLUBILITY IN AQUEOUS SUGAR SOLUTIONS. (Stale - Z. Ver. Zuckerind. 50, 340, '00.)

| % Sugar                | Gms. CuS per Liter of Aq. Sugar Solution at: |         |          |  |  |  |
|------------------------|----------------------------------------------|---------|----------|--|--|--|
| % Sugar<br>in Solvent. | 17.5°.                                       | 45°.    | 75°.     |  |  |  |
| 10                     | 0.5672                                       | 0.3659  | 1.1345   |  |  |  |
| 30                     | 0.8632                                       | 0.7220  | I . 2033 |  |  |  |
| 50                     | 0.9076                                       | 1 .0589 | 1 . 2809 |  |  |  |

#### COPPER TARTRATE 132

# COPPER TARTRATE CuC.O.H. 3H2O.

SOLUBILITY IN WATER. (Cantoni and Zachoder - Bull. soc. chim. [3] 33, 751, 'os.)

| <b>t °</b> . | Gms.<br>CuC4O8H4.3H2O<br>per 100 cc.<br>Solution. | t°. ' | Gms.<br>CuC4O8H4.3H5O<br>per 100 cc.<br>Solution. | ٤•. | Gms.<br>CuC4O6H4.3H3O<br>per 100 cc.<br>Solution. |
|--------------|---------------------------------------------------|-------|---------------------------------------------------|-----|---------------------------------------------------|
| 15           | 0.0197                                            | 40    | 0.1420                                            | 65  | 0.1767                                            |
| 20           | 0.0420                                            | 45    | 0.1708                                            | 70  | 0.1640                                            |
| 25           | 0.0690                                            | 50    | 0.1920                                            | 75  | 0.1566                                            |
| 30           | 0.0890                                            | 55    | 0.2124                                            | 8o  | 0.1440                                            |
| 35           | 0.1205                                            | 60    | 0.1970                                            | 85  | 0.1370                                            |

**CRESOL**  $C_{e}H_{4}(OH).CH_{2}$  o, m and p.

SOLUBILITY IN WATER AT 20°. (Vaubel - J. pr. Chem. [2] 52, 72, '95.)

100 grams of the saturated aqueous solution contain :

2.45 grams o cresol, 2.18 grams m cresol, 1.94 grams p cresol.

DISTRIBUTION OF CRESOL BETWEEN WATER AND ETHER. (Vaubel - J. pr. Chem. [2] 67, 472, '03.)

| Composition of Solvent.         | Gms. Cresol in H <sub>2</sub> O Layer. | In Ether Layer. |
|---------------------------------|----------------------------------------|-----------------|
| 200 cc. $H_2O + 100$ cc. Ether  | 0.0570                                 | I.0760          |
| 200 cc. $H_2O + 200$ c.c. Ether | 0.0190                                 | 1.1144          |

**CUMINIC ACID** C,H,C,H,COOH (p Iso Propyl Benzoic Acid).

SOLUBILITY IN WATER AT 25°. (Paul – Z. physik. Chem. 14, 111, '94.)

1000 cc. sat. solution contain 0.1519 gm. or 0.926 millimol Cuminic Acid.

Pseudo**CUMIDINE** (CH<sub>3</sub>)<sub>3</sub>.C<sub>6</sub>H<sub>2</sub>.NH<sub>2</sub> (sym. 5 Amino, 1, 2, 4, Trimethyl benzene).

> SOLUBILITY IN WATER. (Lowenherz - Z. physik. Ch. 25, 412, '98.)

| t°.                                           | 19.4°. | 23.7°. | 28.7°. |
|-----------------------------------------------|--------|--------|--------|
| Gms. $\psi$ Cumidine per liter H <sub>0</sub> | 1.198  | 1.330  | I.498  |

# **CYANOGEN** CN.

| Solubility    | IN | Several | Solvents | AT | 20°. |  |  |
|---------------|----|---------|----------|----|------|--|--|
| (Gay Lussac.) |    |         |          |    |      |  |  |

| Solvent.          | Vols. CN per 1 Vol. Solvent. |
|-------------------|------------------------------|
| Water             | 4.5                          |
| Alcohol           | 23.0                         |
| Ether             | 5.0                          |
| Oil of Turpentine | 5.0                          |

# 133 DIDYMIUM SULPHATE

# DIDYMIUM SULPHATE Dig(SO4)3.

SOLUBILITY IN WATER. (Marigi ac - Ann. chim. phys. [3] 38, 170, '53.)

| t°.      | Gms. Di <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub><br>per 100<br>Gms. H <sub>2</sub> O. | Solid<br>Phase- | t°. | Gms.Di <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub><br>per 100<br>Gms.H <sub>2</sub> O. | Solid<br>Phase. |
|----------|-------------------------------------------------------------------------------------------|-----------------|-----|-----------------------------------------------------------------------------------------|-----------------|
| 12       | 43.I                                                                                      | Di2(SO4)3       | ?   | 34.0                                                                                    | Di2(SO4)3.6H2O  |
| 18       | 25.8                                                                                      | "               | 19  | 11.7                                                                                    | Di2(SO4)3.8H2O  |
| 25       | 20.6                                                                                      | "               | 40  | 8.8                                                                                     |                 |
| 25<br>38 | 13.0                                                                                      | "               | 50  | 6.5                                                                                     | "               |
| 50       | II.0                                                                                      | **              | IOO | 6.5<br>1.8                                                                              | **              |

# DIDYMIUM POTASSIUM SULPHATE K<sub>2</sub>SO<sub>4</sub>.Di<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>.2H<sub>2</sub>O. (Marignac.)

100 gms, H<sub>2</sub>O dissolve 1.6 grams double salt at 18°.

# ERBIUM SULPHATE Er2(SO4)3.

SOLUBILITY IN WATER. (Hoglund.)

100 gms.  $H_2O$  dissolve 43.0 gms.  $Er_2(SO_4)_3$  at 0°. 100 gms.  $H_2O$  dissolve 23.0 gms.  $Er_3(SO_4)_3.8H_2O$  at 20°.

# ERYTHRITE CH2OH(CHOH)2CH2OH.

100 grams saturated solution in pyridine contain 250 gms. at 26°. (Holty - J. Physic. Chem. 9, 764, '35.]

# ETHANE C2He.

## SOLUBILITY IN WATER. (Winkler - Ber. 34, 1421, '01.)

| t°. | β.     | β'.    | q.     | t°. | β.     | β'.    | q.     |
|-----|--------|--------|--------|-----|--------|--------|--------|
| 0   | 0.0987 | 0.0982 | 0.0132 | 40  | 0.0292 | 0 0271 | 0.0037 |
| 5   | 0.0803 | 0.0796 | 0.0107 | 50  | 0.0246 | 0.0216 | 0.0029 |
| 10  | 0.0656 | 0.0648 | 0.0087 | 60  | 0.0218 | 0.0175 | 0.0024 |
| 15  | 0.0550 | 0.0541 | 0.0073 | 70  | 0.0195 | 0.0135 | 0.0018 |
| 20  | 0.0472 | 0.0462 | 0.0062 | 80  | 0.0183 | 0.0097 | 0.0013 |
| 25  | 0.0410 | 0.0398 | 0.0054 | 90  | 0.0176 | 0.0054 | 0.0007 |
| 30  | 0.0362 | 0.0347 | 0.0049 | 100 | 0.0172 | 0.0000 | 0.0000 |

 $\beta$  = Absorption coefficient, *i.e.*, the volume of gas (reduced to 0° and 760 mm.) absorbed by 1 volume of the liquid when the pressure of the gas itself without the tension of the liquid amounts to 760 mm.

 $\beta'$  = Solubility, *i.e.*, the volume of gas (reduced to  $o^{\circ}$  and 760 mm.) which is absorbed by one volume of the liquid when the barometer indicates 760 mm. pressure.

q = the weight of gas in grams which is taken up by 100 grams of the pure solvent at the indicated temperature and a total pressure (that is, the partial pressure of the gas plus the vapor pressure of the liquid at the absorption temperature) of 760 mm.

# ETHER

# 134

# ETHER (C,H,),O.

RECIPROCAL SOLUBILITY OF ETHER AND WATER. (Klobbie - Z. physik. Chem. 24, 619, '97; Schuncke - Ibid. 14, 334, '94; St. Tolloczko - Ibid. 20, 407, '96.)

|             |              | er in Water.<br>- Aqueous. | Solubility of Water in Ether.<br>Upper Layer — Ethereal. |                 |  |  |  |
|-------------|--------------|----------------------------|----------------------------------------------------------|-----------------|--|--|--|
|             | Gms. (C2Ha)2 | per 100 Gms.               | Gms. H <sub>2</sub> O per 100 Gms.                       |                 |  |  |  |
| t".         | Water.       | Solution.                  | Ether.                                                   | Solution.       |  |  |  |
| 0           | 13.12        | 11.6                       | I .0I                                                    | 0. I            |  |  |  |
| 5           | II · 4       | IO.2                       | 1.06                                                     | 1.05            |  |  |  |
| IO          | 9.5          | 8.7                        | I.I2                                                     | 1.12 (2.6, S.)  |  |  |  |
| 15          | 8.2          | 7.6                        | 1.16                                                     | 1.15            |  |  |  |
| 20          | 6.95         | Ġ.5                        | I . 20                                                   | 1.20 (2.65, S.) |  |  |  |
| 25          | 6.05         | 5.7                        | 1.26                                                     |                 |  |  |  |
| 30          | 5.4          | 5.I                        | I.33                                                     | 1.32            |  |  |  |
| *40         | 4.7          | 4.5                        | 1.52                                                     | 1.50            |  |  |  |
| *50         | 4.3          | 4.I                        | 1.73                                                     | 1.7             |  |  |  |
| *50<br>*60  | 3.8          | 3.7                        | 1.83                                                     | I.8             |  |  |  |
| <b>*</b> 70 | 3.3          | 3.2                        | 2.04                                                     | 2.0             |  |  |  |
| *80         | 2.9          | 2.8                        | 2 . 25                                                   | 2.2             |  |  |  |

• Indicates determinations made by Synthetic Method, for which see page 9.

100 cc. H<sub>2</sub>O dissolve 8.11 cc. ether at 22°; Vol. of solution 107.145 cc.,

Sp. Gr. 0.9853. 100 cc. ether dissolve 2.93 cc. H<sub>2</sub>O at 22°; Vol. of solution 103.282, Sp. Gr. 0.7164. (Herz - Ber. 31, 2671, '98.)

For recent determinations of the density of ether, see Christomanos ---Z. anorg. Chem. 45, 136, '05.

## SOLUBILITY OF ETHER IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID.

ACID. (Schuncke – Z. physik. Chem. 14, 334, '94; in 38.52% HCl, Draper – Chem. News, 35, 87, '77.)

In 20 % HCl.

|              | - 33-70 -                            |                                      | , /0               |                                                                            |                                      |       |                                                                            |
|--------------|--------------------------------------|--------------------------------------|--------------------|----------------------------------------------------------------------------|--------------------------------------|-------|----------------------------------------------------------------------------|
| <b>t °</b> . | cc. Ether<br>per 100 cc.<br>Solvent. | cc. Ether<br>per 100 cc.<br>Solvent. | Gms. per 1<br>HCl. | Gram H <sub>2</sub> O.<br>(C <sub>2</sub> H <sub>5</sub> ) <sub>2</sub> O. | cc. Ether<br>per 100 cc.<br>Solvent. | -     | 1 g. H <sub>2</sub> O.<br>(C <sub>2</sub> H <sub>5</sub> ) <sub>2</sub> O. |
| -6           | 181                                  | 149                                  | 0.4622             | 1.387                                                                      | 67.2                                 | 0.253 | o.5637                                                                     |
| 0            | 177.5                                | 142                                  | 0.4622             | 1.308                                                                      | 58.3                                 | 0.253 | o.4863                                                                     |
| +6           | 172.5                                | 131.5                                | 0.4622             | I . 2075                                                                   | 51.1                                 | 0.253 | 0.4231                                                                     |
| 15           | 163                                  | 121.7 (14°)                          |                    | I . 1075                                                                   | 40.5                                 | 0.253 | 0.3299                                                                     |
| 20           | 158                                  | 116.9 (20.8°                         | · · .              | I .0005                                                                    | 33 · I                               | 0.253 | o.2688                                                                     |
| 26           | 135                                  | 104 - 2                              | 0.4622             | 0.9360                                                                     | 27 · 5                               | 0.253 | 0.2221                                                                     |

| In 12.58 % HCl. | In | T | 2. | ٢8 | % | HCL. |  |
|-----------------|----|---|----|----|---|------|--|
|-----------------|----|---|----|----|---|------|--|

In 2 65 % HCl

|     | 111 12.58 % HCl.                  |                  |                                                  | III 3.05 % IICI.                  |                    |                                                                            |  |
|-----|-----------------------------------|------------------|--------------------------------------------------|-----------------------------------|--------------------|----------------------------------------------------------------------------|--|
| t°. | cc. Ether per<br>100 cc. Solvent. | Gms. per<br>HCl. | Gram H <sub>2</sub> O.                           | cc. Ether per<br>100 cc. Solvent. | Gms. per 1<br>HCl. | Gram H <sub>2</sub> O.<br>(C <sub>2</sub> H <sub>5</sub> ) <sub>2</sub> O. |  |
|     |                                   |                  | (C <sub>2</sub> H <sub>5</sub> ) <sub>2</sub> O. |                                   |                    |                                                                            |  |
| -6  | 26.45                             | 0.144            | 0.2100                                           | 19.23                             | 0.0308             | 0.1454                                                                     |  |
| 0   | 22 . 19                           | 0.144            | 0.1748                                           | •••                               | • • •              | • • •                                                                      |  |
| ÷6  | 19.18                             | 0.144            | 0.1503                                           | 14.31                             | 0.0308             | 0 . 1070                                                                   |  |
| 15  | 15.61                             | 0.144            | 0.1210                                           | 11.83                             | 0.0308             | 0.0868                                                                     |  |
| 20  | 13.76                             | 0.144            | 0 · 1059                                         | 10.52                             | 0.0308             | 0.0769                                                                     |  |
| 26  | 12.70                             | 0.144            | 0.0970                                           | 9.24                              | o.0308             | 0.0673                                                                     |  |
|     |                                   |                  |                                                  |                                   |                    |                                                                            |  |

# ETHER

# SOLUBILITY OF ETHER IN AQUEOUS SALT, ETC., SOLUTIONS AT 18°. (Euler - Z. physik. Chem. 49, 306, '04.)

135

| Aq. Solu-<br>tion of: | Gms. per<br>Liter Added<br>Salt. | Gms. (C <sub>2</sub> H <sub>6</sub> ) <sub>2</sub> O<br>per 100 cc.<br>Solvent. | Aq. Solu-<br>tion of: | Gms. per<br>Liter Added<br>Salt. | Gms. (C <sub>2</sub> H <sub>n</sub> ) <sub>2</sub> O<br>per 100 cc.<br>Solvent. |
|-----------------------|----------------------------------|---------------------------------------------------------------------------------|-----------------------|----------------------------------|---------------------------------------------------------------------------------|
| Water                 | 0.0                              | 7.8 .                                                                           | Na,SO,                | 59.54                            | 3.7                                                                             |
| KNO3                  | 101.19                           | 5.4                                                                             | Mannite               | 91.06                            | 6.7                                                                             |
| KCl                   | 73.6                             | 4.7                                                                             | H2SO4                 | 49.0                             | 6.6                                                                             |
| LiCl                  | 42.48                            | 5.2                                                                             | -11                   | 122.5                            | 5.65                                                                            |
| NaCl                  | 58.5                             | 4.5                                                                             | "                     | 245.0                            | 4.55                                                                            |

# SOLUBILITY OF ETHER IN AQUEOUS ETHYL ALCOHOL AND IN AQUEOUS METHYL ALCOHOL MIXTURES AT 20°. (Bancroft -- Phys. Rev. 3, 122, '95-'96.)

# In Ethyl Alcohol.

# In Methyl Alcohol.

|           | cc. Alcohol.   |           | cc. Alcohol.   |          | c. CH3OH.     |                       | cc CH <sub>3</sub> OH. |
|-----------|----------------|-----------|----------------|----------|---------------|-----------------------|------------------------|
| cc. H2O.* | cc. (C2H3)2O.† | cc. H2O.* | cc. (C2H5)2O.† | cc. H2O. | cc. (C2H5)2O. | cc. H <sub>2</sub> O. | cc. (C2H5)2O.          |
| 50        | 1.30           | 4.45      | 7.0            | IO       | 1.13          | 0.83                  | 1.80                   |
| 25        | 1.70           | 4.0       | 7.8            | 7        | 0.85          | 0.64                  | 3.00                   |
| IO        | 2.41           | 3.87      | 8.0            | 4        | 0.60          | 0.52                  | 5.0                    |
| 8         | 3.35           | 3.10      | 10.0           | 2.5      | 0.56          | 0.44                  | 10.0                   |
| 6         | 5.10           | 2.08      | 15.0           | 1.8      | 0.63          | 0.45                  | 15.0                   |
| 5.2       | 1 6.00         | 1.77      | 17.5           | I.0      | 1.23          |                       |                        |

\* Saturated with ether.

† Saturated with water.

# ETHYL ACETATE CH3COOC2H5.

SOLUBILITY IN WATER AND IN AQUEOUS SALT SOLUTIONS AT 28°. (Euler - Z. physik. Chem. 31, 365, '99; 49, 306, '04.)

| Conc. of Salt<br>Solution. |                                | CH <sub>3</sub> COOC <sub>2</sub> H <sub>5</sub><br>per Liter. |               | Solvent. | Conc. of Salt<br>Solution.      | CH3COOC2H5<br>per Liter.        |               |        |
|----------------------------|--------------------------------|----------------------------------------------------------------|---------------|----------|---------------------------------|---------------------------------|---------------|--------|
| Solvent.                   | Nor- Gms per<br>mality. Liter. |                                                                | Gram<br>Mols. | Grams.   | buvent.                         | Nor- Gms. per<br>mality. Liter. | Gram<br>Mols. | Grams. |
| Water                      | 0                              | 0                                                              | 0.825         | 75.02    | NaCl(at 18°)                    | 1 14.62                         | 0.76          | 67.0   |
| KNO <sub>3</sub>           | 1                              | 50.59                                                          | 0.77          | 67.81    |                                 | 1 29.25                         | 0.67          | 59.0   |
| "                          | I                              | 101.19                                                         | 0.72          | 63.40    | 46 66                           | 1 58.5                          | 0.51          | 45.0   |
| **                         | 2                              | 202.38                                                         | 0.625         | 55.04    | Na <sub>2</sub> SO <sub>4</sub> | 1 71.08                         | 0.465         | 40.96  |
| KCI                        | 1                              | 18.4                                                           | 0.747         | 65.79    | " (at 18°)                      | 1 35.54                         | 0.61          | 54.0   |
|                            | -                              | 36.8                                                           | 0.685         | 65.33    | " "                             | 1 71.08                         | 0.42          | 37.0   |
| **                         | I                              | 73.6                                                           | 0.575         | 50.64    | MgSO <sub>4</sub>               | \$ 16.30                        | 0.733         | 64.55  |
| **                         | 2                              | 147.2                                                          | 0.41          | 36.11    | **                              | 1 32.6                          | 0.655         | 57.68  |
| NaCl                       | 1                              | 14.62                                                          | 0.745         | 65.61    | "                               | 1 65.21                         | 0.505         | 44.47  |
| "                          | 3                              | 29.25                                                          | 0.677         | 59.62    | ZnSO4                           | \$ 20.18                        | 0.733         | 64.55  |
| "                          | I                              | 58.5                                                           | 0.545         | 47.99    | "                               | 1 40.36                         | 0.653         | 57.50  |
| "                          | 2                              | 117.0                                                          | 0.315         | 27.74    | 41                              | 1 80.73                         | 0.500         | 44.03  |

### SOLUBILITY OF ETHYL ACETATE IN AQUBOUS ETHYL ALCOHOL, METHYL ALCOHOL, AND ACETONE MIXTURES AT 20°. (Bancroft – Phys. Rev. 3, 122, 131, '95-'96.)

| In Ethyl Alcohol.<br>Per 1 cc. CaHaOH. |       |          | hyl Alcohol.<br>c. CH <sub>2</sub> OH. | In Acetone.<br>Per 1 cc. (CHa)2CO.                        |      |  |
|----------------------------------------|-------|----------|----------------------------------------|-----------------------------------------------------------|------|--|
| cc. HgO.* CHgCOOCaHat                  |       | cc. HgO. | CH.COOC.H.                             | cc. H <sub>2</sub> O. CH <sub>2</sub> COOC <sub>2</sub> H |      |  |
| IO                                     | 0.25  | IO       | 1.08                                   | IO                                                        | 1.01 |  |
| 8                                      | 0.27  | 3        | o.68                                   | 5                                                         | 0.60 |  |
| 4                                      | 0.35  | 1.5      | 1.69                                   | 2                                                         | 0.43 |  |
| 2                                      | I .02 | I . 29   | 2.50                                   | 1.5                                                       | 0.47 |  |
| 1.06                                   | 2.50  | I.0      | 4.9                                    | · I.O                                                     | 0.63 |  |
| 0.65                                   | 5.0   | o.98     | 7.0                                    | o.8                                                       | 0.74 |  |
| 0.54                                   | 7.0   | I.O      | 8.0                                    | 0.51                                                      | I.00 |  |
| 0.44                                   | IO.0  | I.03     | Ιο.α                                   | 0.25                                                      | 2.00 |  |
|                                        |       |          |                                        | 0.29                                                      | 5.00 |  |

• Saturated with ethyl acetate. 

† Saturated with water.

100 cc. H<sub>3</sub>O dissolve 7.26 g. ethyl acetate at 28°. (Euler – Z. physik. Chem. 31, 360, '90.)

100 cc. H<sub>2</sub>O dissolve 9.26 cc. ethyl acetate at 20°.

100 cc. ethyl acetate dissolve 2.94 cc. water at 20°.

# ETHYL BUTYRATE C,H,COOC,H,.

SOLUBILITY IN WATER AND IN AQUEOUS ETHYL ALCOHOL MIXTURES AT 20°.

100 g. H<sub>2</sub>O dissolve 0.5 g. ethyl butyrate at 22°.

(Traube - Ber. 17, 2304, '84.)

100 cc. H<sub>2</sub>O dissolve 0.8 cc. ethyl butyrate at 20°. (Bancroft.) 100 cc. ethyl butyrate dissolve 0.4 - 0.5 cc. H<sub>2</sub>O at 20°.

| Per 5 cc.     | ∫ cc. H <sub>2</sub> O                                                                         | 10   | 6    | 4      | 2.96 | 2.10 |
|---------------|------------------------------------------------------------------------------------------------|------|------|--------|------|------|
| Ethyl Alcohol | { cc. H <sub>2</sub> O<br>{ cc. C <sub>3</sub> H <sub>7</sub> COOC <sub>2</sub> H <sub>8</sub> | 0.34 | 0.96 | 2 · 47 | 4.00 | 6.0  |

# ETHYL FORMATE HCOOC,H.

100 grams water dissolve 10 grams ethyl formate at 22°. (Traube.)

# ETHYL PROPIONATE C,H,COOC,H.

SOLUBILITY IN WATER AND IN AQUEOUS ETHYL ALCOHOL MIXTURES. (Bancroft.)

100 grams H<sub>2</sub>O dissolve 1.7 grams ethyl propionate at 22°. (Traube.)

| cc. Alcohol<br>in Mixture. | cc. H <sub>2</sub> O to cause separation of a second phase in<br>ixtures of the given amounts of Alcohol and 3 cc.<br>portions of Ethyl Propionate. |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 3                          | 2.32                                                                                                                                                |
| 6                          | 6.87                                                                                                                                                |
| 9                          | 12.35                                                                                                                                               |
| 12                         | 19.17                                                                                                                                               |
| 15                         | 27.12                                                                                                                                               |
| 15<br>18                   | 36.84                                                                                                                                               |
| 21                         | 50.42                                                                                                                                               |
| 24                         | 8                                                                                                                                                   |

# ETHYL VALERATE C.H.COOC.H.

# ETHYL (Iso) VALERATE (CH3)2.CH.CH2COOC2H3.

# SOLUBILITY OF EACH IN WATER AND IN AQUEOUS ALCOHOL MIXTURES AT 20°.

(Bancroft.)

137

100 cc. water dissolve 0.3 cc. ethyl valerate at 25°. 100 cc. water dissolve 0.2 cc. ethyl iso valerate at 20°. 100 cc. ethyl iso valerate dissolve 0.4+ cc. water at 20°.

| Mixtures of Ethyl Alcohol,<br>Ethyl Valerate and Water. |              |                        |               |                        | Ethyl Iso Va | of Ethyl Alcohol,<br>lerate and Wates<br>Ethyl Alcohol. |  |
|---------------------------------------------------------|--------------|------------------------|---------------|------------------------|--------------|---------------------------------------------------------|--|
| e                                                       | c. Alcohol.* | cc. H <sub>2</sub> O.† | cc. Alcohol.* | cc. H <sub>2</sub> O.† | cc. H2O.     | cc. Ethyl<br>Iso Valerate.                              |  |
|                                                         | 3            | I.42                   | 39            | 53.13                  |              |                                                         |  |
|                                                         | 9            | 7.18                   | 45            | 63.60                  | 10           | 0.15                                                    |  |
|                                                         | 15           | 14.13                  | 57            | 90.53                  | 8            | 0.23                                                    |  |
|                                                         | 21           | 22.40                  | 72            | 131.0                  | 6            | 0.46                                                    |  |
|                                                         | 27           | 31.62                  | 81            | 180.0                  | 5            | 0.72                                                    |  |
|                                                         | 33           | 41.62                  |               |                        | 4            | 1.23                                                    |  |

• cc. Alcohol in mixture. † cc. H<sub>2</sub>O added to cause the separation of a second phase in mixtures of the given amounts of alcohol and 3 cc. portions of ethyl valerate.

# Di ETHYL KETONE (3 Pentanon) (C2H3)2CO.

SOLUBILITY IN WATER.

(Rothmund - Z. physik. Ch. 26, 433, '98)

Determinations made by Synthetic Method, see page 9.

| t°. |            | Ethyl Ketone<br>100 Gms. | t°. | Gms. Di Ethyl Ketone<br>per 100 Gms. |               |
|-----|------------|--------------------------|-----|--------------------------------------|---------------|
|     | Aq. Layer. | Ketone Layer.            |     | Aq. Layer.                           | Ketone Layer. |
| 20  | 4.60       |                          | 100 | 3.68                                 | 93.10         |
| 40  | 3.43       | 97.42                    | 120 | 4.05                                 | 90.18         |
| 60  | 3.08       | 96.18                    | 140 | 4.76                                 | 87.01         |
| 80  | 3.20       | 94.92                    | 160 | 6.10                                 | 83.33         |

# ETHYL BROMIDE C.H.Br.

SOLUBILITY IN ETHER.

(Parmentier - Compt. rend. 114, 1002, '92.)

| t°.                                                    | -13°. | 0,  | 12. | 22.5+ | 32. |
|--------------------------------------------------------|-------|-----|-----|-------|-----|
| G. C <sub>2</sub> H <sub>6</sub> Br per 100 gms. Ether | 632   | 561 | 462 | 302   | 253 |

SOLUBILITY OF ETHYL BROMIDE, ETC., IN WATER. (Rex - Z. physik. Chem. 55, 355, 'o6.)

| Dis la la Calana     | (     | Frams per 100 | Grams H <sub>2</sub> O a | t:    |
|----------------------|-------|---------------|--------------------------|-------|
| Dissolved Substance. | 0°.   | 100.          | 200.                     | 300.  |
| Ethyl Bromide        | 1.067 | 0.965         | 0.914                    | 0.896 |
| Ethyl Iodide         | 0.441 | 0.414         | 0.403                    | 0.415 |
| Ethylene Chloride    | 0.922 | 0.885         | 0.869                    | 0.894 |
| Ethylidene Chloride  | 0.656 | 0.595         | 0.550                    | 0.540 |

# ETHYL CARBAMATE

# ETHYL CARBAMATE CO(OC<sub>2</sub>H<sub>2</sub>)NH<sub>2</sub>. (See also Urethane, p. 347.)

# SOLUBILITY IN SEVERAL SOLVENTS AT 25°.

# (U. S. P.)

138

| Solvent.                                                    | Water.                | Alcohol. | Ether. | Chloroform. | Glycerine. |
|-------------------------------------------------------------|-----------------------|----------|--------|-------------|------------|
| Gms. CO(OC <sub>2</sub> H <sub>5</sub> )<br>per 100 gms. so | )NH <sub>2</sub> 100+ | 166      | 100    | 77          | 33         |

# ETHYLENE C.H.

SOLUBILITY IN WATER AND IN ALCOHOL. (Bunsen and Carius; Winkler - Landolt and Börnstein, Tabellen, 3d ed. p. 604, '06.)

| <b>* </b> •. | β.      | ٩.     | Solubility in Alcol |                                                               |  |
|--------------|---------|--------|---------------------|---------------------------------------------------------------|--|
| 0            | 0.226   | 0.0281 | t°.                 | Vols. C.H. per                                                |  |
| 5            | 0.191   | 0.0237 | U                   | Vols. C <sub>2</sub> H <sub>4</sub> per<br>100 Vols. Alcohol. |  |
| IO           | 0.162   | 0.0200 | 0                   | 359.5                                                         |  |
| 15           | 0.139   | 0.0171 | 4                   | 337 · 5                                                       |  |
| 20           | 0.122   | 0.0150 | 10                  | 308.6                                                         |  |
| 25           | 0 · 108 | 0.0131 | 15                  | 288.2                                                         |  |
| 30           | o.098   | 0.0118 | 20                  | 271.3                                                         |  |

For  $\beta$  and q see Ethane, page 133.

SOLUBILITY OF ETHYLENE IN METHYL ALCOHOL AND IN ACETONE. (Levi - Gazz. chim. ital. 31, II, 513, '01.)

Results in terms of the Ostwald Solubility Expression l. See p. 105.

| ŧ°. | In Methyl Alcohol. | In Acetone. | t°. | In Methyl Alcohol. | In Acetone. |
|-----|--------------------|-------------|-----|--------------------|-------------|
| ο   | 3 · 3924           | 4.0652      | 30  | 1.8585             | 1.868o      |
| IO  | 2.8831             | 3.3580      | 40  | I . 3432           | 1.0852      |
| 20  | 2 . 37 18          | 2.6278      | 50  | 0.8259             | 0.277.2     |
| 25  | 2.1154             | 2.2500      | 60  | 0.3506             | •••         |

The formulas from which the above figures were calculated are:

| In Methyl Alcohol, | $l = 3.3924 - 0.05083 l - 0.00001 l^2$ . |
|--------------------|------------------------------------------|
| In Acetone,        | $l = 4.0652 - 0.06946 t - 0.000126 t^2.$ |

# FATS.

# SOLUBILITY OF THE FATTY ACIDS OBTAINED FROM SEVERAL SOURCES IN ALCOHOL AND IN BENZENE.

(Dubois and Pade - Bull. soc. chim. [2] 44, '85.)

| Crude<br>Fatty<br>Acid of: | Gms.  | Gms. Fats<br>per 100 Gms.<br>Benzene at 12 <sup>c</sup> . |        |                              |
|----------------------------|-------|-----------------------------------------------------------|--------|------------------------------|
| Acid of:                   | o°.   | 10°.                                                      | 26°.   | Benzene at 12 <sup>c</sup> . |
| Mutton                     | 2.48  | 5.02                                                      | 67.96  | 14.70                        |
| Beef                       | 2.51  | 6.05                                                      | 82.23  | 15.89                        |
| Veal                       | 5.00  | 13.78                                                     | 137.10 | 26.08                        |
| Pork                       | 5.63  | 11.23                                                     | 118.98 | 27.30                        |
| Butter                     | 10.61 | 24.81                                                     | 158.2  | 69.61                        |
| Margarine                  | 2.37  | <b>4</b> · 9 <b>4</b>                                     | 47.06  | 13.53                        |

# FUMARIC ACID COOH.CH:CH.COOH. MALËIC ACID (CH)<sub>2</sub>(COOH)<sub>3</sub>.

# SOLUBILITY IN WATER.

(Vaubel - J. pr. Chem. [2] 59, 30, '99.)

139

100 gms. water dissolve 0.672 gram fumaric acid at 165°. 100 gms. water dissolve 50.0 grams malëic acid at 100°.

# FURFUROL C.H.OCHO.

# SOLUBILITY IN WATER. (Rothmund - Z. physik. Chem. 26, 475, '98.)

Determinations by Synthetic Method, for which see page 9.

| tº.                        | Gms. C.H.OCI | HO per 100 Gms. | t°.             | Gms. C <sub>4</sub> H <sub>2</sub> OCHO per 100 Gms. |      |  |
|----------------------------|--------------|-----------------|-----------------|------------------------------------------------------|------|--|
| Aq. Layer. Furfurol Layer. |              | Aq. Layer.      | Furfurol Layer. |                                                      |      |  |
| 40                         | 8.2          | 93.7            | 100             | 18.9                                                 | 83.5 |  |
| 50                         | 8.6          | 93.0            | 110             | 24.0                                                 | 78.5 |  |
| 50<br>60                   | 9.2          | 92.0            | 115             | 28.0                                                 | 74.6 |  |
| 70                         | 10.8         | 90.7            | 120             | 34.4                                                 | 68.1 |  |
| 70<br>80                   | 13.0         | 89.0            | 122.7           | (crit. t.) 5                                         | 1.0  |  |
| 00                         | 15.5         | 86.6            |                 |                                                      |      |  |

# GADOLINIUM SULPHATE Gd2(SO4)3.8H2O.

SOLUBILITY IN WATER.

(Benedicks - Z. anorg. Chem. 22, 409, '00.)

| t°.  | Gms. Gd <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> per 100<br>Gms H <sub>2</sub> O. | Solid Phase.                                                       |
|------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 0    | 3.98                                                                                  | Gd <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> .8H <sub>2</sub> O |
| IO   | 3.3                                                                                   | "                                                                  |
| 14   | 2.8                                                                                   | "                                                                  |
| 25   | 2.4                                                                                   | **                                                                 |
| 34.4 | 2.26                                                                                  | **                                                                 |

# GALACTOSE C.H.12Oc.

100 grams saturated solution in pyridine contain 5.45 grams C<sub>6</sub>H<sub>12</sub>O<sub>8</sub> at 26°, density of solution 1.0065.

(Holty - J. Physic. Chem. 9, 764, '05)

# GALLIC ACID C6H2(OH3) (3, 4, 5) COOH + H2O.

SOLUBILITY IN SEVERAL SOLVENTS. (U. S. P.; Bourgoin - Ann. chim. phys. [5] 13, 406, '78.)

| Solvent.         | t°. | Gms. C7H6O5.H2O per 100 Gms. |           |  |
|------------------|-----|------------------------------|-----------|--|
| Sorvent.         |     | Solvent.                     | Solution. |  |
| Water            | 25  | I.20                         | 1.18      |  |
| Water            | 100 | 33.3                         | 25.0      |  |
| Alcohol (Abs.)   |     | 23.3                         | 18.1      |  |
| Alcohol (U.S.P.) | 25  | 24.1                         | 19.3      |  |
| Alcohol 90%      | *** | 38.8                         | 18.9      |  |
| Ether            | 25  | 2.56                         | 2.50      |  |
| Glycerine        | 25  | 8.3                          | 7.66      |  |

# GERMANIUM DIOXIDE 140

### GERMANIUM DIOXIDE GeO,

100 gms. H<sub>3</sub>O dissolve 0.405 gm. GeO, at 20°, and 1.07 gms. at 100°.

(Winkler - J. pr. Chem. [2] 34, 177, '86; 36, 177, '87.)

(Winkler.)

# **GERMANIUM** (Mono) **SULPHIDE** GeS and **GERMANIUM** (Di) **SULPHIDE** GeS<sub>2</sub>.

100 gms. H<sub>2</sub>O dissolve 0.24 GeS and 0.45 gm. GeS<sub>2</sub>.

### GLASS.

For data on the solubility of glass in water and other solvents, see:

(Cowper – J. Chem. Soc. 41, 254, '82; Emmerling – Liebig's Annalen, 150, 257, '60; Böhling – Z. anal Chem. 23, 518, '84; Kreusler and Herzhold – Ber. 17, 34, '84; Kohlrausch – Ber. 24, 3501, '91; Wied Ann. 44, 577, '91; Förster – Ber. 25, '92; Mylius and Förster – Ber. 22, 1100, '89; Ber. 25, 70, '92; Wartha – Z. anal. Chem. 24, 250, '85, etc.)

## GLYCOLIC ACID CH\_OH.COOH.

|                                                                | JBILITY IN<br>- Monatsh. Ch |       | <b>)</b> |                    |
|----------------------------------------------------------------|-----------------------------|-------|----------|--------------------|
|                                                                | 20°.                        | 60°.  | 80°.     | 100 <sup>0</sup> . |
| Gms. CH <sub>2</sub> OH(COOH)<br>per 100 gms. H <sub>2</sub> O | 0.033                       | 0.102 | 0.235    | 0.850              |

# **GLUCINIUM SALTS.** (See also Beryllium p. 63).

SOLUBILITY IN WATER AND IN ACETIC ACID SOLUTIONS. (Marignac; Sestini - Gazz. chim. ital. 20, 313, '90.)

| Salt.                             | Formula.                                                           | Solvent.                     | Gms. As<br>per 100 | nhydrous Salt<br>Gms. Solvent. |
|-----------------------------------|--------------------------------------------------------------------|------------------------------|--------------------|--------------------------------|
| Ol data a standard for a standard |                                                                    | 117                          | Át 20°.            | At 100°.                       |
| Glucinium potassium fluoride      |                                                                    | Water                        | 2.0                | 5.2                            |
| soutum                            | GIF, NaF                                                           |                              | 1.4                | 2.8                            |
| Glucinium hydroxide               | GI(OH)                                                             | Water + CO <sub>2</sub> sat. | 0.0185             | (GIO)                          |
| " phosphate                       | Gl <sub>3</sub> (PO <sub>4</sub> ) <sub>2</sub> .6H <sub>2</sub> O |                              | 0.055              | • • •                          |
| 66 66                             | "                                                                  | 10% "                        | 0.1725             | •••                            |

# GLUTARIO AOID (Pyrotartaric) (CH2)2(COOH)2.

| SOLUBILITY IN WATER.<br>(Lamouroux — Compt. rend. 128, 998, '99.) |      |      |                   |      |                   |                   |
|-------------------------------------------------------------------|------|------|-------------------|------|-------------------|-------------------|
|                                                                   | °°.  | 15°. | 20 <sup>0</sup> . | 35°• | 50 <sup>9</sup> . | 65 <sup>0</sup> . |
| Gms. $(CH_2)_3(COOH)_2$<br>per 100 cc. solution                   | 42.9 | 58.7 | 63.9              | 79·7 | 95·7              | 8.111             |

# GOLD Au.

SOLUBILITY OF GOLD IN POTASSIUM CYANIDE SOLUTIONS. (Maclaurin – J. Chem. Soc. 63, 729, '93.)

Gold disks placed in Nestler tubes with KCN solutions.

| Per cent | Granis  | Chains Au Insouveu in 24 nours in Nessier Tubes: |                      |                        |  |  |  |  |
|----------|---------|--------------------------------------------------|----------------------|------------------------|--|--|--|--|
| KCN.     | Full.   | 🔒 Full.                                          | Oxygen<br>Passed in. | Oxygen +<br>Agitation. |  |  |  |  |
| O.I      | 0.00195 | 0.00331                                          | • • •                |                        |  |  |  |  |
| Ι.Ο      | 0.00162 | 0.00418                                          | 0.00845              | o .0187                |  |  |  |  |
| 5.0      | 0.0032  | o.0046                                           | 0.01355              | 0.0472                 |  |  |  |  |
| 20.0     | 0.0012  | 0.00305                                          | 0.0115               | 0.0314                 |  |  |  |  |
| 50.0     | 0.00043 | 0.00020                                          | 0.00505              | 8010.0                 |  |  |  |  |

# GOLD CHLORIDE (Auric) AuCla.

SOLUBILITY IN WATER, ETC.

100 gms. H<sub>2</sub>O dissolve 68 grams AuCl<sub>3</sub>.

AsCl, and SbCl, each dissolve about 2.5% AuCl, at 15°, and 22% at 160°.

141

SnCl<sub>4</sub> dissolves about 4% AuCl<sub>3</sub> at 160°, and a trace at 0°. (Lindet-Bull. soc. chim. [2] 45, 149, '86.)

GOLD PHOSPHORUS TRI CHLORIDE (Aurous) AuCIPCI3.

100 gms. PCl<sub>3</sub> dissolve 1 gram at 15°, and about 12.5 grams at 120°. (Lindet - Compt. rend. 101, 1492, '85.)

# GOLD ALKALI DOUBLE CHLORIDES.

SOLUBILITY OF SODIUM GOLD CHLORIDE, LITHIUM GOLD CHLORIDE, POTASSIUM GOLD CHLORIDE, RHUBIDIUM GOLD CHLORIDE, AND CAESIUM GOLD CHLORIDE IN WATER.

(Rosenbladt - Ber. 19, 2537, '86.)

| t°. | Grams Anhydrous Salt per 100 Grams Solution. |          |         |                       |          |  |  |
|-----|----------------------------------------------|----------|---------|-----------------------|----------|--|--|
|     | NaAuCla.                                     | LiAuCl4. | KAuCl4. | RbAuCl <sub>4</sub> . | CsAuCle. |  |  |
| IO  | 58.2                                         | 53.I     | 27.7    | 4.6                   | 0.5      |  |  |
| 20  | 60.2                                         | 57.7     | 38.2    | 9.0                   | 0.8      |  |  |
| 30  | 64.0                                         | 62.5     | 48.7    | 13.4                  | 1.7      |  |  |
| 40  | 69.4                                         | 67.3     | 59.2    | 17.7                  | 3.2      |  |  |
| 50  | 77.5                                         | 72.0     | 70.0    | 22.2                  | 5.4      |  |  |
| 60  | 90.0                                         | 76.4     | 80.2    | 26.6                  | 8.2      |  |  |
| 70  |                                              | 81.0     |         | 31.0                  | 12.0     |  |  |
| 80  |                                              | 85-7     |         | 35.3                  | 16.3     |  |  |
| 90  |                                              |          |         | 39.7                  | 21.7     |  |  |
| 100 |                                              |          |         | 44.2                  | 27.5     |  |  |

# GUAIACOL C<sub>6</sub>H<sub>4</sub>(OH)OCH<sub>3</sub> 1:2. GUAIACOL CARBONATE C<sub>6</sub>H<sub>4</sub> (OCH<sub>3</sub>)O<sub>2</sub>.CO.

### SOLUBILITY IN WATER, ALCOHOL, ETC. (U. S. P.)

| Solvent.   | t°. | Gms. per 100 Gms. Solvent. |                     |  |
|------------|-----|----------------------------|---------------------|--|
| Solvent.   | • • | Guaiacol.                  | Guaiacol Carbonate. |  |
| Water      | 25  | 1.89                       |                     |  |
| Alcohol    | 25  |                            | 2.08                |  |
| Chloroform | 25  |                            | 66.6                |  |
| Ether      | 25  |                            | 7.69                |  |
| Glycerine  | 25  | 100                        |                     |  |

# a Tri Phenyl GUANIDINE C.H.N:C(NHC.H.s)2.

SOLUBILITY IN MIXTURES OF ALCOHOL AND WATER AT 25°. (Holleman and Antusch – Rec. trav. chim. 13, 392, '94.)

| Vol. %<br>Alcohol. | Gms.<br>CeHeN:C(NHCeHe)2<br>per 100 Gms.<br>Solvent. | Density<br>of Solutions. | Vol. %<br>Alcohol. | Gms.<br>C <sub>6</sub> H <sub>6</sub> N:C(NHC <sub>6</sub> H <sub>6</sub> ) <sub>2</sub><br>per 100 Gms.<br>Solvent. | Density<br>of Solutions, |
|--------------------|------------------------------------------------------|--------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------|
| 100                | 6.23                                                 | 0.8021                   | 80                 | 1.06                                                                                                                 | 0.8572                   |
| 95                 | 3.75                                                 | 0.8158                   | 75                 | 0.67                                                                                                                 | 0.8704                   |
| 90                 | 2.38                                                 | 0.8309                   | 70                 | 0.48                                                                                                                 | 0.8828                   |
| 85                 | 1.58                                                 | 0.8433                   | 60                 | 0.22                                                                                                                 | 0.9048                   |

# HELIUM

# HELIUM He.

# SOLUBILITY IN WATER. (Estreicher – Z. physik. Chem. 31, 184, '99.)

|                  |                           |                      |                |          | Absorption (                                                 | Coefficient.            |
|------------------|---------------------------|----------------------|----------------|----------|--------------------------------------------------------------|-------------------------|
| t°. <sup>C</sup> | or. Barometi<br>Pressure. | ic Vol. of<br>Water. | Vol. of<br>He. | Q.       | At Bar. Pressure<br>Minus H <sub>2</sub> O<br>Vapor Tension. | At 760 mm.<br>Pressure. |
| 0                | • • •                     | • • •                | • • •          | 0.000270 | • • •                                                        | 0.0150                  |
| 0.5              | 764.0                     | 73.584               | 1.093          | • • •    | 0.0149                                                       | 0.0149                  |
| 5                | 758.0                     | 73.578               | 1.062          | 0.000260 | 0.0144                                                       | 0.0146                  |
| 10               | 758.0                     | 73 . 597             | 1.046          | 0.000255 | 0.0142                                                       | 0.0144                  |
| 15               | 757.8                     | 73.641               | 800. I         | 0.000246 | 0.0137                                                       | 0.0140                  |
| 20               | 758.4                     | 73.707               | 0.996          | 0.000242 | 0.0135                                                       | 0.0139                  |
| 25               | 762.3                     | 73.793               | 0.983          | 0.000238 | 0.0133                                                       | 0.0137                  |
| 30               | 764.4                     | 73.897               | 0.985          | 0.000238 | 0.0133                                                       | 0.0138                  |
| 35               | 764.5                     | 74.0167              | 0.972          | 0.000234 | 0.0131                                                       | 0.0138                  |
| 40               | 762.0                     | 74.147               | 0.957          | 0.000232 | 0.0129                                                       | 0.0139                  |
| 45               | 761.7                     | 74.294               | 0.947          | 0.000229 | 0.0127                                                       | 0.0140                  |
| 50               | 760.9                     | 74.461               | 0.020          | 0.000223 | 0.0124                                                       | 0.0140                  |

.

For q and also Absorption Coefficient, see Ethane, page 133.

# HEXANE C.H.

.

SOLUBILITY IN METHYL ALCOHOL. (Rothmund – Z. physik. Chem. 26, 475, '98.)

Determined by Synthetic Method, see page 9.

| Gms. Hexane per 100 Gms. |                     |                  |             | Gms. Hexane per 100 Gms. |                  |  |
|--------------------------|---------------------|------------------|-------------|--------------------------|------------------|--|
| t°.                      | Alcoholic<br>Layer. | Hexane<br>Layer. | <b>t°</b> . | Alcoholic<br>Layer.      | Hexane<br>Layer. |  |
| 10                       | 26.5                | 96.8             | 35          | 43.6                     | 91.2             |  |
| 20                       | 31.6                | 95.9             | 40          | 52.7                     | 85.5             |  |
| 30                       | 38.3                | 93.7             | 42.6        | (crit. t.) 68            | .9               |  |

HIPPUBIC ACID C.H.CONH.CH.COOH. SOLUBILITY IN AQ. POTASSIUM HIPPURATE SOLUTIONS AT 20°. (Hoitsema – Z. physik. Chem. 27, 317, '98.)

|                |                                                 | •              |                                                 |                 | •                                                |
|----------------|-------------------------------------------------|----------------|-------------------------------------------------|-----------------|--------------------------------------------------|
| Density        |                                                 | per Liter Sol. | Grams per                                       | Liter Solution. | Solid                                            |
| of Solutions.  | C <sub>9</sub> H <sub>9</sub> NO <sub>3</sub> . | KC9H8NO3.      | C <sub>9</sub> H <sub>9</sub> NO <sub>3</sub> . | KC9H8NO3.       | Phase.                                           |
| I.002          | 0.0182                                          | 0              | 3.276                                           | 0.0             | C <sub>9</sub> H <sub>9</sub> NO <sub>8</sub>    |
| I.003          | 0.0163                                          | 0.011          | 2.919                                           | 2.39            | "                                                |
| 1.008          | 0.0183                                          | 0.071          | 3 . 278                                         | 15.43           | 66                                               |
| I.022          | 0.0234                                          | 0.254          | 4 . 191                                         | 55.18           | "                                                |
| 1.114          | 0.064                                           | 1.36           | II . 47                                         | 295.4           | 66                                               |
| 1.182          | 0.131                                           | 2.21           | 23.46                                           | 480 I           | 66                                               |
| I . 192        | 0.147                                           | 2.32           | 26.32                                           | 504 · I ) C     | H <sub>9</sub> NO <sub>3</sub> +                 |
| I . 195        | 0.153                                           | 2.40           | 27 . 40                                         | 521.4           | C9H9NO3.KC9H8NO3.H3O                             |
| I . 20I        | 0.133                                           | 2.50           | 23.82                                           | 543.1 C         | 9H9NO3.KC9H9NO3.H2O                              |
| I . 239        | o.o84                                           | 3.01           | 15.04                                           | 654.0           | **                                               |
| I . <b>282</b> | o . o68                                         | 3 · 57         | 12.18                                           | 775 · 7 C       | HeNO3.KC9H8NO3.H3O                               |
| 1.282          | o.o65                                           | 3 . 58         | 11.60                                           | 777.8)          | + KC <sub>9</sub> H <sub>8</sub> NO <sub>3</sub> |
| 1.276          | 0.031                                           | 3.56           | 5 · 55                                          | 773·4           | KC9H8NO3                                         |
| I.277          | 0.011                                           | 3.55           | 1.917                                           | 771.3           | 4                                                |
| I.277          | 0. <b>00</b>                                    | 3.56           | •••                                             | 773.4           | •                                                |
|                |                                                 |                |                                                 |                 |                                                  |

#### HOMATROPINE HYDRO-143 BROMIDE

# HOMATBOPINE HYDBOBBOMIDE C.H.NO, HBr.

.

SOLUBILITY IN WATER, ETC. (U. S. P.)

100 grams water dissolve 17.5 grams salt at 25°. 100 grams alcohol dissolve 3.08 grams salt at 25°, and 11.5 grams at 60°.

100 grams chloroform dissolve 0.16 gram salt at 25°.

#### HYDRASTINE C<sub>21</sub>H<sub>21</sub>NO<sub>6</sub>. HYDRASTINE HYDROCHLORIDE C<sub>11</sub>H<sub>11</sub>NO<sub>2</sub>.HCl.

SOLUBILITY IN SEVERAL SOLVENTS. (U. S. P.; Müller - Apoth.-Ztg. 18, 249, '03.)

| Solvent.                                                       | Gms. C21 H21 NO6<br>Soluti                                   | per 100 Gms.                     | Solvent.                                                            | Gms. per 100 Gms.<br>Solution at 18 <sup>0</sup> -22 <sup>0</sup> .                |                                                                                                                      |
|----------------------------------------------------------------|--------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Water<br>Alcohol<br>Benzene<br>Acetic Ether<br>Petroleum Ether | At 18°-22°.<br>0.0033<br>0.74 (25°)<br>8.89<br>4.05<br>0.073 | At 80°.<br>0.025<br>5.9(60°)<br> | Ether<br>Ether + H <sub>3</sub> O<br>Chloroform<br>CCl <sub>4</sub> | C <sub>21</sub> H <sub>21</sub> NO <sub>6</sub> .<br>0.51<br>0.80<br>100+<br>0.123 | C <sub>11</sub> H <sub>11</sub> NO <sub>5</sub> .HCl.<br>0.078 (25 <sup>°</sup> )<br><br>0.35 (25 <sup>°</sup> )<br> |

# HYDRAZINE SULPHATE N.H.H.SO.

100 grams water dissolve 3.055 grams N,H,H,SO, at 22°. (Curtius and Jay - J. pr. Chem. (s) 39, 39, '89.)

# HYDROBROMIC ACID HBr.

# SOLUBILITY IN WATER.

(Roozeboom – Z. physik. Chem. 2, 454, '88; Rec. trav. chim. 4, 107, '85; 5, 358, '86; see also Pickering – Phil. Mag. [5] 36, 119, '93.)

| G<br>t°.    |         | Gms.HBr Dissolved(at 760-765mm.)<br>per 100 Gms. |         | Gms. HBr Dissolved at<br>Lower Pressures per 100<br>Gms. H <sub>2</sub> O. |
|-------------|---------|--------------------------------------------------|---------|----------------------------------------------------------------------------|
|             | Water.  | Solution.                                        |         | Gma. H <sub>2</sub> O.                                                     |
| <b>—</b> 2. | 5 255.0 | 71.83                                            | • • •   | 175.0 (10 mm.)                                                             |
| -15         | 239.0   | 70 - <b>50</b>                                   |         |                                                                            |
| ŏ           | 221.2   | 68.85                                            | 611.6   |                                                                            |
| + 10        | 210.3   | 67.76                                            | 581.4   | 108.5 (5 mm.)                                                              |
| 15          | 204 - 0 | 67 . 10                                          |         |                                                                            |
| 25          | 193.0   | 65.88                                            | 532 . 1 | • • •                                                                      |
| 50          | 171.5   | 63.16                                            | 468.6   |                                                                            |
| 75          | 150.5   | 60.08                                            | 406.7   |                                                                            |
| 100         | 130.0   | 56.52                                            | 344.6   |                                                                            |

,

For  $\beta$  see Ethane, page 133.

# HYDROCHLORIC ACID 144

# HYDROCHLORIC ACID HCI.

# SOLUBILITY IN WATER AT DIFFERENT TEMPERATURES AND PRESSURES.

(Deicke; Roscoe and Dittmar - Liebig's Ann. 112, 334, '59; below o°, Rooseboom - Rec. trav. chim. 3, 104, '84.)

| cc. HCl per<br>100 cc. H <sub>2</sub> O. | Density. | Gms. HCl per<br>100 g. Sol. | Gms. HCl per<br>100 g. HgO. | Pressures.* | Gms. HCl pe<br>100 g. HgO. |
|------------------------------------------|----------|-----------------------------|-----------------------------|-------------|----------------------------|
| 525.2                                    | I . 2257 | 45.15                       | 82.31                       | 60          | 61.3                       |
| 497.7                                    | 1.2265   | 44.36                       | <b>79</b> .73               | 100         | 65.7                       |
| 480.3                                    | 1.2185   | 43.83                       | 78.03                       | 150         | 68.6                       |
| 471.3                                    | 1.2148   | 43.28                       | 76.30                       | 200         | 70.7                       |
| 462.4                                    | I . 2074 | · 42.83                     | 74.92                       | 300         | 73.8                       |
| 451.2                                    | 1.2064   | 42.34                       | 73.4I                       | 400         | 76.3                       |
| 435.0                                    | I . 20I4 | 41.54                       | 71.03                       | 500         | 78.2                       |
| •••                                      | • • •    | 40.23                       | 67.3                        | 600         | 8o.o                       |
| •••                                      | • • •    | 38.68                       | 63.3                        | 750         | 82 . 4                     |
| •••                                      | •••      | 37 · 34                     | 59.6                        | 1000        | 85.6                       |
| •••                                      |          | 35.94                       | 56.1                        | 1300        | 89.5                       |

\* Pressures in mm. Hg minus tension of HgO vapor.

SOLUBILITY IN WATER AT TEMPERATURES BELOW O°:

At a pressure of 760 mm. At pressures below and above 760 mm.

| t°.    | 9.      | t°.  | <b>q</b> . | t°.      | mm. Pressure. | q.      |
|--------|---------|------|------------|----------|---------------|---------|
| - 24   | IOI . 2 | -15  | 93.3       | - 23.8   |               | 84.2    |
| -21    | 98.3    | - 10 | 89.8       | -21      | 334           | 86.8    |
| - 18.3 | 96.0    | - 5  | 86.8       | - 19     | 580           | 92.6    |
| — 18   | 95.7    | Ō    | 84.2       | - 18     | 900           | 98.4    |
|        |         |      |            | — 17 · 7 | 1073          | 101 . 4 |

For value of q, see Ethane, page 133.

.

SOLUBILITY OF HYDROCHLORIC ACID GAS IN METHYL ALCOHOL, ETHYL Alcohol, and in Ether at 760 mm. Pressure.

(de Bruyn - Rec. trav. chim. 11, 129, '92; Schuncke - Z. physik. Chem. 14, 336, '94.)

|      | Grams HCl gas per 100 Grams Solution in: |                                   |               |  |  |  |
|------|------------------------------------------|-----------------------------------|---------------|--|--|--|
| t°.  | снон.                                    | C <sub>2</sub> H <sub>4</sub> OH. | (C2H4)2O.     |  |  |  |
| - 10 | <b>54.6</b>                              | •••                               | 37.51 (-9.2°) |  |  |  |
| - 5  | •••                                      | • • •                             | 37.0          |  |  |  |
| Ó    | 51.3                                     | 45.4                              | 35.6          |  |  |  |
| + 5  | •••                                      | 44.2 (6.5°)                       | 33.1          |  |  |  |
| IO   | • • •                                    | 42.7 (11.5°)                      | 30.35         |  |  |  |
| 15   | •••                                      | •••                               | 27.62         |  |  |  |
| 20   | 47 .0 (18°)                              | 4I .O                             | 24.9          |  |  |  |
| 25   | • • •                                    | 40.2 (23.5°)                      | 22 . 18       |  |  |  |
| 30   | 43 · 0 (31 · 7°)                         | 38.1 (32°)                        | 19.47         |  |  |  |

# HYDROFLUORIC ACID HF.

100 grams H<sub>2</sub>O dissolve 111 grams HF at 35°. (Metzner - Compt. rend. 119, 683, '94.)

# HYDRIODIC ACID HI. IODIC ACID HIO.

For determinations of the freezing points of aqueous solutions of HI, and isolation of the several hydrates at temperatures below  $o^{\circ}$ , see Pickering — Ber. 26, 2307, '93.

SOLUBILITY OF IODIC ACID AND ITS MODIFICATIONS IN WATER. (Groschuff - Z. anorg. Chem. 47, 343, '05.)

|     | latosci                         | iun - z. an | org. Chem. 4                         | 11 3431 431 |                                |  |
|-----|---------------------------------|-------------|--------------------------------------|-------------|--------------------------------|--|
| t°. | Grams per 100<br>Gms. Solution. |             | Gram Mols. I2O5<br>per 100 Gm. Mols. |             | Solid<br>Phase.                |  |
|     | HIO3.                           | I2O5.       | H <sub>2</sub> O.                    | Solution.   |                                |  |
| -14 | 72.8                            | 69.I        | 12.1                                 | 10.8        | Ice + HIO <sub>a</sub>         |  |
| 0   | 74.I                            | 70.3        | 12.8                                 | 11.3        | HIO3                           |  |
| 16  | 75.I                            | 71.7        | 13.7                                 | 12.0        |                                |  |
| 40  | 77.7                            | 73.7        | 15.1                                 | 13.2        | "                              |  |
| 60  | 80.0                            | 75.9        | 17.0                                 | 14.5        | **                             |  |
| 80  | 82.5                            | 78.3        | 19.4                                 | 16.3        | **                             |  |
| 85  | 83.0                            | 78.7        | 20.0                                 | 16.7        | "                              |  |
| IOI | 85.2                            | 80.8        | 22.8                                 | 18.6        | "                              |  |
| IIO | 86.5                            | 82.1        | 24.7                                 | 19.8        | $HIO_3 + HI_3O_8$              |  |
| 125 | 87.2                            | 82.7        | 25.9                                 | 20.6        | HI <sub>3</sub> O <sub>8</sub> |  |
| 140 | 88.3                            | 83.8        | 27.9                                 | 21.8        | "                              |  |
| 160 | 90.5                            | 85.9        | 32.8                                 | 24.7        | "                              |  |
|     |                                 |             |                                      |             |                                |  |

SOLUBILITY OF IODIC ACID IN NITRIC ACID. (Groschuff.)

Course HIO.

1

|    | Gn               | and hitos per 100 t      | grams      |
|----|------------------|--------------------------|------------|
| •. | Aq.<br>Solution. | 27.73% HNO3<br>Solution. | 40.88% HNO |
| 0  | 74.1             | 18.0                     | 9.0        |
| 10 | 75.8             | 21.0                     | 10.0       |
| o  | 77.7             | 27.0                     | 14.0       |
| io | 80.0             | 38.0                     | 18.0       |

## HYDROGEN H.

2 46

SOLUBILITY IN WATER.

(Winkler - Ber. 24, 99, '91; Bohr and Bock - Wied. Ann. 44, 318, '91; Timofejew - Z. physik.

|        |           | Ch          | cm. 0, 147, 90 | .)        |              |      |
|--------|-----------|-------------|----------------|-----------|--------------|------|
| t°.    | β'.       |             |                | β.        | q.           |      |
| 0      | 0.0214    |             |                | 0.0214    | 0.000193     |      |
| 5      | 0.0203    | 0.0209 -    | 0.0241         | 0.0204    | 0.000184     |      |
| 10     | 0.0193    | 0.0204 -    | 0.0229         | 0.0195    | 0.000176     |      |
| 15     | 0.0185    | 0.0200 -    | 0.0217         | 0.0188    | 0.000169     |      |
| 20     | 0.0178    | 0.0196 -    | 0.0205         | 0.0182    | 0.000162     |      |
| 25     | 0.0171    | 0.0193 -    | 1010.0         | 0.0175    | 0.000156     |      |
| 30     | 0.0163    |             |                | 0.0170    | 0.000147     |      |
| 40     | 0.0153    |             |                | 0.0164    | 0.000139     |      |
| 50     | 0.0141    |             |                | 0.0161    | 0.000120     |      |
| 60     | 0.0129    |             |                | 0.0160    | 0.000110     |      |
| 80     | 0.0085    |             |                | 0.0160    | 0.000079     |      |
| 100    | 0.0000    |             |                | 0.0160    | 0.000000     |      |
| - Ostw | ald Solut | oility Expr | ession, see    | page 105. | For B', B. a | nd a |

1 -,  $\beta$ , and q, see Ethane, page 133.

,

# 146

# Solubility of Hydrogen in Aqueous Solutions of Acids and Bases at 25°.

(Geffcken - Z. physik. Chem. 49, 268, '04.)

| Gram Equiv<br>Acids and | •      | Solubility of H ( $l_{25}$ - Ostwald Expression) in Solutions of: |        |          |          |         |        |  |
|-------------------------|--------|-------------------------------------------------------------------|--------|----------|----------|---------|--------|--|
| Bases<br>per Liter.     | HCI.   | HNO3.                                                             | HaSO4. | СНаСООН. | CH2CICOO | н. кон. | NaOH.  |  |
| 0.0                     | 0.0193 |                                                                   |        | 0.0193   |          |         |        |  |
| 0.5                     | 0.0186 | 0.0188                                                            | 0.0185 | 0.0192   | 0.0189   | 0.0167  | 0.0165 |  |
| I.0                     | 0.0179 | 0.0183                                                            | 0.0177 | 0.0191   | 0.0186   | 0.0142  | 0.0139 |  |
| 2.0                     | 0.0168 | 0.0174                                                            | 0.0163 | 0.0188   | 0.0180   |         | 0.0007 |  |
| 3.0                     | 0.0159 | 0.0167                                                            | 0.0150 | 0.0186   | • • •    | •••     | 0.0072 |  |
| 4.0                     |        | 0.0160                                                            | 0.0141 | 0.0186   | •••      | •••     | 0.0055 |  |

The above figures for the concentrations of acids and bases were calculated to grams per liter, and these values with the corresponding  $l_{13}$  values for the solubility of hydrogen plotted on cross-section paper. From the resulting curves the following table was read.

| Grams Acids             | 1      | Solubility of H (125 - Ostwald Expression) in Solutions of: |                                  |                       |            |        |        |  |  |
|-------------------------|--------|-------------------------------------------------------------|----------------------------------|-----------------------|------------|--------|--------|--|--|
| and Bases<br>per Liter. | HCI.   | HNO <sub>8</sub> .                                          | H <sub>3</sub> SO <sub>4</sub> . | CH <sub>s</sub> COOH. | CH_CICOOH. | кон.   | NaOH.  |  |  |
| 0                       | 0.0193 | 0.0193                                                      | 0.0193                           | 0.0193                | 0.0193     | 0.0193 | 0.0193 |  |  |
| 20                      | 0.0185 | 0.0189                                                      | 0.0186                           | 0.0192                | 0.0191     | 0.0172 | 0.0165 |  |  |
| 40                      | 0.0179 | 0.0186                                                      | 0.0180                           | 0.0191                | 0.0190     | 0.0153 | 0.0140 |  |  |
| 60                      | 0.0173 | 0.0183                                                      | 0.0174                           | 0.0190                | 0.0188     | 0.0135 | 0.0117 |  |  |
| 80                      | 0.0167 | 0.0180                                                      | 0.0168                           | 0.0189                | 0.0187     |        | 0.0097 |  |  |
| 100                     | 0.0160 | 0.0179                                                      | 0.0162                           | 0.0189                | 0.0185     | •••    | 0.0082 |  |  |
| 150                     | •••    | 0.0171                                                      | 0.0148                           | 0.0188                | 0.0182     | •••    | 0.0058 |  |  |
| 200                     |        | 0.0165                                                      | 0.0140                           | 0.0186                | 0.0179     | •••    | • • •  |  |  |
| 250                     | •••    | 0.0160                                                      | •••                              | 0.0184                | •••        | •••    | • • •  |  |  |

For Ostwald Solubility Expression, see page 105.

# Solubility of Hydrogen in Aqueous Solutions of Ammonium Nitrate at 20°.

(Knopp — Z. physik. Chem. 43, 103, '04.)

| <b>*</b> . | Normality<br>(per 1000 Gms.)<br>H <sub>2</sub> O. | Molecular<br>Concentra-<br>tion. | Absorption<br>Coefficient<br>of Hydrogen. | Density<br>of Solutions. |
|------------|---------------------------------------------------|----------------------------------|-------------------------------------------|--------------------------|
| 0.00       | 0.00                                              | 0.00                             | 0.0188                                    | •••                      |
| I.037      | 0.1308                                            | 0.002352                         | 0.01872                                   | I.0027                   |
| 2.167      | 0.2765                                            | 0.004956                         | 0.01845                                   | 1.0072                   |
| 3.378      | 0.4363                                            | 0.007799                         | 0.01823                                   | I.0122                   |
| 4.823      | 0.6333                                            | 0.011280                         | 0.01773                                   | 1.0182                   |
| 6.773      | 0.9069                                            | 0.016447                         | <b>0</b> .01744                           | 1 .0262                  |
| 11.550     | 1.6308                                            | 0.028525                         | 0.01647                                   | 1.04652                  |

HYDROGEN

#### SOLUBILITY OF HYDROGEN IN AQUEOUS SOLUTIONS OF BARIUM CHLORIDE. (Bi 0.)

| raun - L. | physik. | Cnem. | 33, | 735. | OX |
|-----------|---------|-------|-----|------|----|
|-----------|---------|-------|-----|------|----|

| Gms. BaCl <sub>2</sub>    |        | Coefficient o     | f Absorption of | Hydrogen at : |        |  |  |  |
|---------------------------|--------|-------------------|-----------------|---------------|--------|--|--|--|
| per 100 Gms.<br>Solution. | 5°.    | 10 <sup>0</sup> . | 15°.            | 20°.          | 250.   |  |  |  |
| 0.00                      | 0.0237 | 0.0221            | 0.0206          | 1010.0        | 0.0175 |  |  |  |
| 3.29                      | 0.0211 | 0.0198            | 0.0185          | 0.0172        | 0.0157 |  |  |  |
| 3.6                       | 0.0209 | 0.0197            | 0.0184          | 0.0170        | 0.0156 |  |  |  |
| 6.45                      | 0.0196 | 0.0186            | 0.0173          | 0.0161        | 0.0147 |  |  |  |
| 7.00                      | 0.0194 | 0.0183            | 0.0172          | 0.0159        | 0.0146 |  |  |  |

SOLUBILITY OF HYDROGEN IN AQUEOUS SOLUTIONS OF CALCIUM CHLOR-IDE, MAGNESIUM SULPHATE, AND LITHIUM CHLORIDE AT 15°. (Gordon - Z. physik. Chem. 18, 14, '95.)

Coefficient of Absorption of hydrogen in water at  $15^{\circ} = 0.01883$ .

| In Calcium<br>Chloride.                         |                                             | Ir                                 | n Magn<br>Sulph                     |                                            | In Lithium<br>Chloride.            |                                    |                                |                                    |
|-------------------------------------------------|---------------------------------------------|------------------------------------|-------------------------------------|--------------------------------------------|------------------------------------|------------------------------------|--------------------------------|------------------------------------|
| Gms.<br>CaCl <sub>2</sub><br>per<br>100 g. Sol. | G. M.<br>CaCl <sub>2</sub><br>per<br>Liter. | Absorption<br>Coefficient<br>of H. | Gms.<br>MgSO4<br>per<br>100 g. Sol. | G.M.<br>MgSO <sub>4</sub><br>per<br>Liter. | Absorption<br>Coefficient<br>of H. | Gms.<br>LiCl<br>per<br>100 g. Sol. | G. M.<br>LiCl<br>per<br>Liter. | Absorption<br>Coefficient<br>of H. |
| 3.47                                            | 0.321                                       | 0.01619                            | 4.97                                | 0.433                                      | 0.01501                            | 3.48                               | 0.835                          | 0.01619                            |
| 6.10                                            | 0.578                                       | 0.01450                            | 10.19                               | 0.936                                      | 0.01159                            | 7.34                               | 1.800                          | 0.01370                            |
| 11.33                                           | 1.122                                       | 0.01138                            | 23.76                               | 2.501                                      | 0.00499                            | 14.63                              | 3.734                          | 0.0000                             |
| 17.52                                           | 1.1827                                      | 0.00839                            |                                     |                                            |                                    |                                    |                                |                                    |
| 26.34                                           | 2.962                                       | 0.00519                            |                                     |                                            |                                    |                                    |                                |                                    |

For definition of Coefficient of Absorption, see page 105.

# SOLUBILITY OF HYDROGEN IN AQUEOUS SOLUTIONS OF POTASSIUM CARBONATE, CHLORIDE, AND NITRATE AT 15°. (Gordon.)

| I                                                                     | n Potas<br>Carbon                                                  |                                    |                                           | Potass                                  |                                               |                                            | Potassi<br>Nitrate                                  |                                               |
|-----------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------------------|--------------------------------------------|-----------------------------------------------------|-----------------------------------------------|
| Gms.<br>K <sub>2</sub> CO <sub>3</sub><br>per<br>100 g. Sol.<br>2, 82 | G. M.<br>K <sub>2</sub> CO <sub>3</sub><br>per<br>Liter.<br>O, 200 | Absorption<br>Coefficient<br>of H. | Gms.<br>KCl<br>per<br>100 g. Sol.<br>3.83 | G. M.<br>KCl<br>per<br>Liter.<br>0. 526 | Absorption<br>Coefficient<br>of H.<br>0.01667 | Gms.<br>KNO3<br>per<br>100 g. Sol.<br>4.73 | G. M.<br>KNO <sub>3</sub><br>per<br>Liter.<br>0.482 | Absorption<br>Coefficient<br>of H.<br>0.01683 |
| 8.83                                                                  | 0.690                                                              | 0.01183                            | 7.48                                      | 1.051                                   | 0.01489                                       | 8.44                                       | 0.879                                               | 0.01550                                       |
| 16.47                                                                 | 1.376                                                              | 0.00761                            | 12.13                                     | 1.755                                   | 0.01279                                       | 16.59                                      | 1.820                                               | 0.01311                                       |
| 24.13<br>41.81                                                        | 2.156<br>4.352                                                     | 0.00462                            | 19.21<br>22.92                            | 2.909<br>3.554                          | 0.01012                                       | 21.46                                      | 2.430                                               | 0.01180                                       |

# SOLUBILITY OF HYDROGEN IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE AND NITRATE AT 20°. (Knopp – Z. physik. Chem. 43, 103, '04.)

| IT     | In Potassium Chloride.                          |                            |                             |        | In Potassium Nitrate.                           |                            |                             |  |
|--------|-------------------------------------------------|----------------------------|-----------------------------|--------|-------------------------------------------------|----------------------------|-----------------------------|--|
| p.     | Normality<br>(per 1000<br>g. H <sub>2</sub> O). | Absorption<br>Coefficient. | Density<br>of<br>Solutions. | p.     | Normality<br>(per 1000<br>g. H <sub>2</sub> O). | Absorption<br>Coefficient. | Density<br>of<br>Solutions. |  |
| 1.089  | 0.1475                                          | 0.01823                    | 1.0052                      | I.224  | 0.1245                                          | 0.01835                    | 1.0059                      |  |
| 2.123  | 0.2907                                          | 0.01757                    | 8110.1                      | 2.094  | 0.2114                                          | 0.01818                    | I.OII3                      |  |
| 4.070  | 0.5687                                          | 0.01661                    | 1.0243                      | 4.010  | 0.4127                                          | 0.01785                    | 1.0236                      |  |
| 6.375  | 0.9127                                          | 0.01531                    | 1.0394                      | 5.925  | 0.6225                                          | 0.01743                    | I.0359                      |  |
| 7.380  | 1.0682                                          | 0.01472                    | 1.0460                      | 7.742  | 0.8293                                          | 0.01667                    | I.0477                      |  |
| 13.612 | 2.1222                                          | 0.01255                    | 1.0875                      | 13.510 | 1.5436                                          | 0.01436                    | 1.0865                      |  |

•

# SOLUBILITY OF HYDROGEN IN AQUEOUS SODIUM CARBONATE AND SULPHATE SOLUTIONS AT 15°. (Gordon.)

| In Sod                                                            | ium Cart                     | oonate.                            | In So                                                             | In Sodium Sulphate.          |                                    |  |  |
|-------------------------------------------------------------------|------------------------------|------------------------------------|-------------------------------------------------------------------|------------------------------|------------------------------------|--|--|
| Gms. Na <sub>2</sub> CO <sub>3</sub><br>per 100 Gms.<br>Solution. | G.M.<br>NagCOg<br>per Liter. | Absorption<br>Coefficient<br>of H. | Gms. Na <sub>2</sub> SO <sub>4</sub><br>per 100 Gms.<br>Solution. | G.M.<br>NagSO4<br>per Liter. | Absorption<br>Coefficient<br>of H. |  |  |
| 2.15                                                              | 0.207                        | 0.01639                            | 4.58                                                              | 0.335                        | 0.01519                            |  |  |
| 8.64                                                              | 0.438                        | 0.01385                            | 8.42                                                              | 0.638                        | 0.0154                             |  |  |
| 11.53                                                             | 1.218                        | 0.00839                            | 16.69                                                             | I.364                        | 0.00775                            |  |  |

# SOLUBILITY OF HYDROGEN IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE. (Braun; Gordon.)

| Gms. NaCl                 | C        | Coefficient of Absorption of Hydrogen at: |         |                |        |  |  |  |
|---------------------------|----------|-------------------------------------------|---------|----------------|--------|--|--|--|
| per 100 Gms.<br>Solution. | <u> </u> | 10°.                                      | 15°.    | 20°.           | 25°.   |  |  |  |
| I.25                      | 0.0218   | 0.0205                                    | 0.0191  | 0.0177         | 0.0162 |  |  |  |
| 3.80                      | 0.0198   | 0.0188                                    | 0.0176  | 0.0162         | 0.0148 |  |  |  |
| 4.48                      | 0.0192   | 0.0182                                    | 0.0171  | 0.01 <b>59</b> | 0.0143 |  |  |  |
| 6.00                      | 0.0184   | 0.0175                                    | 0.0164  | 0.0153         | 0.0138 |  |  |  |
| 14.78                     | • • •    |                                           | 0.0093  | •••            | •••    |  |  |  |
| 23.84                     | •••      | •••                                       | 0.00595 | •••            | •••    |  |  |  |

# SOLUBILITY OF HYDROGEN IN AQUEOUS SOLUTIONS OF SODIUM NITRATE.

|            | In Sodium                                         | Nitrate at 2<br>wpp.)              | In Sodium                   | (Gordon.)                               | at 15°.                                  |                                    |
|------------|---------------------------------------------------|------------------------------------|-----------------------------|-----------------------------------------|------------------------------------------|------------------------------------|
| <b>*</b> . | Normality<br>(per 1000<br>Gms. H <sub>2</sub> O). | Absorption<br>Coefficient<br>of H. | Density<br>of<br>Solutions. | Gms. NaNOs<br>per 100 Gms.<br>Solution. | G. M.<br>NaNO <sub>3</sub><br>per Liter. | Absorption<br>Coefficient<br>of H. |
| I .04I     | 0.1236                                            | 0.01839                            | I.0052                      | 5 · 57                                  | 0.679                                    | 0.01603                            |
| 2.192      | 0.2634                                            | 0.01774                            | 1.0130                      | 11.16                                   | 1.413                                    | 0.0137                             |
| 4.405      | 0.5416                                            | 0.01694                            | 1.0282                      | 19.77                                   | 2.656                                    | 0.01052                            |
| 6.702      | 0.8442                                            | 0.01518                            | 1.04411                     | 37 . 43                                 | 5.711                                    | 0.00578                            |
| 12.637     | 1.7354                                            | 0.0130                             | I.08667                     |                                         |                                          | •                                  |

# SOLUBILITY OF HYDROGEN IN ALCOHOL. (Timofejew - Z. physik. Chem. 6, 147, '90.)

| t°.  | Coefficient of Abs. in<br>98.8% Alcohol. | t°.  | Coefficient of Abs. in<br>99.7% Alcohol. |
|------|------------------------------------------|------|------------------------------------------|
| 0    | 0.0676                                   | 4    | 0.0749                                   |
| 6.2  | 0.0693                                   | 18.8 | 0.0740                                   |
| 13.4 | 0.0705                                   |      |                                          |
| 18.8 | 0.0740                                   |      |                                          |

# Solubility in Aqueous Alcohol Solutions at 20° and 760 mm. Pressure.

# (Lubarsch - Wied. Ann. [2] 37, 525, '89.)

| Wt. % Alcohol. | Vol. % Absorbed H. | Wt. % Alcohol.  | Vol. % Absorbed H. |
|----------------|--------------------|-----------------|--------------------|
| °O · OO        | I.93               | 28 . 57         | I .04              |
| 9.09           | I.43               | <b>3</b> 3 · 33 | I.17               |
| 16.67          | I . 29             | 50 · O          | 2.02               |
| 23.08          | I.I7               | 66.67           | 2.55               |

.

# HYDROGEN

# SOLUBILITY OF HYDROGEN IN AQUEOUS SUGAR SOLUTIONS AT 15°. (Gordon - Z. physik. Chem. 18, 14, '95.)

| Gms. Sugar per<br>100 Gms. Solution. | Gm. Mols. Sugar<br>per Liter. | Absorption<br>Coefficient of H. |
|--------------------------------------|-------------------------------|---------------------------------|
| 16.67                                | 0.520                         | 0.01561                         |
| 30.08                                | 0.993                         | 0.01284                         |
| 47.65                                | 1.699                         | 0.00892                         |

# SOLUBILITY OF HYDROGEN IN WATER AND IN ORGANIC SOLVENTS.

Results in terms of the Ostwald Expression, see page 105. (Just - Z. physik, Chem 110 '01)

|                   |        |        | Oust - 2. physik.     | Cucin. 3/ | 339, 01.7 |
|-------------------|--------|--------|-----------------------|-----------|-----------|
| Solvent.          | 125.   | 120.   | Solvent.              | 125.      | 120-      |
| Water             | 0.0100 | 0.0200 | Amyl Acetate          | 0.0774    | 0.0743    |
| Anilin            | 0.0285 | 0.0303 | Xylene                | 0.0819    | 0.0783    |
| Amyl Alcohol      | 0.0301 | 0.0353 | Ethyl Acetate         | 0.0852    | 0.0788    |
| Nitro Benzene     | 0.0371 | 0.0353 | Toluene               | 0.0874    | 0.0838    |
| Carbon Disulphide | 0.0375 | 0.0336 | Ethyl Alcohol (98.8%) | 0.0894    | 0.0862    |
| Acetic Acid       | 0.0633 | 0.0017 | Methyl Alcohol        | 0.0945    | 0.0902    |
| Benzene           | 0.0756 | 0.0707 | Iso Butyl Alcohol     | 0.0976    | 0.0929    |
| Acetone           | 0.0764 | 0.0703 |                       |           |           |

# SOLUBILITY OF HYDROGEN IN CHLORAL HYDRATE SOLUTIONS AT 20°. (Knopp.)

| p.    | Normality (per<br>1000 Gms. HgO). | Molecular<br>Concentration. | Absorption<br>Coefficient of H. | Density<br>of Solutions. |
|-------|-----------------------------------|-----------------------------|---------------------------------|--------------------------|
| 4.91  | 0.310                             | 0.005594                    | 0.01839                         | I.0202                   |
| 7.69  | 0.504                             | 0.008992                    | 0.01802                         | I.0320                   |
| 14.56 | I.030                             | 0.018223                    | 0.01712                         | 1.0669                   |
| 29.50 | 2.530                             | 0.043601                    | 0.01542                         | 1.1466                   |
| 38.42 | 3.770                             | 0.063647                    | 0.01440                         | 1.1982                   |
| 49.79 | 6.000                             | 0.097493                    | 0.01353                         | 1.2724                   |
| 63.90 | 10.700                            | 0.161660                    | 0.01307                         | I.3743                   |
|       |                                   |                             |                                 |                          |

# SOLUBILITY OF HYDROGEN IN PROPIONIC ACID SOLUTIONS. (Braun.)

| G. C2HSCOOH               |         | Coefficient of | Absorption of H | ydrogen at: |        |
|---------------------------|---------|----------------|-----------------|-------------|--------|
| per 100 Gms.<br>Solution. | 5°.     | 100.           | 15°.            | 20°.        | 250.   |
| 2.63                      | 0.02245 | 0.0214         | 0.0200          | 0.0188      | 0.0172 |
| 3.37                      | 0.0222  | 0.0212         | 0.0199          | 0.0187      | 0.0171 |
| 5.27                      | 0.0224  | 0.0212         | 0.0198          | 0.0184      | 0.0171 |
| 6.50                      | 0.0218  | 0.0209         | 0.0193          | 0.0183      | 0.0169 |
| 9.91                      | 0.0213  | 0.0203         | 0.0191          | 0.0178      | 0.0160 |

SOLUBILITY OF HYDROGEN IN PETROLEUM. (Griewasz and Walfisz - Z. physik. Chem. 1, 70, '87.,

Coefficient of absorption at  $20^\circ = 0.0582$ , at  $10^\circ = 0.0652$ .

140

# HYDROGEN SULPHIDE 150

### HYDROGEN SULPHIDE H.S.

SOLUBILITY IN WATER AND IN ALCOHOL AT t<sup>o</sup> AND 760 MM. PRESSURE. (Bunsen and Carius; Fauser — Math. u Natur. W. Ber. (Ungarn.) 6, 154, '88.)

|     | In Water. |                                        |       |       |              | n Alcohol.             |
|-----|-----------|----------------------------------------|-------|-------|--------------|------------------------|
| ŧ°. | ı Vol. H  | O Absorbs                              | β.    | 9.    | ı Vol. Alcoh | ol Absorbs             |
| 0   | 4.37 Vol  | s. H <sub>2</sub> S(at 0° and 760 mm.) | 4.686 | 0.710 | 17.89 Vols.  | H9S(at 0° and 760 mm.) |
| 5   | 3.97      | "                                      | 4.063 | 0.615 | 14.78        | **                     |
| IO  | 3 . 59    | 4                                      | 3.520 | 0.530 | 11.99        | **                     |
| 15  | 3.23      | 64                                     | 3.056 | 0.458 | 9.54         | 44                     |
| 20  | 2.91      | *                                      | 2.672 | o.398 | 7 . 42       |                        |
| 25  | 2.61      | 4                                      | • • • | •••   | 5.96 (24     | t°)                    |
| 30  | 2.33      | "                                      | •••   | • • • | •••          |                        |
| 35  | 2.08      | **                                     | • • • | •••   | •••          |                        |
| 40  | 1.86      | **                                     | •••   | •••   | •••          |                        |
|     |           |                                        |       |       |              |                        |

For  $\beta$  and q see Ethane, page 133.

SOLUBILITY OF HYDROGEN SULPHIDE IN AQUEOUS SALT SOLUTIONS AT 25°.

(McLauchlan - Z. physik. Chem. 44 615, '03.)

NOTE. — The original results are given in terms of  $\frac{l}{l_0}$  which is the iodine titer (l) of the H<sub>2</sub>S dissolved in the salt solution divided by the titer ( $l_0$ ) of the H<sub>2</sub>S dissolved in pure water. These figures were multiplied by 2.61 (see 25° results in preceding table) and the products recorded in the following table as volumes of H<sub>2</sub>S absorbed by 1 vol. of aqueous solution.

| Solution.                                          | Grams Salt<br>per Liter. | $\frac{l}{l_0}$ | Vols. H <sub>2</sub> S<br>per 1 Vol. Sol. | Solution.                         | Gms. Salt<br>per Liter. | $\frac{l}{l_0}$ . | Vols. H <sub>2</sub> S<br>per 1 Vol.Sol |
|----------------------------------------------------|--------------------------|-----------------|-------------------------------------------|-----------------------------------|-------------------------|-------------------|-----------------------------------------|
| n NH₄Br                                            | 98. o                    |                 |                                           | n KBr                             | 119.0                   | 0.945             |                                         |
| n NH <sub>4</sub> Cl                               | 53.4                     | 0.96            | 2.40                                      | n KCl                             | 74.5                    | 0.853             | 2.22                                    |
| n NH4NO3                                           | 8o.o                     | 0.99            | 2.58                                      | n KNO3                            | 101.0                   | 0.913             | 2.38                                    |
| n (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub>  | 33.0                     | 0.82            | 2.14                                      | In K <sub>2</sub> SO <sub>4</sub> | 43.5                    | o. 78             | 2.04                                    |
| 1n (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> | 16. 5                    | 0.91            | 2.37                                      | in K <sub>2</sub> SO <sub>4</sub> | 21.7                    | o. 89             | 2.32                                    |
| n NH4C2H3O2                                        | 77.I                     | 1.09            | 2.84                                      | n KI                              | 166.O                   | o.98              | 2.56                                    |
| n (NH <sub>2</sub> ) <sub>2</sub> CO               | бо. 1                    | 1.02            | 2.66                                      | n NaBr                            | 103.0                   | 0.935             | 2.44                                    |
| an HCl                                             | 18.22                    | 0.97            | 5 2.54                                    | n NaCl                            | 58.5                    | 0.847             | 2.21                                    |
| fn H <sub>2</sub> SO <sub>4</sub>                  | 24.52                    | 0.90            | 5 2.36                                    | <u> I</u> n NaCl                  | 29.2                    | 0.93              | 2.42                                    |
| n C,H,O,                                           | 150.0                    | 0.94            | 4 2.46                                    | n NaNO                            |                         | 0.893             | 2.32                                    |
| 3n C,H,O,                                          | 450.0                    | 0.85            | 8 2.24                                    | ∃n Na₂SC                          | 4 35.5                  | 0.73              | 1.90                                    |
| Pure $C_3H_s(OH)_3$                                | 1000.0                   | o.86            | 32.26                                     | <u>∤</u> n Na₂SO                  | 4 17.8                  | 0.89              | 2.32                                    |

# **HYDROQUINONE** C<sub>6</sub>H<sub>4</sub>(OH)<sub>2</sub> 1:4, also Resorcin C<sub>6</sub>H<sub>4</sub>(OH)<sub>2</sub> 1:3 and Pyrocatechin C<sub>6</sub>H<sub>4</sub>(OH)<sub>2</sub> 1:2.

SOLUBILITAY IN WATER. (Vaubel – J. pr. Chem. [2] 59, 30, '99.)

100 grams solution contain 6.7 grams hydroquinone at 20°. Sp. Gr. of sol. = 1.012.

100 grams solution contain 63.7 grams resorcin at 20°.

100 grams solution contain 31.1 grams pyrocatechin at 20°.

# HYDROQUINONE

SOLUBILITY OF HYDROQUINONE IN SULPHUR DIOXIDE IN THE CRITICAL VICINITY. (Centnerswer and Teletow - Z. Electrochem. 9, 799, '03.)

Determinations made by the Synthetic Method, for which see Note, page 9.

| tº. Gr       | ns. Hydroquinone<br>per 100 Gms. Sol. | t°. C | Gms. Hydroquinone<br>per 100 Gms. Sol. | t°. G | ms. Hydroquinone<br>100 Gms. Solution. |
|--------------|---------------------------------------|-------|----------------------------------------|-------|----------------------------------------|
| 63           | 0.89                                  | 117.6 | 4.46                                   | 136.7 | 10.31                                  |
| 73·5<br>80.2 | 1.22                                  | 123.3 | 5.66                                   | 141.4 | 13.3                                   |
| 89.2         | 2.18                                  | 134.2 | 8.31                                   | 145.0 | 14-9                                   |

# HYDROXYLAMINE NH<sub>2</sub>(OH). HYDROXYLAMINE HYDRO-CHLORIDE NH<sub>2</sub>(OH).HCl.

SOLUBILITY IN SEVERAL SOLVENTS.

(de Bruyn - Rec. trav. chim. 11, 18, '92; Z. physik. Chem. 10, 783, '92.)

| Solvent.              | t°.      | Grams NH2OH<br>per 100 Gms.<br>Solution. | t°.   | Grams NH <sub>2</sub> (OH).HCl<br>per 100 Gms.<br>Solvent. |
|-----------------------|----------|------------------------------------------|-------|------------------------------------------------------------|
| Methyl Alcohol (abs.) | 5°       | 35.0                                     | 19.75 | 16.4                                                       |
| Ethyl Alcohol (abs.)  | 15°      | 15.0                                     | 19.75 | 4.43                                                       |
| Ether (dry)           | (b. pt.) | 1.2                                      |       |                                                            |
| Ethyl Acetate         | (b. pt.) | 1.6                                      |       |                                                            |

For densities of NH2(OH). HCl solutions, see Schiff and Monsacchi -Z. physik. Ch. 21, 277, '96.

# HYOSCYAMINE C17H21NO3.

SOLUBILITY IN SEVERAL SOLVENTS AT 18°-22°. (Müller - Apoth.-Ztg. 18, 249, '03.)

| Solvent.        | Gms. C <sub>17</sub> H <sub>21</sub> NO <sub>8</sub><br>per 100 Gms.<br>Solution. | Solvent.              | Gms. C <sub>17</sub> H <sub>21</sub> NO <sub>3</sub><br>per 100 Gms.<br>Solution. |
|-----------------|-----------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------|
| Water           | 0.355                                                                             | Chloroform            | 100+                                                                              |
| Ether           | 2.02                                                                              | Acetic Ether          | 4.903                                                                             |
| Ether sat. with | H2O 3.913                                                                         | Petroleum Ether       | 0.008                                                                             |
| Water sat. with |                                                                                   | Carbon Tetra Chloride | 0.059                                                                             |
| Benzene         | 0.769                                                                             |                       |                                                                                   |

# HYOSCINE HYDROBROMIDE, etc.

SOLUBILITY IN SEVERAL SOLVENTS AT 25°. (U. S. P.)

|           | Grams per 100 Grams Solvent.                    |                                                                                      |                                                                                                                              |  |  |
|-----------|-------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|
| Solvent.  | Hyoscine<br>Hydrobromide<br>CarH21NO4.HBr.3H2O. | Hyoscyamine<br>Hydrobromide<br>C <sub>17</sub> H <sub>23</sub> NO <sub>3</sub> .HBr. | Hyoscyamine<br>Sulphate<br>(C <sub>17</sub> H <sub>23</sub> NO <sub>2</sub> ) <sub>2</sub> .H <sub>2</sub> SO <sub>4</sub> . |  |  |
| Water     | 66.6                                            | very soluble                                                                         | very soluble                                                                                                                 |  |  |
| Alcohol   | 6.2                                             | 50                                                                                   | 15.6                                                                                                                         |  |  |
| Ether     |                                                 | 0.062                                                                                | 0.04                                                                                                                         |  |  |
| Chlorofor | m 0.133                                         | 40.0                                                                                 | 0.043                                                                                                                        |  |  |

L

IODINE I.

## SOLUBILITY IN WATER.

| t°. | Gms. I per Liter<br>Solution. | Authority.                                                 |
|-----|-------------------------------|------------------------------------------------------------|
| 15  | 0.272-0.283                   | (Dietz — Pharm. Ztg. 43, 290, '98.)                        |
| 25  | 0.279                         | (McLauchlan — Z. physik. Chem. 44, 617, '03.)              |
| 25  | 0.304                         | (Herz and Knoch-Z. anorg. Chem. 45, 269, '05.)             |
| 25  | o.339                         | (Jakowkin — Z. physik. Chem. 18, 590, '95.)                |
| 25  | 0.340                         | (Noyes and Seidensticker - Z. physik. Chem. 27, 359, '98.) |
| 30  | o.457                         | (Dietz.)                                                   |

# SOLUBILITY OF IODINE IN AQUEOUS POTASSIUM IODIDE SOLUTIONS AT 25°.

Millimols per Liter. Gms. per Liter. Results by Bruner. Gms. KI per Gms. I 1000 g. Sol. per Liter. KI. (I2). KI. I. o.78\* 0.000 1.342 10 0.00 0.340 1.60 0.830 1.814 1.37 0.461 20 1.661 o . 568 2.235 2.75 40 3.25 3.322 6.643 3.052 5.51 0.775 60 5.04 4.667 1.185 80 6.94 11.03 8.003 8.96 13.29 22.07 2.032 100 26.57 14.68 3.728 44.15 88.3 28.03 53.15 7.119 176.6 55.28 106.3 14.04

(Noyes and Seidensticker; Bruner - Z. physik. Chem. 26, 147, '98.)

\* There is some uncertainty in regard to the position of the decimal point in this column. By calculation from the original it should be one place further to the right.

# SOLUBILITY OF IODINE IN AQUEOUS SALT SOLUTIONS AT 25°. (McLauchlan.)

| Salt.                                           | Gms. Salt<br>per Liter. | Gms. Dissolved I<br>per Liter. | Salt.                                                        | Gms. Salt<br>per Liter. | Gms. Dissolved I per Liter. |
|-------------------------------------------------|-------------------------|--------------------------------|--------------------------------------------------------------|-------------------------|-----------------------------|
| Na <sub>2</sub> SO <sub>4</sub>                 | 29.77                   | 0.160                          | NH <sub>4</sub> Cl                                           | 53.4                    | 0.735                       |
| K,SO,                                           | 43.5                    | 0.238                          | NaBr                                                         | 103.0                   | 3.29                        |
| (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> | 33.0                    | 0.246                          | KBr                                                          | 119.0                   | 3.801                       |
| NaNO <sub>3</sub>                               | 85.0                    | 0.257                          | NH₄Br                                                        | 98.o                    | 4.003                       |
| KNO3                                            | IOI.2                   | o.266                          | NH <sub>4</sub> C <sub>2</sub> H <sub>3</sub> O <sub>2</sub> | 77.I                    | 0.440                       |
| NH4NO3                                          | 80.0                    | 0.375                          | $(NH_4)_2C_2H_4$                                             | 86.9                    | o.980                       |
| NaCl                                            | 58.5                    | o.575                          | H <sub>s</sub> BO <sub>s</sub>                               | 55.8                    | 0.300                       |
| KCl                                             | 73.6                    | 0.658                          |                                                              |                         |                             |

SOLUBILITY OF IODINE IN ARSENIC TRI CHLORIDE. (Sloan and Mallet -- Chem. News, 46, 194, '82.)

| t°.                                   | °.   | 15°.  | 96°.          |
|---------------------------------------|------|-------|---------------|
| Gms. I per 100 gms. AsCl <sub>s</sub> | 8.42 | 11.88 | 36.8 <b>9</b> |

# Solubility of Iodine in Aqueous Ethyl and Normal Propyl Alcohol Solutions at 15°.

| In Aq. Ethyl Alcohol.                      |                                       |                                                                      | In Aq. Propyl Alcohol.           |                                            |                                  |                                            |                                  |
|--------------------------------------------|---------------------------------------|----------------------------------------------------------------------|----------------------------------|--------------------------------------------|----------------------------------|--------------------------------------------|----------------------------------|
| Gms.<br>CsHsOH<br>per 100 Gms.<br>Solvent. | Gms.<br>I per<br>100 cc.<br>Solution. | Gms.<br>C <sub>2</sub> H <sub>4</sub> OH<br>per 100 Gms.<br>Solvent. | Gms.<br>I per<br>100 cc.<br>Sol. | Gms.<br>CsH7OH<br>per 100 Gms.<br>Solvent. | Gms.<br>I per<br>100 cc.<br>Sol. | Gms.<br>CaHyOH<br>per 100 Gms.<br>Solvent. | Gms.<br>I per<br>100 cc.<br>Sol. |
| 10                                         | 0.05                                  | 60                                                                   | I.I4                             | 10                                         | 0.05                             | 60                                         | 2.71                             |
| 20                                         | ō.oč                                  | 70                                                                   | 2.33                             | 20                                         | 0.11                             | 70                                         | 4 10                             |
| 30                                         | <b>0</b> .10                          | 80                                                                   | 4.20                             | 30                                         | 0.40                             | 80                                         | 6.05                             |
| 40                                         | 0.26                                  | 90                                                                   | 7 · 47                           | 40                                         | 0.94                             | 90                                         | 9.17                             |
| 50                                         | o.88                                  | 100                                                                  | 15.67                            | 50                                         | 1.64                             | 100                                        | 14.93                            |

(Bruner - Z. physik. Chem. 26, 147, '98.)

# SOLUBILITY OF IODINE IN BENZENE, CHLOROFORM, AND IN ETHER. (Arctowski - Z. anorg. Chem. 11, 276, '95-'96.)

| In Benzene. |                                  | In Chloroform.   |                                  | In Ether.  |                                  |
|-------------|----------------------------------|------------------|----------------------------------|------------|----------------------------------|
| t°.         | Gms. I per 100<br>Gms. Solution. | <b>t °</b> .     | Gms. I per 100<br>Gms. Solution. | t°.        | Gms. I per 100<br>Gms. Solution. |
| 4.7<br>6.6  | 8.08                             | - 49             | 0.188                            | -83        | 15.39                            |
| 6.6         | 8.63                             | - 551            | 0.144                            | -90        | 14.58                            |
| 10.5        | 9.60                             | -60              | 0.129                            | - 108      | 15.09                            |
| 13.7        | IO . 44                          | -69 <del>]</del> | 0.089                            |            |                                  |
| 16.3        | 11.23                            | -731             | 0.080                            |            |                                  |
|             |                                  | + 10             | 1.76 per :                       | 100 gms. ( | CHCI                             |

(Duncan — Pharm. J. Trans. 22, 544, '91-'92.)

# SOLUBILITY OF IODINE IN BROMOFORM, CARBON TETRA CHLORIDE, AND IN CARBON BISULPHIDE AT 25°. (Jakowkin - Z. physik. Chem. 18, 590, '95.)

1 liter of saturated solution in CHBr, contains 189.55 gms. L 1 liter of saturated solution in CCl<sub>4</sub> contains 30.33 gms. I. 1 liter of saturated solution in CS, contains 230.0 gms. I.

# SOLUBILITY OF IODINE IN CARBON BISULPHIDE SOLUTIONS. (Arctowski - Z. anorg. Chem. 6, 404, '04.)

| <b>t °</b> . | Gms. I per 100<br>Gms. Solution. | <b>t °</b> . | Gms. I per 100<br>Gms. Solution. | t°. | Gms. I per 100<br>Gms. Solution. |
|--------------|----------------------------------|--------------|----------------------------------|-----|----------------------------------|
| - 100        | 0.32                             | ο            | 7.89                             | 30  | 19.26                            |
| -80          | 0.51                             | 10           | 10.51                            | 36  | 22.67                            |
| -63          | 1.26                             | 15           | 12.35                            | 40  | 25.22                            |
| - 20         | 4.14                             | 20           | 14.62                            | 42  | 26.75                            |
| - 10         | 5.52                             | 25           | 16.92                            |     |                                  |

# IODINE

δo

70

80

90

100

.

6.24

5.77

5.00

4.34

3.62

### 154

# SOLUBILITY OF IODINE IN MIXTURES OF CHLOROFORM AND ETHYL Alcohol, Chloroform and Normal Propyl Alcohol, Chloroform AND BENZENE, AND CHLOROFORM AND CARBON BISULPHIDE AT 15°. (Bruner.)

| Gms. CHCla                   | Grams I Dissolved per 100 cc. of Mixtures of: |                                                      |                           |                                        |  |  |  |
|------------------------------|-----------------------------------------------|------------------------------------------------------|---------------------------|----------------------------------------|--|--|--|
| per 100 Gms.<br>of Mixtures. | CHCla+CaHaOH.                                 | CH <sub>3</sub> Cl+C <sub>3</sub> H <sub>7</sub> OH. | $CH_{3}Cl + C_{6}H_{6}$ . | CH <sub>2</sub> CI + CS <sub>2</sub> . |  |  |  |
| 0                            | 15.67                                         | 14.93                                                | IO . <b>40</b>            | 17.63                                  |  |  |  |
| 10                           | 9.43                                          | 13.16                                                | 9.84                      | 15.93                                  |  |  |  |
| 20                           | 8.69                                          | II.20                                                | 8.78                      | 14.20                                  |  |  |  |
| 30                           | 780                                           | 8.98                                                 | 7.74                      | 12.16                                  |  |  |  |
| 40                           | 7.09                                          | 8.09                                                 | 6.96                      | IO . 20                                |  |  |  |
| 50                           | 6.62                                          | 7.82                                                 | 6.20                      | 9.08                                   |  |  |  |

7.09

6.42

5.54

4.52

3.62

5.34

4.89

4.53

4.07

3.62

7.72

6.42

5.27

4.32

3.62

# SOLUBILITY OF IODINE IN MIXTURES OF CARBON TETRA CHLORIDE AND BENZENE AND IN MIXTURES OF CARBON TETRA CHLORIDE AND CARBON BISULPHIDE AT 15°.

(Bruner.)

| Gms. CCl <sub>4</sub> per<br>100 Gms. of | Gms. I per 100 C  | . of Mixture of: | Gms. CCl <sub>4</sub> per |                   |                  |  |
|------------------------------------------|-------------------|------------------|---------------------------|-------------------|------------------|--|
| Mixtures.                                | $CCI_4 + C_0H_6.$ | $CCl_4 + CS_3$ . | Mixtures.                 | $CCl_4 + C_6H_6.$ | $CCL_4 + CS_3$ . |  |
| ο                                        | 10.40             | 17.6             | 60                        | 4.90              | 5.55             |  |
| IO                                       | 9.44              | 14.44            | 70                        | 4.09              | 4 · 50           |  |
| 20                                       | 8.53              | 12.33            | 80                        | 3.41              | 3.37             |  |
| 30                                       | 7.77              | 10.34            | 90                        | 2.74              | 2.60             |  |
| 40                                       | 6.63              | 8. <b>60</b>     | 100                       | 2.06              | 2.06             |  |
| 50                                       | 5.70              | 6.83             |                           |                   |                  |  |

# SOLUBILITY OF IODINE IN AQUEOUS GLYCERINE SOLUTIONS AT 25°.

(Herz and Knoch - Z. anorg. Chem. 45, 269, '05.)

Density of glycerine at 25°/4° - 1.2555; impurities about 1.5%.

| Wt.% Glycerine<br>in Solvent. | Millimols I<br>per 100 cc. Solution. | Grams I per<br>100 cc. Solution. | Density of Solutions at 25°/4°. |
|-------------------------------|--------------------------------------|----------------------------------|---------------------------------|
| 0                             | 0.24                                 | 0.0304                           | o.9979                          |
| 7.15                          | 0.27                                 | 0.0342                           | 1 .0198                         |
| 20.44                         | o.38                                 | 0.0482                           | I 047I                          |
| 31.55                         | o · 49                               | 0.0621                           | I.0750                          |
| 40.95                         | 0.69                                 | 0.0875                           | I.0995                          |
| 48.7                          | I.07                                 | 0.135                            | I . I 207                       |
| 69.2                          | 2.20                                 | 0.278                            | 1.1765                          |
| 100.0                         | 9.70                                 | 1.223                            | 1.2646                          |

DISTRIBUTION OF IODINE BETWEEN CARBON BISULPHIDE AND AQ. POTASSIUM OXALATE.

| (Dawson - Z. physik. | Chem. 56, 61 | o, 'o6; Dawson :       | and McRae - J. Chem                | . Soc. 81, 1086, '          | 02.) |
|----------------------|--------------|------------------------|------------------------------------|-----------------------------|------|
| Concentration        | Gms. I pe    | r Liter of             | Vol. of Solution<br>which Contains | Fraction of I<br>Uncombined |      |
| Aq. K2C2O4.          | Aq. Layer.   | CS <sub>2</sub> Layer. | 1 Mol. I.                          | in Solution.                |      |
| 1.0 Equiv.           | 2.408        | 10.82                  | 105.3                              | 0.005495                    |      |
| I.0 "                | 3.555        | 16.32                  | 71.37                              | 0.00561                     |      |
| I.0 "                | 5.766        | 27.91                  | 43.99                              | 0.005915                    |      |
| 1.0, "               | 6.861        | 34.01                  | 36.98                              | 0.006055                    |      |
| 1.2 "                | 3-525        | 17.07                  | 71.97                              | 0.005645                    |      |
|                      |              |                        |                                    |                             |      |

DISTRIBUTION OF IODINE BETWEEN AMYL ALCOHOL AND WATER AND BETWEEN AMYL ALCOHOL AND AQUEOUS POTASSIUM IODIDE Solutions at 25°.

(Herz and Fischer - Ber. 37, 4752, '04.)

The original results were plotted on cross-section paper, and the following tables made from the curves.

| Millimols I per 10 co               |                                                          | Millimols I | per 10 cc. of       | H <sub>2</sub> O and of J | Aq. KI Layer        |         |  |
|-------------------------------------|----------------------------------------------------------|-------------|---------------------|---------------------------|---------------------|---------|--|
| Amyl Alcohol Layer<br>in Each Case. | H2O.                                                     | N KI.       | 2N/KI.              | 3N/KI.                    | $\frac{4N}{10}$ KI. | 10N KI. |  |
| 2.5                                 | 0.012                                                    | 0.135       | 0.160               | 0.170                     | 0.170               |         |  |
| 3.0                                 | 0.014                                                    | 0.150       | 0.185               | 0.200                     | 0.200               | 0.160   |  |
| 4.0                                 | 0.018                                                    | 0.180       | 0.235               | 0.255                     | 0.270               | 0.240   |  |
| 56                                  | 0.021                                                    | 0.210       | 0.280               | 0.315                     | 0.340               | 0.315   |  |
| 6                                   | 0.025                                                    | 0.230       | 0.330               | 0.375                     | 0.410               | 0.390   |  |
| 78                                  | 0.029                                                    | 0.250       | 0.375               | 0.430                     | 0.480               | 0.470   |  |
| 8                                   |                                                          | 0.260       | 0.420               | 0.490                     | 0.550               | 0.555   |  |
| 9                                   |                                                          | 0.270       | 0.450               | 0.550                     | 0.620               | 0.640   |  |
| IO                                  |                                                          | 0.280       | 0.470               | 0.605                     | 0.690               | 0.720   |  |
| 12                                  |                                                          |             | 0.490               | 0.700                     | 0.830               | 0.900   |  |
| 14                                  |                                                          |             | 0.510               | 0.790                     | 0.980               | I.200   |  |
| 20                                  | ***                                                      | ***         | 0.575               |                           |                     |         |  |
| Gms. I per 100 cc.                  | Gms. I per 100 cc. of H <sub>2</sub> O and of KI Layers. |             |                     |                           |                     |         |  |
| Amyl Alcohol Layer<br>in Each Case. | Н2О.                                                     | NI.         | $\frac{2N}{10}$ KI. | 3N KI                     | 4N/KI.              | 10N KI. |  |
| 3                                   | 0.014                                                    | 0.164       | 0.20                | 0.21                      | 0.21                | ***     |  |
| 4                                   | 0.016                                                    | 0.196       | 0.24                | 0.26                      | 0.26                | 0.21    |  |
| 6                                   | 0.026                                                    | 0.252       | 0.34                | 0.38                      | 0.40                | 0.37    |  |
| 8                                   | 0.033                                                    | 0.297       | 0.43                | 0.49                      | 0.54                | 0.51    |  |
| 10                                  | 0.040                                                    | 0.328       | 0.51                | 0.61                      | 0.67                | 0.69    |  |
| 12                                  |                                                          | 0.341       | 0.58                | 0.73                      | 0.81                | 0.84    |  |
| 14                                  |                                                          |             | 0.60                | 0.83                      | 0.95                | I.00    |  |
| 16                                  |                                                          |             | 0.63                | 0.91                      | 1.09                | 1.20    |  |
| 18                                  | ***                                                      |             | 0.64                |                           |                     | ***     |  |
| 25                                  | ***                                                      |             | 0.71                |                           |                     | ***     |  |

The original figures for 5N/10 and 10N/10 KI solutions give practically identical curves.

Results for the distribution of Iodine between N/10 KI solutions on the one hand, and mixtures in various proportions of  $C_6H_6 + CS_2$ ,  $C_6H_6CH_3 + CS_2$ ,  $C_6H_6 + C_6H_6CH_3$ ,  $C_6H_6 +$  light petroleum,  $CS_2 +$  light petroleum,  $CS_2 + CHCl_3$ ,  $CHCl_3 + C_6H_6$ ,  $CCl_4 + CS_2$  and  $CCl_4 + C_6H_6CH_3$ on the other hand, are given by Dawson — J. Chem. Soc., **81**, 1086, '02.

# DISTRIBUTION OF IODINE BETWEEN WATER AND BROMOFORM, WATER AND CARBON BISULPHIDE, AND WATER AND CARBON TETRA CHLORIDE AT 25°. (Jakowkin — Z. physik. Chem. 18, 590, '95.)

Original results plotted on cross-section paper and table made from curves. Jakowkin points out that the results of Berthelot and Jungfleisch — Ann. chim. phys. [4] 26, 400, '72, are incorrect on account of the presence of HI.

| Grams I per Liter of<br>H <sub>2</sub> O Layer in Each Case. | Grams I per Liter of: |                        |             |  |
|--------------------------------------------------------------|-----------------------|------------------------|-------------|--|
| H <sub>g</sub> O Layer in Each Case.                         | CHBra Layer.          | CS <sub>2</sub> Layer. | CCl. Layer. |  |
| 0.05                                                         | 20                    | 30                     | 4.0         |  |
| 0.10                                                         | 45                    | 60                     | 8.5         |  |
| 0.15                                                         | 71                    | 91                     | 13.0        |  |
| 0.20                                                         | 100                   | 126                    | 17.5        |  |
| 0.25                                                         | 130                   | 160                    | 22.0        |  |

# IODOFORM CHI, IODOL C,I,NH (Tetra Iodo Pyrrol). SOLUBILITY IN SEVERAL SOLVENTS. (U. S. P.; Vulpius — Pharm. Centrh. 34, 117, '93.)

| Solvent.     | t°.    | Grams per 100 Grams Solvent. |        |  |
|--------------|--------|------------------------------|--------|--|
| Convention . | • ·    | CH <sub>s</sub> I.           | C,LNH. |  |
| Water        | 25     | 0.0106                       | 0.0204 |  |
| Alcohol      | 25     | 2.14 (1.43 gms. (V.))        | II.I   |  |
| Alcohol      | b. pt. | (10.0 gms. (V.))             | • • •  |  |
| Ether        | 25     | 19.2 (16.6 gms. (V.))        | 66.6   |  |
| Chloroform   | 25     | •••                          | 0.95   |  |

# IBIDIUM DOUBLE SALTS.

SOLUBILITY IN WATER. (Palmaer - Ber. 23, 3817; 24, 2000, '01.)

|       |           | (r annoce       |                                                                                     |            |                                        |
|-------|-----------|-----------------|-------------------------------------------------------------------------------------|------------|----------------------------------------|
|       | Double ?  | alt.            | Formula.                                                                            | t°.        | Gms. per 100<br>Gms. H <sub>2</sub> O. |
| Irido | Pentamine | Bromide         | Ir(NH <sub>2</sub> ) <sub>5</sub> Br <sub>2</sub>                                   | 12.5       | 0.284                                  |
| "     | "         | Bromonitrate    | Ir(NH <sub>3</sub> ) <sub>s</sub> Br(NO <sub>3</sub> ) <sub>2</sub>                 | 18         | 5.58                                   |
| "     | "         | Tri Chloride    | Ir(NH <sub>3</sub> ) <sub>s</sub> Cl <sub>3</sub>                                   | 15.1       | ŏ. 53                                  |
| "     | **        | Chloro Bromide  | Ir(NH,),ClBr,                                                                       | 15         | 0.47                                   |
| **    | **        | Chloro Iodide   | Ir(NH <sub>2</sub> ) <sub>6</sub> ClI <sub>2</sub>                                  | 15         | 0.95                                   |
| **    | "         | Chloro Nitrate  | Ir(NH <sub>a</sub> ) <sub>s</sub> Cl(NO <sub>a</sub> ) <sub>2</sub>                 | 15.4       | 1.94                                   |
| "     | "         | Chloro Sulphate |                                                                                     | 15.0       | 0.74                                   |
| 66    | "         | Nitrate         | Ir(NH <sub>3</sub> ) <sub>5</sub> (NO <sub>3</sub> ) <sub>3</sub>                   | ığ         | 0.28                                   |
| "     | Aquo Pent | amine Bromide   | Ir(NH <sub>3</sub> ) <sub>6</sub> (OH <sub>2</sub> )Br <sub>3</sub>                 | ord. temp. | 25.0                                   |
| "     | te se     | Chloride        | Ir(NH <sub>2</sub> ) <sub>6</sub> (OH <sub>2</sub> )Cl <sub>2</sub>                 | ord. temp. |                                        |
| "     | " "       | Nitrate         | Ir(NH <sub>2</sub> ) <sub>6</sub> (OH <sub>2</sub> )(NO <sub>2</sub> ) <sub>3</sub> | 17         | 10.0                                   |

# IRON BROMIDE (Ferrous) FeBr2.6H2O.

SOLUBILITY IN WATER. (Etard — Ann. chim. phys. [7] 2, 537, '94.)

| <b>t°</b> . | Gms. FeBrg<br>per 100 Gms. Sol. | <b>t °</b> . | Gms. FeBr <sub>2</sub><br>per 100 Gms. Sol. | <b>t °</b> . | Gms. FeBr <sub>2</sub><br>per 100 Gms. Sol. |
|-------------|---------------------------------|--------------|---------------------------------------------|--------------|---------------------------------------------|
| - 20        | 47 .0                           | 30           | 55.0                                        | 60           | 59.0                                        |
| 0           | 50.5                            | 40           | 56.2                                        | 80           | 61.5                                        |
| 20          | 53 · 5                          |              |                                             | 100          | 64.0                                        |

# IRON CARBONATE (Ferrous) FeCO,.

100 gms. H<sub>3</sub>O saturated with CO<sub>2</sub> at 6-8 atmospheres dissolve 0.073 gram FeCO<sub>3</sub>. (Wagner – Jahresber. Chem. 135, '67.) (Wagner - Jahresber. Chem. 135, '67.)

# IRON CHLORIDE

**IRON CHLORIDE** (Ferrous) FeCl<sub>2</sub>.4H<sub>2</sub>O. Solubility in Water. (Etard.)

157

| t°. | Gms. FeCl <sub>2</sub><br>per 100 Gms.<br>Solution. | Solid Phase.                         | tº. | Gms. FeCl <sub>2</sub><br>per 100 Gms.<br>Solution. | Solid Phase.                                           |
|-----|-----------------------------------------------------|--------------------------------------|-----|-----------------------------------------------------|--------------------------------------------------------|
| IO  | 39.2                                                | FeCl <sub>2</sub> .4H <sub>2</sub> O | 60  | 47.0                                                | FeCl <sub>2</sub> .4H <sub>2</sub> O                   |
| 15  | 40.0                                                | "                                    | 80  | 50.0                                                | -4                                                     |
| 25  | 41.5                                                | u                                    | 87  | 51.2                                                | FeCl <sub>2</sub> .4H <sub>2</sub> O+FeCl <sub>2</sub> |
| 30  | 42.2                                                | "                                    | 90  | 51.3                                                | FeCl <sub>2</sub>                                      |
| 40  | 43.6                                                | "                                    | 100 | 51.4                                                | "                                                      |
| 50  | 45.2                                                | **                                   | 120 | 51.8                                                | "                                                      |

Solubility of Iron Chloride (Ferric) Fe<sub>2</sub>Cl<sub>6</sub> in Water. (Roozeboom – Z. physik. Chem. 10, 477, '92.)

| t°. | Mols. FegCl       |                   | Cl <sub>3</sub> per 100<br>Gms. | t°.  | Mols. FegC        |                   | Claper 100<br>Gms. |
|-----|-------------------|-------------------|---------------------------------|------|-------------------|-------------------|--------------------|
|     | H <sub>2</sub> O. | H <sub>2</sub> O. | Solution.                       |      | H <sub>2</sub> O. | H <sub>2</sub> O. | Solution.          |
|     | Solid Phase       | FegCla.12H        | I2O,                            |      | Solid Phase,      | FegClo.5H         | 20 (con.).         |
| -55 | 2.75              | 49.52             | 33.12                           | 35   | 15.64             | 281.6             | 73.79              |
| -27 | 2.98              | 53.60             | 34.93                           | 50   | 17.50             | 315.2             | 75.91              |
| 0   | 4.13              | 74.39             | 42.66                           | 55   | 19.15             | 344.8             | 77.52              |
| +20 | 5.10              | 91.85             | 47.88                           | 55   | 20.32             | 365.9             | 78.54              |
| 30  | 5.93              | 106.8             | 51.64                           | Sol  | id Phase, Fe      | 2Cl6-4H2O         |                    |
| 37  | 8.33              | 150.0             | 60.01                           | 50   | 19.96             | 359.3             | 78.23              |
| 30  | II.20             | 201.7             | 66.85                           | 55   | 20.32             | 365.9             | 78.54              |
| 20  | 12.83             | 231.1             | 69.79                           | 60   | 20.70             | 372.8             | 78.86              |
| 8   | 13.7              | 246.7             | 71.15                           | 69   | 21.53             | 387.7             | 79.50              |
| S   | olid Phase, F     | e2Cl6.7H2O.       |                                 | 73.5 | \$ 25.0           | 450.2             | 81.81              |
| 20  | 11.35             | 204.4             | 67.14                           | 70   | 27.9              | 502.4             | 83.41              |
| 32  | 13.55             | 244.0             | 70.92                           | 66   | 29.2              | 525.9             | 84.03              |
| 30  | 15.12             | 272.4             | 73.13                           | So   | lid Phase, F      | egCl6-            |                    |
| 25  | 15.54             | 280.0             | 73.69                           | 66   | 29.2              | 525.9             | 84.03              |
| S   | olid Phase, F     | c2Cla.5H2O.       |                                 | 75   | 28.42             | 511.4             | 83.66              |
| 12  | 12.87             | 231.8             | 69.87                           | 80   | 29.20             | 525.9             | 84.03              |
| 27  | 14.85             | 267.5             | 72.78                           | 100  | 29.75             | 535.8             | 84.26              |

Solubility of Ferric Chloride in Aqueous Solutions of Ammonium Chloride at 25°, 35°, and 45°. (Mohr - Z. physik. Chem. 27, 197, '98.)

| Result                                   | s at 25°. | Results                                    | at 35°.  | Results             | at 45°. |                              |
|------------------------------------------|-----------|--------------------------------------------|----------|---------------------|---------|------------------------------|
| Mols. per<br>100 Mols, H <sub>2</sub> O. |           | Mols. per =<br>100 Mols. H <sub>2</sub> O. |          | Too Mo              |         | Solid Phase<br>in Each Case. |
| NH4CL.                                   | FegCla.   | NH4CL                                      | FegCl.6. | NH <sub>4</sub> Cl. | FegCla- |                              |
| 0                                        | 10.98     | 0                                          | 13.36    | 0.0                 | 33.4    | FegCls.12H2O (5.H2O at 45°)  |
| I.57                                     | 10.74     | 1.41                                       | 13.05    |                     |         | Hydrate + Double Salt        |
| 2.48                                     | 9.02      | 3.08                                       | 9.28     | 4.08                | 9.58    | Double Salt                  |
| 5.28                                     | 7.73      | 6.98                                       | 7.64     | ***                 |         |                              |
| 9.59                                     | 6.77      | 10.76                                      | 6.70     | 13.09               | 6.31    |                              |
| 9.83                                     | 6.70      | 11.60                                      | 6.52     | 13.54               | 6.28    | Double Salt + Mized Crystals |
| 9.65                                     | 6.07      | 12.28                                      | 6.08     | 12.91               | 5.49    | Mixed Crystals               |
| 9.93                                     | 5.23      | 11.57                                      | 3.98     | 13.49               | 4.84    |                              |
| 9.92                                     | 3-97      | 11.89                                      | 3.38     | 13.46               | 4.99    | -                            |
| 10.31                                    | 2.05      | 13.23                                      | 1.38     | ***                 | ***     | -                            |
| 13.30                                    | 0.0       | 14.79                                      | 0.0      | 16.28               | 0.0     | NH4CI                        |

# IRON CHLORIDE

# 158

#### SOLUBILITY OF FERRIC CHLORIDE IN AQUEOUS SOLUTIONS OF AMMONIUM CHLORIDE AT 15°. (Roozeboom – Z. physik. Ch. 10, 148, '92.) Grams per 100 Gms. HgO. Mols. per 100 Mols. HgO. Solid Phase. FeCls. 83.88 NH<sub>4</sub>Cl. FeCla. NH<sub>4</sub>Cl. 0.0 FegCla.12HgO 0.0 9.30 86.32 1.00 9.57 3.24 1.36 10.10 9.93 4.03 FegClg.12HgO + Double Salt 2.00 9.27 5.92 83.64 Double Salt 8.31 2.79 8.71 78.77 ... 64 4.05 8.00 12.08 73.20 7.18 6.41 19.12 64.83 \*\* 10.78 64 6.21 32.04 56.00 7.82 6.75 23.21 60.83 Mixed Crystals containing 7.29% FeCla 7.62 22.63 46 ... 5.94 53.47 64 5.55 ... 7.70 22.90 ... ... 5.03 45.42 4-4 7.81 39.13 -4.34 23.23 ... .... 3.8 8.52 2.82 25.33 25.43 ... . ... 1.64 10.95 o.68 6.15 44 ... 32.55 0.31 11.88 0.0 35.30 0.0 NH<sub>4</sub>Cl

# SOLUBILITY OF FERRIC CHLORIDE IN AQUEOUS HYDROCHLORIC ACID SOLUTIONS AT DIFFERENT TEMPERATURES. (Roozeboom and Schreinemaker - Z. physik. Chem. 15, 633, '94.)

| Mols. per<br>He | 100 Mols.      |                | 100 Gms.<br>O. | Solid              |               | 100 Mols.<br>20. |                | r 100 Gms.<br>20. Solid     |
|-----------------|----------------|----------------|----------------|--------------------|---------------|------------------|----------------|-----------------------------|
| HCI.            | FeCla          | <u>нсі.</u>    | FeCla.         | Phase.             | HCI.          | FeCla.           | HCI.           | FeCla. Phase.               |
|                 | Results        |                |                |                    |               | Results at       |                |                             |
| 0               | 8.25           | 0              | 74.30`         | ١                  | 0.0           | 29.00            | 0.0            | 261.1)                      |
| 7.52            | 6.51           | 15.22          | 58.62          |                    | 7.5           | 29.75            | 15.18          | 267.9 Fe2Cle                |
| 13.37           | 6.33           | 27.06          | 57.01          |                    | 19.5          | 35.25            | 39.46          | 317.4                       |
| 16.80           | 8. 70          | 33·99          | 78.34          |                    | 19.5          | 35.25            | 39.46          | 317.4)                      |
| 18.45           | 10.23          | 37.34          | 92.10          | FegCla             | 20.6          | 35.34            | 41.68          | 318.3 FegCle                |
| 20.40           | 15.40          | 41.28          | 138.7          | .12Hg0             | 31.34         | 41.58            | 63.42          | 374·47 _4H <sub>2</sub> O   |
| 20.10           | 16. <b>00</b>  | 40.67          | 144. I         |                    | 33.00         | 43.00            | 6 <b>6</b> .77 | 387.3                       |
| 19.95           | 17.70          | 40.37          | 159.4          |                    | 34.65         | 44.80            | 70.11          | 403.4                       |
| 19.00           | 22.75          | 38.45          | 204.8          |                    | 40.41         | 40.25            | 81.77          | 362.4 FezCle                |
| 18.05           | 23.41          | 36.53          | 210.8          |                    | 39.03         | 41.38            | 78.98          | 372.7 .2HCl                 |
| 18.05           | 23.40          | 36.53          | 210.8          | FegCla<br>.7HgC    | 35.74         | 45.24            | 72.33          | 407.4J + 4190               |
| 19.50           | 25.93          | 39.55          | 233.5          |                    | •             | Result           | s at 40°.      |                             |
| 24.12<br>26.00  | 30.04          | 48.81<br>52.60 | 270.5<br>289.6 | FegCla<br>.5Hg0    | <b>,</b> 0    | 32.4             | 0.0            | 291.7) FezCla               |
| 20.00           | 32.16<br>32.16 | 52.60          | 289.6          |                    | 13.4          | 37.45            | 27. II         | 337.3∫ .5H₂O                |
| 20.00<br>34.60  | 32.10<br>38.11 | 52.00<br>70.01 | 343.2          | FegCl6             | J 13.4        | 37 · 45          | 27.11          | 337 · 3 Fe2Cla              |
|                 | 36.60          | 75.41          | 329.6          | FegCl6             | 27.0          | 50. <b>80</b>    | 54.64          | 457.5) _4H₂O                |
| 37.27<br>34.60  | 38.11          | 70.01          | 343.2          | .2HCl<br>+ 4H      | <b>n</b> -    | 58.0             | 0.0            | 522.3                       |
| 34.00           | v              | •              | 343 )          | - 4ng              | 27            | 50.8             | 54.64          | 457.5 FezCla                |
|                 | Resul          | ls at 25°.     |                |                    | <b>42</b> .0I | 48.64            | 85.00          | 438.0                       |
| 0.0             | 10.90          | 0.0            | 98.15`         | Fe2Cla             | 42.50         | 47.52            | 86.72          | 428.0) Fe2Cle               |
| 2.33            | 23.72          | 4.715          | 213.6          | .12 H <sub>2</sub> | <b>42.01</b>  | 48.64            | 85.00          | $438.0$ + $_{4H_2O}^{3HCI}$ |
| 0.0             | 24.5           | 0.0            | 220.7          | )                  | л             |                  |                |                             |
| 0.0             | 23.5           | 0.0            | 211.6          |                    |               | esults ic        | pr othei       | temperatures                |
| 2.33            | 23.72          | 4.715          | 213.4          | FezCla             | are           | aiso gi          | iven in        | the original                |
| 7.50            | 29.75          | 15.18          | 267.9          | .7Hz               | o pap         | er.              |                |                             |
| 0.0             | 31.50          | 0.0            | 283.6          |                    |               |                  |                |                             |

| Grams Used. |       | Gms.<br>Gms. S | per 100<br>olution. | G. Mo<br>100 Mo | Solid<br>Phase. |              |
|-------------|-------|----------------|---------------------|-----------------|-----------------|--------------|
| FeCla.      | NaCl. | FeCla.         | NaCl.               | FeCly.          | NaCl.           | Phase.       |
| 0           | 3.6   | 0              | 36.10               | 0               | 11.2            | NaCl         |
| в. 1        | 3.0   | 24.27          | 9 · IO              | 2.69            | <b>2.8</b> ·    | Mix Crystals |
| 3.6         | 2.5   | 25.40          | 8.45                | 2.81            | 2.6             | "            |
| 5.5         | 2.0   | 26.40          | 5.25                | 2.93            | 2.54            | 4            |
| 7.2         | 1.5   | 38.15          | 3.90                | 4.23            | I . 22          | **           |
| 9.0         | I.0   | 45.38          | 2.45                | 5.03            | 0.75            | *            |
| 10.8        | 0.5   | 46.75          | 2.11                | 5.18            | 0.65            | **           |
| 10.8        | 0.0   | 83.39          | 0.0                 | 9.3             | 0.0             | FeCla        |

# SOLUBILITY OF THE SALT PAIR FeCl<sub>3</sub>. NaCl IN WATER AT 21°. (Hinricheen and Sachsel – Z. physik. Chem. 50, 94, '04-'05.)

# SOLUBILITY OF THE SALT PAIR FeCl<sub>3</sub>. KCl in WATER AT 21°. (H. and S.)

| Grams<br>FeCla. | Used.<br>KCl. | Gms. r<br>Gms. S<br>FeCla. | olution. | Gm. Mol<br>Mols.<br>FeCla. |      | Solid<br>Phase. |
|-----------------|---------------|----------------------------|----------|----------------------------|------|-----------------|
| ο               | 35            | 0                          | 34.97    | 0                          | 8.45 | KCI             |
| 13              | 28            | 13.44                      | 24.45    | I . 49                     | 5.90 | Mix Crystals    |
| 18              | 21            | 23.18                      | 16.54    | 2.57                       | 3.99 | **              |
| 23              | 18.5          | 28.05                      | 11.60    | 3.11                       | 2.82 | "               |
| 23<br>28        | 16            | 35.72                      | 11.68    | 3.96                       | 2.82 | **              |
| 31              | 10.5          | 36.62                      | 11.19    | 4.00                       | 2.70 | Double Salt     |
| 36.2            | 9             | 37.35                      | 13.67    | 4.14                       | 3.30 | ••              |
| 46.5            | 6             | 51.69                      | 7.54     | 5.73                       | 1.82 | **              |
| 15.5            | 0             | 83.89                      | 0.0      | 9.3                        | 0.0  | FeCla           |

# SOLUBILITY OF THE SALT PAIR FeCl<sub>3</sub>.CsCl in Water at 21°. (H. and S.)

| Grams<br>FeCla. | U'red<br>CaCl. | Gms. J<br>Gms. S | olution. | Gm. Mola.<br>Mola. | 1. per 100<br>H <sub>2</sub> O. | Solid<br>Phase.   |
|-----------------|----------------|------------------|----------|--------------------|---------------------------------|-------------------|
| recig.          | αсι.           | FeCla.           | CaCl.    | FeCla.             | CaCl.                           | I MANC.           |
| 0               | 65             | 0.0              | 65.0     | 0.0                | 6.95                            | CeCl              |
| o.6             | 11.6           | 0.45             | 55.18    | 0.05               | 5.9                             | FeCla.CaCl.HgO    |
| I.4             | IO . 2         | 2 . I            | 52.38    | 0.23               | 5.6                             | 84                |
| 2.2             | 8.8            | 5.24             | 51.44    | 0.57               | 5.5                             | 44                |
| 2.0             | 7 · 4          | 7.8              | 47.70    | 0.86               | 5.1                             | FeCla.2CsCl.HgO   |
| 3.8             | 6.0            | 8.93             | 41.15    | 0.99               | 4.4                             | *                 |
| 4.6             | 4.6            | 15.34            | 25.25    | 1.70               | 2.7                             | **                |
| 5.4             | 2.8            | 21.65            | 14.96    | 2.40               | 1.6                             | **                |
| 6.2             | I.4            | 27.96            | 8.42     | 3.10               | 0.9                             | *                 |
| 35.0            | 0.2            | 48.71            | 0.94     | 5.40               | 0.I                             | **                |
| 35.0            | 0.0            | 83.89            | 0.0      | 9.3                | 0.0                             | FeCl <sub>8</sub> |

100 gms. abs. acetone dissolve 62.9 gms. FeCl, at 18°.

(Naumann - Ber. 37, 4332, '04.)

### IRON NITRATE

# IRON NITRATE (Ferrous) Fe(NO3)2.

### SOLUBILITY IN WATER. (Funk - Wiss, Abh. p. t. Reichanstalt 3, 438, 'co.)

|       |                                                                      | Ir and - "                                                                          | most trout he to to | cicuanstan | 31 430, 00                                                           |                                                                                     |                                                      |
|-------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------|------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------|
| t°.   | Gms.<br>Fe(NO <sub>3</sub> ) <sub>2</sub><br>per 100<br>Gms.<br>Sol. | Mols.<br>Fe(NO <sub>3</sub> ) <sub>2</sub><br>per 100<br>Mols.<br>H <sub>2</sub> O. | Solid<br>Phase.     | ŧ°.        | Gms.<br>Fe(NO <sub>3</sub> ) <sub>2</sub><br>per 100<br>Gms.<br>Sol. | Mols.<br>Fe(NO <sub>3</sub> ) <sub>2</sub><br>per 100<br>Mols.<br>H <sub>2</sub> O. | Solid<br>Phase.                                      |
| -27   | 35.66                                                                | 5.54                                                                                | Fe(NO3)2.9H2O       | -9         | 39.68                                                                | 6.57                                                                                | Fe(NO <sub>3</sub> ) <sub>2.6</sub> H <sub>2</sub> O |
| -21.5 | 36.10                                                                | 5.64                                                                                | -14                 | 0          | 41.53                                                                | 7.10                                                                                |                                                      |
| -19   | 36.56                                                                | 5.76                                                                                |                     | 18         | 45.14                                                                | 8.23                                                                                | **                                                   |
| -15.5 | 37.17                                                                | 5.91                                                                                |                     | 24         | 46.51                                                                | 8.70                                                                                | . "                                                  |
|       |                                                                      |                                                                                     |                     | 60.5       | 62.50                                                                | 16.67                                                                               |                                                      |

Density of solution saturated at  $18^\circ = 1.497$ .

# IRON OXIDES, HYDROXIDE and SULPHIDE.

SOLUBILITY IN AQUEOUS SUGAR SOLUTIONS. (Stolle - Z. Ver Zuckerind. 50, 340, '00.)

| % Sugar<br>in Sol- | r Fe   | Fe2(OH)6 at: |      | FegO   | E Liter of Sugar Solutions Dissolves Milligrams of<br>FegO <sub>3</sub> at: FegO <sub>4</sub> at: |        |      |      | FeS at: |      |      |
|--------------------|--------|--------------|------|--------|---------------------------------------------------------------------------------------------------|--------|------|------|---------|------|------|
| vent.              | 17.40, | 45°.         | 75°. | 17.5°. | 45°.                                                                                              | 17.50. | 45°. | 75°. | 17.5°.  | 45°. | 75°. |
| 10                 | 3.4    | 3.4          | 6.1  | I.4    | 2.0                                                                                               | 10.3   | 10.3 | 12.4 | 3.8     | 3.8  | 5.3  |
| 30                 | 2.3    | 2.7          | 3.8  | 1.4    |                                                                                                   | 12.4   | 10.3 | 12.4 | 7.I     | 9.1  | 7.2  |
| 50                 | 2.3    | 1.9          | 3.4  | 0.8    | I.I                                                                                               | 14.5   | 10.3 | 14.5 | 9.9     | 19.8 | 9.1  |

# IRON PHOSPHATE Feg(PO4)3.

THE ACTION OF WATER AND OF AQUEOUS SALT SOLUTIONS UPON FERRIC PHOSPHATE.

(Lachowicz - Monatsh. Chem. 13, 357, '92; Cameron and Hurst - J. Am. Chem. Soc. 26, 888, '04.)

The experiments show that the ordinary precipitation methods for the production of ferric phosphate give products which do not conform to the formula  $Fe_2(PO_i)_3$ . By digesting such samples with water very little is dissolved, but the material is decomposed to an extent depending upon the relative amounts of solid and solvent used. The amount of PO<sub>4</sub> dissolved per gram of  $Fe_2(PO_4)_3$  varies from about 0.0026 gram removed by 5 cc. H<sub>2</sub>O to 0.0182 gram removed by 800 cc. H<sub>2</sub>O at the ordinary temperature.

## IRON SULPHATE (Ferrous) FeSO4.7H2O.

SOLUBILITY IN WATER.

(Fränckel - Heidelberg '05, Landolt and Börnstein's Tabellen, 3d ed. p. 537, 'o6.)

| t°.   | Gms. FeSO,<br>per 100<br>Gms. H <sub>2</sub> O. | Solid<br>Phase. | t°.  | Gms. FeSO,<br>per 100<br>Gms. H <sub>2</sub> O. | Soud                    |
|-------|-------------------------------------------------|-----------------|------|-------------------------------------------------|-------------------------|
| -1.82 | 14.98                                           | Ice+FeSO4.7H2O  | 56.6 |                                                 | FeSO4.7H2O + FeSO4.4H2O |
| 0     | 15.62                                           | FeSO4.7H2O      | 60   | 55.02                                           | FeSO4-4H2O              |
| IO    | 20.85                                           |                 | 70   | 56.04                                           | **                      |
| 20    | 26.42                                           |                 | 75.8 | 56.8                                            | FeSO4.4H2O + FeSO4 H2O  |
| 30    | 33.00                                           |                 | 80   | 50.6                                            | FeSO4.H2O               |
| 40    | 40.20                                           |                 | 90   | 43.0                                            |                         |
| 50    | 48.55                                           |                 |      |                                                 |                         |

100 grams sat. solution in Glycol contain 6.0 grams FeSO, at ordinary temperature. (de Coninck.)

# 161 IRON POTASSIUM SULPHATE

# IBON POTASSIUM SULPHATE (Ferrous) FeSO, K, SO, 6H, O.

### SOLUBILITY IN WATER. (Tobler - Liebig's Ann. 95, 103, '55.)

| t°.  | Gms. K <sub>2</sub> Fe(SO <sub>6</sub> ) <sub>2</sub><br>per 100 Grams<br>H <sub>2</sub> O. | t°. | Gms. K <sub>2</sub> Fe(SO <sub>4</sub> ) <sub>2</sub><br>per 100 Grams<br>H <sub>2</sub> O. |
|------|---------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------|
| 0    | 19.6                                                                                        | 35  | 4I .O                                                                                       |
| IO   | 24.5                                                                                        | 40  | 45.0                                                                                        |
| 14.5 | 29 · I                                                                                      | 55  | 56.O                                                                                        |
| 16   | 30.9                                                                                        | 65  | 57.3                                                                                        |
| 25   | 36.5                                                                                        | 70  | 64.2                                                                                        |

# SOLUBILITY OF MIXTURES OF FERROUS SULPHATE FeSO<sub>4.7</sub>H<sub>3</sub>O and SODIUM SULPHATE Na<sub>3</sub>SO<sub>4.10</sub>H<sub>3</sub>O in Water. (Koppel – Z. physik. Chem. 52, 405, '05.)

Gms. per 100 Gms. Solution. Gms. per 100 Gms. HgO. t°. Solid Phase. FeSO4. NapSO4. FeSO4. NasSO4. FeSO4.7H2O + NagSO4.10HgO 18.06 6.11 ο 14.54 4.93 15.5 17.76 11.32 25.05 15.97 64 -21.8 16.57 15.32 24.92 16.21 15.13 24.34 22.51 FeNag(SO4)3-4H2O 23.62 22.04 44 
 35
 16.35
 14.98

 40
 16.37
 15.42

 18.8
 18.13
 13.8
 44 23.91 21.83 . 24.01 22.62 26.63 20.28  $FeNa_2(SO_4)_2.4H_2O + FeSO_4.7H_2O$ 19.58 12.5 28.82 18.4 44 44 23 30.95 16.64 44 66 27 20.97 11.3 33.99 14.41 ... 44 31 22.91 9.71 23.85 9.26 35.61 13.85 66 .. 35 4 .6 26.32 7.85 39.98 11.92 40 18.8 18.23 14.83 27.23 22.16 FeNag(SO4)2.4HgO + NagSO4.10HgO 13.83 18.04 20.31 26.48 23 •• 7.66 24.41 11.28 35.94 28 .... ... 4.58 29.50 6.95 44.75 .. .... 31 4.04 30.49 6.16 46.58 35 FeNagSO4.4HgO + NagSO4 6.27 46.99 4.10 30.60 -40

#### LANTHANUM BROMATE 162

# LANTHANUM BROMATE La(BrO<sub>3</sub>)<sub>3</sub>.9H<sub>3</sub>O.

100 gms. H<sub>2</sub>O dissolve 28.5 gms. lanthanum bromate at 15°.

(Marignac.)

# LANTHANUM SULPHATE La,(SO4),

# SOLUBILITY IN WATER. (Muthmann and Rölig - Ber. 31, 1723, '98.)

| ŧ°. | Gms. Lag(SO4)3 per 100 Gms. |        | <b>,</b> , C | Gms. Lag(SO4) per 100 Gms. |        |  |  |
|-----|-----------------------------|--------|--------------|----------------------------|--------|--|--|
| ¥*. | Solution.                   | Water. | ¥*.          | Solution.                  | Water. |  |  |
| 0   | 2.9I                        | 3.0    | 50           | I.47                       | 1.5    |  |  |
| 14  | 2.53                        | 2.6    | 75           | 0.95                       | 0.96   |  |  |
| 30  | ı.86                        | 1.9    | 100          | o.68                       | 0.69   |  |  |

# LEAD Pb.

MUTUAL SOLUBILITY OF LEAD AND ZINC. (Spring and Romanoff - Z. anorg. Chem. 13, 34, '96.)

| 40                      | Upper         | Layer. | Lowe  | r Layer. | t°.    | Upper       | Layer. | Lower |      |
|-------------------------|---------------|--------|-------|----------|--------|-------------|--------|-------|------|
| <b>U</b> <sup>-</sup> . | Upper<br>%Pb. | %Zn.   | %РЬ.  | %Zn.     | U*.    | %Pb.        | %7n.   | %Pb.  | %Zn. |
| 334                     | 98.8          | I.2    | • • • | •••      | 650    | 83.0        | 17.0   | 7.0   | 93.0 |
| 419                     | • • •         | • • •  | I.5   | 98.5     | 740    | 79.0        | 21.0   | IO.O  | 90.0 |
| 450                     | 92.0          | 8.o    |       | •••      | 800    | 75.0        | 25.0   | 14.0  | 86.o |
| 475                     | 9I .O         | 9.0    | 2.0   | 98.o     | 900    | 59.0        |        | 25.5  | 74·5 |
| 584                     | 86.o          | 14.0   | 5.0   | 95.0     | 910-92 | o (crit. te | mp.)   |       |      |

# LEAD ACETATE Pb(C,H,O2)2.3H2O.

# SOLUBILITY IN SEVERAL SOLVENTS. (U. S. P.)

| Solvent.  | Grams Pb(C <sub>2</sub> H <sub>3</sub> O <sub>2</sub> ) <sub>2</sub> per 100 Grams Solvent at: |        |  |  |  |
|-----------|------------------------------------------------------------------------------------------------|--------|--|--|--|
|           | 25°.                                                                                           | b. pt. |  |  |  |
| Water     | 50                                                                                             | 200    |  |  |  |
| Alcohol   | 3.3                                                                                            | 100    |  |  |  |
|           | 12.5 (per 100 cc. at 15.5°)                                                                    |        |  |  |  |
| Glycerine | 20.0 (15°)                                                                                     |        |  |  |  |

# **LEAD BENZOATE** $Pb(C_7H_8O_2)_2.H_2O.$

SOLUBILITY IN WATER. (Pa

| 'aictta — Gazz | . chim. | ital. 36 | , 11, | 67, | <b>'</b> 06.) |  |
|----------------|---------|----------|-------|-----|---------------|--|
|----------------|---------|----------|-------|-----|---------------|--|

| <b>t°</b> .                 | 18°.  | 40.6°. | 49.5°. |
|-----------------------------|-------|--------|--------|
| Gms. $Pb(C_7H_5O_2)_2.H_2O$ |       |        |        |
| per 100 gms. sat. solution  | 0.149 | 0.249  | 0.310  |

# LEAD BROMATE Pb(BrO<sub>3</sub>)<sub>2</sub>.H<sub>2</sub>O.

100 gms. cold water dissolve 1.33 gms. lead bromate. (Rammelsberg - Pogg. Annalen. 52, 96, '41; Böttger - Z. physik. Chem. 46, 602, '03.)

# LEAD BROMIDE PbBr2.

# SOLUBILITY IN WATER. (Lichty - J. Am. Chem. Soc. 25, 474, '03.)

| t°. of Solutions, |                                      | Gms. PbB      | r2 per 100             | Milligram Mols. PbBrg per 100 |                        |  |
|-------------------|--------------------------------------|---------------|------------------------|-------------------------------|------------------------|--|
| • •               | H <sub>2</sub> O at o <sup>o</sup> . | cc. Solution. | Gms. H <sub>2</sub> O. | cc. Solution.                 | Gms. H <sub>2</sub> O. |  |
| 0                 | 1.0043                               | 0.4554        | 0.4554                 | 1.242                         | 1.242                  |  |
| 15                | 1.0053                               | 0.7285        | 0.7305                 | 1.987                         | 1.989                  |  |
| 25                | 1.0061                               | 0.9701        | 0.9744                 | 2.646                         | 2.655                  |  |
| 35                | 1.0060                               | 1.3124        | 1.3220                 | 3.577                         | 3.603                  |  |
| 45                | 1.0059                               | 1.7259        | 1.7457                 | 4.705                         | 4.760                  |  |
| 55                | 1.0046                               | 2.1024        | 2.1376                 | 5.731                         | 5.827                  |  |
| 65                | 1.0028                               | 2.516         | 2.574                  | 6.859                         | 7.016                  |  |
| 80                | I.0000                               | 3.235         | 3.343                  | 8.819                         | 9.113                  |  |
| 95                | 0.9995                               | 4.1767        | 4.3613                 | 11.386                        | 11.890                 |  |
| 100               |                                      | 4.550         | 4.751                  | 12.40                         | 12.94                  |  |

Solubility of Lead Bromide in Aqueous Hydrobromic Acid AT 10°.

100 grams H<sub>2</sub>O containing 72.0 grams HBr dissolve 55.0 grams PbBr<sub>2</sub> per 100 gms. solvent, and solution has Sp. Gr. 2.06.

(Ditte - Compt. rend. 92, 719, '81.)

# LEAD CARBONATE PbCOs.

SOLUBILITY IN WATER BY ELECTRICAL CONDUCTIVITY METHOD. (Kohlrausch and Rose – Z. physik. Chem. 12, 241, '03; Böttger – Ibid. 46, 602, '03.)

1 liter of water dissolves 0.0011 - 0.0017 gram PbCO<sub>3</sub> at 20°.

# LEAD CHLORATE Pb(ClO<sub>3</sub>)<sub>2</sub>.

100 grams H<sub>2</sub>O dissolve 151.3 grams Pb(ClO<sub>3</sub>)<sub>2</sub>, or 100 grams sat. solution contain 60.2 gms. Pb(ClO<sub>3</sub>)<sub>2</sub> at 18°. Density of solution, 1.947. (Mylius and Funk – Ber. 30, 1718, '97.)

# LEAD CHLORIDE PbCl2.

### SOLUBILITY IN WATER.

(Lichty; see also Formanek - Chem. Centrb. 18, 270, '87; Bell - Chem. News, 16, 69, '67; Ditte - Compt. rend. 92, 718, '81.)

| t°.  | Density Gms. PbCl2 per 100                            |               | Milligram Mols         | . PbCl2 per 100 |                         |
|------|-------------------------------------------------------|---------------|------------------------|-----------------|-------------------------|
|      | of Solutions,<br>H <sub>2</sub> O at o <sup>o</sup> . | cc. Solution. | Gms. H <sub>2</sub> O. | cc. Solution.   | Grams H <sub>2</sub> O. |
| 0    | 1.0066                                                | 0.6728        | 0.6728                 | 2.421           | 2.421                   |
| 15   | 1.0069                                                | 0.9070        | 0.9090                 | 3.265           | 3.272                   |
| 25   | 1.0072                                                | 1.0786        | 1.0842                 | 3.882           | 3.903                   |
| 35   | 1.0060                                                | 1.3150        | 1.3244                 | 4.733           | 4.767                   |
| 45   | 1.0042                                                | 1.5498        | 1.5673                 | 5.579           | 5.644                   |
| . 55 | I.0020                                                | 1.8019        | 1.8263                 | 6.486           | 6.573                   |
| 65   | 0.9993                                                | 2.0810        | 2.1265                 | 7.490           | 7.651                   |
| 80   | 0.9947                                                | 2,5420        | 2.6224                 | 9.150           | 9.439                   |
| 95   | 0.9894                                                | 3.0358        | 3.1654                 | 10.926          | 11.394                  |
| 100  |                                                       | 3.208         | 3.342                  | 11.52           | 12.01                   |

# LEAD CHLORIDE

. . . . . .

# 164

# SOLUBILITY OF LEAD CHLORIDE IN AQUEOUS SOLUTIONS OF HYDRO-CHLORIC ACID.

(At 0°, Engel --- Ann. chim. phys. [6] 17, 359, '80; at 25°, Noyes -- Z. physik. Chem. 9, 623, '92; at differ-ent temperatures, Ditte -- Compt. rend. 92, 718, '81; see also Bell -- J. Chem. Soc. 21, 350, '68.)

| Gms. HCl | Gms. F<br>Liter | bClg per<br>at: | Gms. HCl<br>per 100   | Gm   | Gms. PbCl <sub>2</sub> per 100 Gms. Solution at: |      |       |              |  |
|----------|-----------------|-----------------|-----------------------|------|--------------------------------------------------|------|-------|--------------|--|
| Liter.   | °°.             | 25°.            | Gms H <sub>2</sub> O. | °. ´ | 20 <sup>0</sup> .                                | 40°. | 55°.  | <b>8₀°</b> . |  |
| ο        | 5.83            | 10. <b>79</b>   | 0                     | 8.0  | 11.8                                             | 17.0 | 21.0  | 31.0         |  |
| 0.5      | 4.5             | 9.0             | 100                   | I.2  | I · 4                                            | 3.2  | 5 · 5 | 12.0         |  |
| Ι.Ο      | 3.6             | 7.6             | 150                   | I.5  | 2.0                                              | 5.0  | 7 · 5 | 16.0         |  |
| 2.0      | 2.2             | 6.0             | 200                   | 3.5  | 5.0                                              | 8.2  | 11.7  | 21.5         |  |
| 3.0      | т.б             | 5.0             | 250                   | 6.5  | 8.0                                              | 13.0 | 16.2  | 28.5         |  |
| 3.0<br>6 | 1.4             | 3.I             | 300                   | 10.7 | 12.5                                             | 17.5 | 22.0  | 35.0         |  |
| 10       | I . 2           | 1.8             | 400                   | 21.5 | 24.0                                             | •••  | • • • | • • •        |  |
| 100      | I.2             | •••             |                       |      |                                                  |      |       |              |  |
| 200      | 5.2             | •••             |                       |      |                                                  |      |       |              |  |
| 250      | 10.5            | • • •           |                       |      |                                                  |      |       |              |  |
| 300      | 17.5            | • • •           |                       |      |                                                  |      |       |              |  |
| 400      | 40.0            | • • •           |                       |      |                                                  |      |       |              |  |

# Solubility of Lead Chloride in Aqueous Salt Solutions AT 25°.

(Noyes; in HgCl<sub>2</sub> solutions at 20°, Formanek - Chem. Centralb. s70, '87.)

In Aqueous Solutions of:

| HCl, KCl, Mg<br>and ZnCl <sub>2</sub> Gr<br>per I | Cl. CaCl. MnCl;<br>am Equivalents<br>iter of: | In Gram             | CaCl <sub>2</sub><br>Equiv.<br>Liter. | Gram                | IgCla<br>Equiv.<br>Liter. | In Pb()<br>Gram F<br>per L          | Equiv.              |
|---------------------------------------------------|-----------------------------------------------|---------------------|---------------------------------------|---------------------|---------------------------|-------------------------------------|---------------------|
| Salt.                                             | PbCl <sub>3</sub> .                           | CdCl <sub>2</sub> . | PbCl <sub>2</sub> .                   | HgCl <sub>2</sub> . | PbCl <sub>2</sub> .       | Pb(NO <sub>2</sub> ) <sub>2</sub> . | PbCl <sub>2</sub> . |
| 0.0                                               | 0.0777                                        | 0.00                | 0.0777                                | 0.0                 | 0.0777                    | 0.0                                 | 0.0777              |
| 0.05                                              | 0.050                                         | 0.05                | 0.0601                                | 0.I                 | 0.0992                    | 0.2                                 | 0.0832              |
| 0.10                                              | 0.035                                         | <b>0</b> .IO        | 0.0481                                |                     |                           |                                     |                     |
| 0.20                                              | 0.021                                         | 0 . 20              | 0.0355                                |                     |                           |                                     |                     |

The above results were calculated to grams per liter plotted on crosssection paper, and the figures in the following table read from the curves.

| Gms.          | Salt  |       | Gr                  | ams PbCl            | per Lite            | r in Aque           | ous Soluti          | ons of: |                    |           |
|---------------|-------|-------|---------------------|---------------------|---------------------|---------------------|---------------------|---------|--------------------|-----------|
| per<br>Liter. | нсі.  | KCI.  | MgCl <sub>2</sub> . | CaCl <sub>2</sub> . | MnCl <sub>2</sub> . | ZnCl <sub>2</sub> . | CdCl <sub>2</sub> . | H       | gÇl <sub>3</sub> . | Pb(NO3)2  |
| 0             | 10.79 | 10.79 | 10.79               | 10.79               | 10.79               | 10.79               | 10.79               | 10.79   | N) 9.71            | (F) 10.79 |
| ł             | 8.5   | 9.3   | 7.7                 | 8.7                 | 9.5                 | • • •               | 10.2                | 11.0    | 9.8                | 10.8      |
| 2             | 6.5   | 8.2   | 6.5                 | 7.6                 | 8.3                 | •••                 | 9.7                 | 11.4    | 10.0               | 10.85     |
| 3             | 5.2   | 7.2   | 5.7                 | 6.7                 | 7.3                 | • • •               | 9.2                 | 11.7    | 10.3               | 10.87     |
| 4             | 4.3   | Ó.5   | 5.2                 | 6.0                 | 6.3                 | • • •               | 8.6                 | 12.0    | 10.5               | 10.90     |
| 6             | 3.2   | 5.3   | 4.4                 | 4.8                 | 5.0                 | • • •               | 7.7                 | 12.7    | 11.0               | 10.95     |
| 8             | 2.5   | 4.5   | • • •               | 3.9                 | 4.1                 |                     | 7.0                 | 13.3    | 11.6               | 11.00     |
| 10            | 2.1   | 3.9   | • • •               | 3.3                 | 3.5                 |                     | 6.3                 | 14.0    | 12.2               | 11.05     |
| 14            |       | 3.1   | •••                 | • • •               | 2.8                 | 3.0                 | 5.4                 | •••     | 13.2               | 11.15     |
| 20            | •••   |       | •••                 |                     | •••                 | • • •               | 4.7                 | •••     | 14.8               | 11.20     |
| 40            | • • • |       | • ••                | •••                 | •••                 |                     |                     | • • •   | 19.0               | 11.70     |

## SOLUBILITY OF LEAD CHLORIDE IN GLYCERINE. (Presse - Ber. 7, 599, '74.)

1 part glycerine + 7 parts H<sub>2</sub>O dissolve 0.91 per cent PbCl<sub>2</sub>.

1 part glycerine + 3 parts H<sub>2</sub>O dissolve 1.04 per cent PbCl<sub>2</sub>. 1 part glycerine + 1 part H<sub>2</sub>O dissolves 1.32 per cent PbCl<sub>2</sub>.

Pure glycerine dissolves 2.00 per cent PbCl<sub>2</sub>.

# LEAD CHROMATE PbCrO.

One liter of water dissolves 0.0002 gram PbCrO, at 18° (conductivity method). (Kohlrausch - Z. physik. Chem. 50, 365, '04-'05.)

SOLUBILITY OF LEAD CHROMATE IN AQUEOUS POTASSIUM HYDROXIDE SOLUTIONS.

(Lacland and Lepierre - Bull. soc. chim. [3] 6, 230, '91.)

+0 Grams KOH per 100 cc. Grams PbCrO4 per 100 cc.

| 15  | 2.308 | 1.19 |
|-----|-------|------|
| 60  | 2.308 | 1.62 |
| 80  | 2.308 | 2.61 |
| 102 | 2.308 | 3.85 |

# LEAD CITRATE Pb(C.H.O.)2.H2O.

SOLUBILITY IN WATER AND IN ALCOHOL.

100 gms. H<sub>2</sub>O dissolve 0.04201 gm. Pb(CeH<sub>2</sub>O<sub>7</sub>)<sub>2</sub>.H<sub>2</sub>O at 18°, and

0.05344 gm. at 25°. 100 gms. alcohol (95%) dissolve 0.0156 gm. Pb(C<sub>6</sub>H<sub>8</sub>O<sub>7</sub>)<sub>2</sub>.H<sub>2</sub>O at 18°, and 0.0167 gm. at 25°. (Partheil and Hübner – Archiv. Pharm. 241, 413, '03.)

# LEAD DOUBLE CYANIDES.

SOLUBILITY IN WATER. (Schuler — Sitzber. Akad. Wiss. Wien, 79, 302, '79.)

| Double Salt.                  | Formula.                                                               | t°. | Gms. per 100<br>Gms. H <sub>2</sub> O. |
|-------------------------------|------------------------------------------------------------------------|-----|----------------------------------------|
| Lead Cobalticyanide           | Pbs[Co(CN)s]2.7H2O                                                     | 18  | 56.5                                   |
| Lead Cobalticyanide           | Pb <sub>3</sub> [Co(CN) <sub>6</sub> ] <sub>2</sub> .7H <sub>2</sub> O | 19  | 61.3                                   |
| Lead Potassium Cobalticyanide | PbKCo(CN)6.3H2O                                                        | 18  | 14.8                                   |
| Lead Cobalticyanide Nitrate   | Pbs[Co(CN)6]2.Pb(NO3)2.12H2O                                           | 18  | 5.9                                    |
| Lead Ferricyanide Nitrate     | PbaFe(CN)6]2.Pb(NO3)2.12H2O                                            | 16  | 7.5                                    |
| Lead Potassium Ferricyanide   | PbKFe(CN)6.3H2O                                                        | 16  | 21.0                                   |

# LEAD FLUORIDE PbF.

One liter of water dissolves 0.64 gram PbF<sub>2</sub> at 18° (conductivity method). (Kohlrausch - Z. physik. Chem. 50, 365, '04-'05.)

# LEAD FORMATE Pb(HCOO)2.

SOLUBILITY OF LEAD FORMATE IN AQUEOUS SOLUTIONS OF BARIUM FORMATE AT 25°. (Fock – Z. Kryst. Min. 28, 383, '97.)

| Mol. % i   | n Solution. | Grams per  | Liter.     | Sp. Gr. of | In Solid Pha                         | se Mol. % of |
|------------|-------------|------------|------------|------------|--------------------------------------|--------------|
| Pb(HCO2)2. | Ba(HCO2)2.  | Pb(HCO2)2. | Ba(HCO2)2. | Solutions. | Pb(HCO <sub>2</sub> ) <sub>2</sub> . | Ba(HCO2)2.   |
| 0.00       | 100.0       |            | 28.54      | 1.2204     | 0.0                                  | 100          |
| 0.29       | 99.71       | 1.104      | 28.65      | 1.2213     | I.72                                 | 98.28        |
| 0.74       | 99.26       | 2.803      | 28.90      | 1.2251     | 5.29                                 | 94.71        |
| 1.24       | 98.76       | 5.309      | 32.24      | 1.2529     | 11.94                                | 88.06        |
| 2.91       | 97.09       | 11.42      | 29.29      | 1.2341     | 24.81                                | 75.19        |
| 5.92       | 94.08       | 23.11      | 28.13      | 1.2355     | 56.54                                | 43.46        |
| 100.00     | 0.0         | 28.35      |            | 1.0911     | 100.0                                | 0.0          |

# LEAD HYDROXIDE

# LEAD HYDROXIDE Pb(OH).

SOLUBILITY OF LEAD HYDROXIDE IN AQUEOUS SOLUTIONS OF SODIUM HYDROXIDE. (Moist Lead Hydroxide used, temperature not given.)

166

| Amt. of Na | Amt. of Pb. | Mol. Dilution | Grams per 100 cc. Solution. |                 |  |
|------------|-------------|---------------|-----------------------------|-----------------|--|
| in 20 cc.  | in 20 cc.   | of NaOH.      | NaOH.                       | Pb(OH)3.        |  |
| 0.2024     | 0.IOI2      | 2.27          | I.759                       | 0 · 5 <b>90</b> |  |
| 0.3196     | 0.1736      | I.44          | 2.778                       | 010. I          |  |
| 0.5866     | 0.3532      | 0.785         | 5.10                        | 2.056           |  |
| 0.9476     | 0.4071      | 0.485         | 8.235                       | 2.370           |  |
| 1 . 7802   | 0.5170      | 0.258         | 15.470                      | 3.010           |  |

### (Rubenbauer - Z, anorg. Chem. 30, 336, '02.)

# LEAD IODATE Pb(IO<sub>3</sub>)<sub>2</sub>.

One liter of water dissolves 0.019 gm. Pb(IO<sub>2</sub>), at 18°.

(Kohlrausch; Böttger?

.

# LEAD IODIDE PbI,.

# SOLUBILITY IN WATER.

(Lichty - J. Am. Chem. Soc. 25, 471, '03.)

|     | Density.<br>(HgO at o°.) | Grams Pb       | I2 per 100              | Millimols PbI2 per 100 |                         |
|-----|--------------------------|----------------|-------------------------|------------------------|-------------------------|
| t°. |                          | cc. Solution.  | Grams H <sub>2</sub> O. | cc. Solution.          | Grams H <sub>2</sub> O. |
| 0   | 1.0006                   | 0.0442         | 0.0442                  | o.096                  | o.096                   |
| 15  | o.9998                   | 0.0613         | 0.0613                  | 0.133                  | 0.133                   |
| 25  | o.9980                   | 0.0762         | 0.0764                  | 0.165                  | 0.166                   |
| 35  | 0.9951                   | 0.1035         | 0 . 1042                | 0.224                  | 0.226                   |
| 45  | 0.9915                   | 0.1440         | 0.1453                  | 0.312                  | 0.315                   |
| 55  | 0.9872                   | 0.17 <b>26</b> | 0.1 <b>755</b>          | 0.374                  | 0.381                   |
| 65  | 0.9827                   | 0.2140         | 0.2183                  | 0.464                  | 0.473                   |
| 8o  | 0.9745                   | 0.2937         | 0.3023                  | 0.637                  | 0.656                   |
| 95  | 0.9671                   | 0.3814         | 0. <b>3</b> 960         | o.828                  | 0.859                   |
| 100 | •••                      | 0.420          | 0.436                   | o.895                  | 0.927                   |

# Solubility of Lead Iodide in Acetone, Anilin and Amyl Alcohol.

(von Laszczynski — Ber. 27, 2285, '94.)

| Solvent.                                      | t°.   | Grams PbI <sub>2</sub> per 100 Grams Solvent. |
|-----------------------------------------------|-------|-----------------------------------------------|
| (CH <sub>3</sub> ) <sub>2</sub> CO            | 59    | 0.02                                          |
| C <sub>6</sub> H <sub>5</sub> NH <sub>2</sub> | 13    | 0.50                                          |
| C <sub>6</sub> H <sub>5</sub> NH <sub>2</sub> | 184   | I.IO                                          |
| C <sub>5</sub> H,OH                           | 133.5 | 0.02                                          |

# SOLUBILITY OF MIXTURES OF LEAD IODIDE AND POTASSIUM IODIDE IN WATER.

(Ditte - Ann. chim. phys. [5] 24, 226, '81; Schreinemaker - Z. physik. Chem. 9, 65, '92.)

| t°.   | Grams per 1000 Gms. HgO. |       | Mols. per 1000 Mols. H2O. |         | Solid       |          |
|-------|--------------------------|-------|---------------------------|---------|-------------|----------|
| τ.    | PbIg.                    | KI.   | Pbls.                     | K213.   | Phase       |          |
| 5     | • • •                    | 163   | •••                       | 8.8     | Double Sal  | t + PbIs |
| 20    | 9                        | 260   | 0.3                       | 14.I    | **          | **       |
| 28    | 25                       | 325   | 0.9                       | 17.6    | **          |          |
| 39    | 45                       | 449   | I.8                       | 24.3    | 44          | **       |
| 67    | 255                      | 751   | 9.9                       | 40.7    | 66          | **       |
| 80    | 731                      | 1186  | 28.5                      | 64.3    | 66          | **       |
| 8o    | 519.9                    | 976.4 | 22.2                      | 52.9    | 44          | 44       |
| 104.5 | 1411                     | 1521  | 55 I                      | 82.5    | **          | *        |
| 120   | 2151                     | 1812  | 83.9                      | 98.2    | 44          |          |
| 137   | 2874                     | 2097  | 112.2                     | 113.8   | 44          | •        |
| 175   | 5603                     | 2947  | 218.7                     | 159.9   | **          | **       |
| 189   |                          | 3339  | • • •                     | 181.0   | **          | 44       |
| 9     | <b>9</b> 6.6             | 1352  | 3.77                      | 73·3    | Double Sale | + KI     |
| 13    | 114.3                    | 1384  | 4.46                      | 75.05   | "           | 44       |
| 23    | 186.3                    | 1510  | 7 - 27                    | 81.08   | **          | **       |
| 50    | 526.7                    | 1906  | 20.56                     | 103.3   | **          | 44       |
| 64    | 789.3                    | 2161  | 30.8                      | 117.2   | 44          | ••       |
| 83.5  | 1108.6                   | 2434  | 43.2                      | 131.9   | ••          | 66       |
| 92    | 1273                     | 2566  | <b>4</b> 9.7              | 139.3   | **          | **       |
| 137   | 2382                     | 3278  | 93.0                      | 117.7   | **          | 66       |
| 165   | 4187                     | 4227  | 163.4                     | 229 . I | *           | 44       |
| 218   | 10303                    | • • • | 402.3                     | • • •   | **          | **       |
| 241   | 12803                    | 7998  | 499.9                     | 433.6   | "           | 44       |
| 242   | 12749                    | •••   | 497.8                     | •••     | *           | 66       |
| 250   | 15264                    | • • • | 596.0                     | •••     | 66          | *        |
|       |                          |       |                           |         |             |          |

| t°. | Gms. PbI2.2KI per<br>1000 Gms. H2O. | Mols. PbI2.2KI per<br>1000 Mols. H2O. | Solid Phase.   |
|-----|-------------------------------------|---------------------------------------|----------------|
| 157 | 5218                                | 141.07                                | PbI2.2KI.23H2O |
| 172 | 6489                                | 175.5                                 | **             |
| 186 | 7903                                | 213.7                                 | "              |
| 194 | 9266                                | 250.6                                 | **             |
| 201 | 11320                               | 306.0                                 | "              |

# LEAD MALATE Pb.C.H.O. 3H.O.

SOLUBILITY IN WATER AND ALCOHOL. (Partheil and Hübner - Archiv. Pharm. 241, 413, '03.)

100 gms. H<sub>2</sub>O dissolve 0.0288 gm. PbC, H<sub>4</sub>O<sub>8</sub>, 3H<sub>2</sub>O at 18°, and 0.06504 gm. at  $25^{\circ}$ . 100 gms. 95% alcohol dissolve 0.0048 gm. PbC<sub>4</sub>H<sub>4</sub>O<sub>8</sub>.3H<sub>2</sub>O at 18°-25°.

Density of alcohol employed -0.8092.

,

# LEAD NITRATE Pb(NO<sub>3</sub>)<sub>2</sub>.

SOLUBILITY IN WATER. (Mulder; Kremers - Pogg. Ann. 92, 497, '54; at 15°, Michel and Kraft - Ann. chim. phys. [3] 41, 471, '54; at 17°, Euler - Z. physik. Chem. 49, 314, '04.)

| <b>t °</b> . | Grams P | b(NO <sub>3</sub> ) <sub>2</sub> per | t°.                  | Grams Pb(NO <sub>2</sub> ) <sub>2</sub> per 100 Gms. |        |           |                |
|--------------|---------|--------------------------------------|----------------------|------------------------------------------------------|--------|-----------|----------------|
| <b>U</b> ".  | Water.  |                                      | Solution.            | <b>U</b> *.                                          | Wa     | Solution. |                |
| 0            | 36.5(1) | 38.8(2)                              | 27.33 <sup>(3)</sup> | 40                                                   | 69.4   | 75.0      | 41.9           |
| 10           | 44 · 4  | 48.3                                 | 31.6                 | 50                                                   | 78.7   | 85.0      | 45.0           |
| 17           | 50.0    | 54.0                                 | 34.2                 | 60                                                   | 88.0   | 95.0      | 47.8           |
| 20           | 52.3    | 56.5                                 | 35.2                 | 80                                                   | 107.6  | 115.0     | 52.7           |
| 25           | 56.4    | 60.6                                 | 36.9                 | 100                                                  | 127.0  | 138.8     | 57.1           |
| 30           | 60.7    | 66.0                                 | 38.8<br>* Eule       | 17°                                                  | 52.76* |           | 34·54 <b>*</b> |

(1) Mulder, (2) Kremers, (3) Average of M and K. Density of saturated solution at  $17^{\circ} = 1.405$ . (Euler.)

SOLUBILITY OF LEAD NITRATE IN ETHYL AND METHYL ALCOHOL. Gma. Pb(NO<sub>2</sub>)<sub>2</sub> per 100 Grams Solvent at:

| Solvent.                                                      | 01          | 100. I U(I) | 108/2 pci 100 0 | 100 Grams Surrent at. |                 |        |
|---------------------------------------------------------------|-------------|-------------|-----------------|-----------------------|-----------------|--------|
| Souvent.<br>Aq. C <sub>2</sub> H <sub>6</sub> OH (Sp. Gr9282) | 4°.<br>4.06 | 8°.<br>5.82 | 22°.<br>8.77    | 40°.<br>12.8          | 50°.<br>14.0    | (G)    |
| Abs. C.H.OH<br>Abs. CH.OH                                     | •••         | ••••        | 0.04 (20.5      |                       |                 | (de B) |
| (Gerardin — Ann. chim. phys. [                                |             | <br>'65; de |                 | nysik. Chem.          | ···<br>10, 783, | '92.)  |

Solubility of Mixed Crystals of Lead Nitrate and Strontium Nitrate in Water at 25°.

| (Fock — | Z. | Kryst. | Min. | 28, | 372, | '97.Š | •   |
|---------|----|--------|------|-----|------|-------|-----|
|         |    | Caluda | -    | -   | -    |       | Mal |

| Mol. per cen | t in Solution. | Gms. per 10            | o cc. Solution. | Sp. Gr. of<br>Solutions. | Mol. per cen                        | t in Solid Phase.      |  |  |
|--------------|----------------|------------------------|-----------------|--------------------------|-------------------------------------|------------------------|--|--|
| Pb(NO3)2.    | Sr(NO2)2.      | Pb(NO <sub>2</sub> )2. | Sr(NO2)2.       | Solutions.               | Pb(NO <sub>3</sub> ) <sub>2</sub> . | Sr(NO <sub>2</sub> )2. |  |  |
| 100          | 0.0            | 46.31                  | 0.0             | I · 4472                 | 100                                 | 0.0                    |  |  |
| 87.41        | 12.39          | 50.47                  | 4.56            | 1.4336                   | <b>9</b> 9.05                       | 0.95                   |  |  |
| 78.68        | 21.32          | 53.92                  | 8.14            | 1.4288                   | 98.11                               | 1.89                   |  |  |
| 56.39        | 43.61          | 45.34                  | 17.81           | I . 4263                 | 97.02                               | 2.98                   |  |  |
| 60.29        | 39.71          | 44 . 48                | 18.74           | 1.4245                   | 96.06                               | 3.94                   |  |  |
| 33.70        | 66.30          | 25.23                  | 35.03           | 1.4468                   | 83.84                               | 16.16                  |  |  |
| 24.58        | 75.42          | 19.13                  | 37 . 54         | 1 . 4867                 | 32.88                               | 67 . 12                |  |  |
| 0.0          | 100.0          | 0.0                    | 71.04           | 1.5141                   | 0.0                                 | 100.00                 |  |  |

#### LEAD OXALATE PbC<sub>2</sub>O<sub>4</sub>.

One liter of water dissolves 0.0015 gm. PbC<sub>2</sub>O<sub>4</sub> at 18° (conductivity method). (Böttger - Z. physik. Chem. 46, 602, '03; Kohlrausch - Ibid 50, 356, '04-'05.)

# LEAD OXIDES. SOLUBILITY IN WATER.

|    | (Böttger; Ruer — Z. anorg. Chem. 50, 273, '06.)          |                          |                    |
|----|----------------------------------------------------------|--------------------------|--------------------|
| No | Description of Oxide.                                    | Gm. Equiv.<br>per Liter. | Gms.<br>per Liter. |
| 1. | Yellow Oxide, by boiling Pb hydroxide with 10% NaOH      | 1.03×10-4                | 0.023              |
| 2. | Red Oxide, by boiling Pb hydroxide with conc. NaOH       | 0.56×10-4                | 0.012              |
| 3. | Yellow Oxide, by heating No. 1 to 630°                   | 1.05×10-4                | 0.023              |
|    | Yellow Oxide, by heating No. 2 to 740°                   | 1.00 × 10 <sup>-4</sup>  | 0.022              |
| 5. | Yellow Oxide, by heating com. yellow brown oxide to 620° | 1.09×10 <sup>-4</sup>    | 0.024              |
| Ğ. | Yellow Brown Oxide commercially pure                     | 1.10×10-4                | 0.024              |
|    | Yellow Brown Oxide, by long rubbing of No. 5.            | 1.12×10 <sup>-4</sup>    | 0.025              |
|    |                                                          |                          |                    |

Böttger gives for three samples of lead oxide, 0.017, 0.021, and 0.013 gm. per liter respectively.

#### LEAD PALMITATE, LEAD STEARATE.

100 cc. absolute ether dissolve 0.0138 gm. palmitate and 0.0148 gm. stearate.

160

(Lidoff - Bull. soc. chim. [3] 10, 356, '93.)

#### LEAD PHOSPHATE (Ortho) Pb<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>.

One liter of 4.97 per cent aqueous acetic acid solution dissolves 1.27 gms. Pb<sub>s</sub>(PO<sub>4</sub>)<sub>2</sub>.

(Bertrand - Monit. Scient. [3] 10, 477, '68.)

# LEAD SUCCINATE PbC,H,O,.

SOLUBILITY IN WATER AND IN ALCOHOL. (Partheil and Hübner - Archiv. Pharm. 241, 413, '03.)

100 gms. H<sub>2</sub>O dissolve 0.0253 gm. PbC,H,O, at 18°, and 0.0285 gm. at 25°.

100 gms. 95% alcohol dissolve 0.00275 gm. PbC,H.O. at 18°, and 0.003 gm. at 25°.

Density of alcohol used = 0.8092.

#### LEAD SULPHATE PbSO.

One liter of water dissolves 0.041 gm. PbSO4, by conductivity method.

(Kohlrausch; Böttger. Dibbits - Z. anal. Chem. 13, 139, '74, finds 0.038 gram by gravimetric method.)

SOLUBILITY OF LEAD SULPHATE IN AQUEOUS SOLUTIONS OF STRONG ACIDS.

(Schultz - Pogg. Ann. 113, 137, '61; Rodwell - J. Chem. Soc. 15, 59, '62.)

| In Aq. H <sub>2</sub> SO <sub>4</sub> . |      | In Aq. HCl. |      |      | In Aq. HNO <sub>3</sub> . |      |      |      |
|-----------------------------------------|------|-------------|------|------|---------------------------|------|------|------|
| (a).                                    | (b). | (c).        | (a). | (b). | (c).                      | (a). | (b). | (c). |
| 1.540                                   | 63.4 | 0.003       | 1.05 | 10.6 | 0.14                      | 1.08 | 11.6 | 0.33 |
| 1.793                                   | 85.7 | 0.0II       | 1.08 | 16.3 | 0.35                      | 1.12 | 17.5 | 0.59 |
| 1.841                                   | 97.0 | 0.039       | I.II | 22.0 | 0.95                      | 1.25 | 34.0 | 0.78 |
|                                         |      |             | 1.14 | 27.5 | 2.11                      | I.42 | 60.0 | I.OI |
|                                         |      |             | 1.16 | 31.6 | 2.86                      |      |      |      |

(a) Sp. Gr. of Aq. Acid. (b) Gms. Acid per 100 Gms. Solution. (c) Gms. PbSO4 per 100 Gms. Solvent.

SOLUBILITY OF LEAD SULPHATE IN AQUEOUS SOLUTIONS OF AMMO-NIUM ACETATE AND OF SODIUM ACETATE.

(Noyes and Whitcomb - J. Am. Chem. Soc. 27, 756, '05; Dunnington and Long - Am. Ch. J. 22, 217, '90; Dibbits - Z. anal. Chem. 13, 139, '74.)

|                          | I             | n Ammoniu                                                                   | ım Ace           | etate. In Sodium Acetate.                                                                  |                                    |                          |                |  |
|--------------------------|---------------|-----------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------|------------------------------------|--------------------------|----------------|--|
| At 25° (N. and W.).      |               |                                                                             |                  | At 100° (D                                                                                 | and L.).                           | (D.).                    |                |  |
| Millimols J<br>NH4C2H3O2 |               | Grams per<br>NH <sub>4</sub> C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> . | Liter.<br>PbSO4. | G.NH <sub>4</sub> C <sub>2</sub> H <sub>3</sub> O <sub>2</sub><br>per 100 cc.<br>Solution. | G.PbSO4<br>per 100 g.<br>Solution. | Gms. per 100<br>NaC2H3O2 |                |  |
| 0.0                      | 0.134<br>2.10 | 0.0<br>7.98                                                                 | 0.041            | 28<br>32                                                                                   | 7.12<br>9.88                       | 2.05<br>8.2              | 0.054<br>0.853 |  |
| 207.I<br>414.I           | 4.55<br>10.10 | 15.96<br>31.92                                                              | 1.38             | 37<br>45                                                                                   | 10.58<br>11.10                     | 41.0                     | 11.23          |  |

#### LEAD (Hypo) SULPHATE 170

#### Solubility of Mixtures of Lead Hyposulphate and Strontium Hyposulphate at 25°.

| Mol. per cent i<br>PbS <sub>2</sub> O <sub>6</sub><br>-4H <sub>2</sub> O. | in Solution.<br>SrS <sub>2</sub> O <sub>8</sub><br>.4H <sub>2</sub> O. | Grams p<br>PbS <sub>2</sub> O <sub>6</sub> . | er Liter.<br>SrS <sub>2</sub> O <sub>6</sub> . | Sp. Gr. of<br>Solutions. | Mol. per cen<br>PbSrOs<br>.4HrO. | t in Solid Phase.<br>SrS <sub>2</sub> O <sub>6</sub><br>.4H <sub>2</sub> O. |
|---------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------|--------------------------|----------------------------------|-----------------------------------------------------------------------------|
| 0.0                                                                       | IOO . O                                                                | 0.0                                          | 145.6                                          | 1.1126                   | 0.0                              | 100.0                                                                       |
| I.05                                                                      | 98.95                                                                  | 2.97                                         | 151.2                                          | 1.1184                   | 0.30                             | 99 7                                                                        |
| 15.31                                                                     | 84.69                                                                  | 40.82                                        | 152.5                                          | 1.1503                   | 3.87                             | 96.13                                                                       |
| 46.80                                                                     | 53.20                                                                  | 149.2                                        | 114.5                                          | 1.2147                   | 9.84                             | 90.16                                                                       |
| 62.30                                                                     | 37.70                                                                  | 256.1                                        | 85.0                                           | I 2889                   | 19.26                            | 80.74                                                                       |
| 75·75                                                                     | 24.25                                                                  | <b>3</b> 10.3                                | 67.0                                           | I.3252                   | 23.73                            | 76.27                                                                       |
| 78.09                                                                     | 121.91                                                                 | 373.7                                        | 70.8                                           | 1.3726                   | 32.24                            | 67.76                                                                       |
| 88.29                                                                     | 11.71                                                                  | 509.5                                        | 45.6                                           | 1.4671                   | <b>4</b> 9 · 97                  | 50.13                                                                       |
| 100.0                                                                     | 0.00                                                                   | 374 · 3                                      | 0.0                                            | 1.6817                   | 0.00                             | 0.00                                                                        |

(Fock – Z. Kryst. Min. 28, 389, '97.)

#### LEAD TARTRATE PbC.O.H.

-

SOLUBILITY IN WATER.

(Cantoni and Zachoder — Bull. soc. chim. [3] 33, 751, '05; Partheil and Hübner — Archiv. Pharm. 241, 413, '03.)

| t°. | Gms. PbC <sub>4</sub> O <sub>6</sub> H <sub>4</sub> per<br>100 cc. Solution. | t°. | Gms. PbC <sub>4</sub> O <sub>6</sub> H <sub>4</sub> per<br>100 cc. Solution. | t°.        | Gms. PbC <sub>6</sub> O <sub>6</sub> H <sub>6</sub> per<br>100 cc. Solution. |
|-----|------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------|
| 18  | 0.010 (P. and H.)                                                            | 50  | 0.00225                                                                      | 70         | 0.0032                                                                       |
| 25  | o 0108 "                                                                     | 55  | 0.00295                                                                      | 75         | 0.0033                                                                       |
| 35  | 0.00105                                                                      | 60  | 0.00305                                                                      | <u>8</u> 0 | o.co38                                                                       |
| 40  | 0.0015                                                                       | 65  | 0.00315                                                                      | 85         | 0.0054                                                                       |

Note. — The positions of the decimal points here shown are just as given in the original communications.

100 gms. alcohol of 0.8092 Sp. Gr. (about 95%) dissolve 0.0028 gm. PbC<sub>4</sub>O<sub>6</sub>H<sub>4</sub> at 18°, and 0.00315 gm. at 25°. (P. and H.)

#### LEVULOSE C.H. O.

100 gms. saturated solution in pyridine contain 18.49 gms.  $C_6H_{12}O_6$ at 26°, Sp. Gr. 1.0521. (Holty – J. Physic. Chem. 9, 764, '05.)

#### LIGRÖIN.

.

100 cc.  $H_{2}O$  dissolve 0.341 cc. ligröin at 22° Vol. of solution = 100.34, Sp. Gr. 0.9969.

<sup>1</sup>100 cc. ligröin dissolve 0.335 cc. H<sub>2</sub>O at 22° Vol. of solution = 100.60, Sp. Gr. 0.6640. (Herz-Ber. 31, 2671, '98.)

#### LITHIUM BENZOATE C, H, COOLi.

100 gms.  $H_2O$  dissolve 33.3 gms. at 25°, and 40.0 gms. at b. pt. 100 gms. alcohol dissolve 7.7 gms. at 25°, and 10.0 gms. at b. pt.

(U. S. P.)

#### LITHIUM BORATE Li2OB2O2.

SOLUBILITY IN WATER.

| Gms. Li <sub>2</sub> OB <sub>2</sub> O <sub>3</sub> per 100 Gms. H <sub>2</sub> O | 0.7 | I.4      | 2.6      | 4.9        | II.I2     | 20    |
|-----------------------------------------------------------------------------------|-----|----------|----------|------------|-----------|-------|
|                                                                                   | (Le | Chatelie | r — Comp | x. rend. 1 | 24, 1004, | 'oz.) |

#### LITHIUM BROMATE LiBrO3.

100 gms. H<sub>2</sub>O dissolve 153.7 gms. LiBrO<sub>3</sub> at 18°, or 100 gms. saturated solution contain 60.4 gms. Sp. Gr. of sol. = 1.833. (Mylius and Funk – Ber. 30, 1718, '97.)

171

LITHIUM BROMIDE LiBr.

SOLUBILITY IN WATER. (Kremers - Pogg, Ann. 104, 133, '58.)

| t°. | Gms. LiBr | per 100 Gms. | tº. | Gms. LiBr per 100 Gms. |           |  |
|-----|-----------|--------------|-----|------------------------|-----------|--|
|     | Water.    | Solution.    |     | Water.                 | Solution. |  |
| 0   | 143       | 58.8         | 40  | 202                    | 66.9      |  |
| IO  | 101       | 61.7         | 50  | 214                    | 68.2      |  |
| 20  | 177       | 63.9         | 60  | 224                    | 69.1      |  |
| 25  | 184       | 64.8         | 80  | 245                    | 71.0      |  |
| 30  | 190       | 65.5         | 100 | 266                    | 72.7      |  |

100 gms. saturated solution in glycol, C<sub>2</sub>H<sub>4</sub>(OH)<sub>2</sub>.H<sub>2</sub>O, contain 37.5 gms. LiBr at 14.7°. (de Coninck - Chem. Centr. 76, II, 883, '05.)

#### LITHIUM CARBONATE LigCO3.

SOLUBILITY IN WATER.

(Bevade — J. russ. phys. chem. Ges. 16, 501, 84; Bull. soc. chim. [2] 43, 123, '85; Flückiger — Arch. Pharm. [3] 25, 542, '87; Draper — Chem. News, 55, 169, '87.)

An average curve was constructed from the available results and the following table read from it.

| t <sub>o</sub> . | Gms. Li2CO | per 100 Gms. | t°. | Gms. Li2CO3 per 100 Gms |           |  |
|------------------|------------|--------------|-----|-------------------------|-----------|--|
|                  | Water.     | Solution.    |     | Water.                  | Solution. |  |
| 0                | 1.54       | 1.52         | 40  | 1.17                    | 1.16      |  |
| IO               | 1.43       | 1.41         | 50  | I.08                    | 1.07      |  |
| 20               | 1.33       | 1.31         | 60  | I.OI                    | I.00      |  |
| 25               | 1.29       | 1.28         | 80  | 0.85                    | 0.84      |  |
| 30               | 1.25       | 1.24         | 100 | 0.72                    | 0.71      |  |

Density of saturated solution at  $0^\circ = 1.017$ ; at  $15^\circ = 1.014$ .

SOLUBILITY OF LITHIUM CARBONATE IN AQUEOUS SOLUTIONS OF ALKALI SALTS AT 25°.

#### (Geffcken - Z. anorg. Chem. 43, 197, '05.)

The original results were calculated to gram quantities and plotted on cross-section paper. The figures in the following table were read from the curves.

| Gms. Salt  | cui ves. | Grams Li <sub>2</sub> CO <sub>3</sub> per Liter in Aqueous Solutions of: |       |       |        |         |                     |           |  |  |
|------------|----------|--------------------------------------------------------------------------|-------|-------|--------|---------|---------------------|-----------|--|--|
| per Liter. | KClO3.   | KNO3.                                                                    | KCl.  | NaCl. | K2SO4. | Na2SO4. | NH <sub>4</sub> Cl. | (NH4)2504 |  |  |
| 0          | 12.63    | 12.63                                                                    | 12.63 | 12.63 | 12.63  | 12.63   | 12.63               | 12.63     |  |  |
| 10         | 12.95    | 13.05                                                                    | 13.10 | 13.4  | 13.9   | 14.0    | 16.0                | 20.7      |  |  |
| 20         | 13.10    | 13.3                                                                     | 13.5  | 13.9  | 14.7   | 15.0    | 19.2                | 25.0      |  |  |
| 30         | 13.25    | 13.6                                                                     | 13.8  | 14.3  | 15.4   | 16.0    | 21.5                | 28.2      |  |  |
| 40         | 13.40    | 13.8                                                                     | 14.0  | 14.6  | 16.0   | 16.6    | 23.3                | 30.8      |  |  |
| 60         |          | 13.8                                                                     | 14.2  | 14.5  | 16.9   | 17.8    | 26.0                | 35.2      |  |  |
| 80         |          | 13.6                                                                     | 14.0  | 14.4  | 17.7   | 18.6    | 27.6                | 38.5      |  |  |
| 100        | ***      | 13.5                                                                     | 13.9  | 14.2  | 18.2   | 19.4    | 28.4                | 41.0      |  |  |
| 120        | ***      | 13.3                                                                     | 13.7  | 14.0  |        | 19.9    | 28.7 .              | - 42.6    |  |  |
| 140        | ***      | 13.0                                                                     | 13.3  |       |        | 20.4    | 28.8                | 43.5      |  |  |
| 170        |          | 12.6                                                                     |       |       |        |         | 28.9                |           |  |  |
| 200        |          | 12.2                                                                     |       |       |        |         | 29.0                |           |  |  |
|            |          |                                                                          |       |       |        |         |                     |           |  |  |

100 gms. aq. alcohol of 0.941 Sp. Gr. dissolve 0.056 gm. Li<sub>2</sub>CO<sub>3</sub> at 15.5°.

#### LITHIUM (Bi) CARBONATE 172

# LITHIUM (Bi) CARBONATE LiHCO,

100 grams H<sub>2</sub>O dissolve 5.501 grams LiHCO<sub>2</sub> at 13°.

(Bevade - Ber. 17, R 406, '84.)

#### LITHIUM OHLORATE LiCIO,.

100 grams H<sub>2</sub>O dissolve 213.5 grams LiClO, at 18°, or 100 grams sat. solution contain 75.8 grams. Sp. Gr. of sol. - 1.815.

(Mylius and Funk - Ber. 30, 1718, '97.)

# LITHIUM OHLOBAURATE LiAuCl.

#### SOLUBILITY IN WATER. (Rosenbladt — Ber. 19, 2538, '86.)

| <b>t °</b> . | Gms. LiAuCl <sub>4</sub> per<br>100 Gms. Solution. | <b>t °</b> . | Gms. LiAuCl <sub>4</sub> per<br>100 Gms. Solution. | t •. Gn | ns. LiAuCl <sub>4</sub> per<br>Gms. Solution. |
|--------------|----------------------------------------------------|--------------|----------------------------------------------------|---------|-----------------------------------------------|
| IO           | 53 · I                                             | 40           | 67.3                                               | 60      | 76.4                                          |
| 20           | 57.7                                               | 50           | 72.0                                               | 70      | o. 18                                         |
| 30           | 62.5                                               |              |                                                    | 80      | 85.7                                          |

#### LITHIUM OHLORIDE LiCI.

#### Solubility in Water.

(Average curve from results of Gerlach - Z. anal. Chem. 8, 281, '69.)

|      | Gms. LiCl | per 100 Gms.  |             | Gms. LiCl per 100 Gms. |           |  |
|------|-----------|---------------|-------------|------------------------|-----------|--|
| t °. | Water.    | Solution.     | <b>t</b> °. | Water.                 | Solution. |  |
| 0    | 67        | 40 · I        | 40          | 90.5                   | 47 · 5    |  |
| 10   | 72        | 41.9          | 50          | 97 ·O                  | 49 - 2    |  |
| 20   | 78.5      | 44 · O        | 60          | 103 . <b>0</b>         | 51.9      |  |
| 25   | 81.5      | <b>49</b> · 9 | 80          | 115.0                  | 53·5      |  |
| 30   | 84.5      | 45.8          | 100         | 127.5                  | 56.O      |  |

Density of saturated solution at 0°, 1.255; at 15°, 1.275.

#### Solubility of Lithium Chloride in Aqueous Solutions of Hydrochloric Acid at 0°.

(Engel - Ann. chim. phys. [6] 13, 385, '88.)

| Milligram Mols. per<br>10 cc. Solution. |       | Gms. per<br>Solut | Sp. Gr. of<br>Solutions. |            |
|-----------------------------------------|-------|-------------------|--------------------------|------------|
| LICI.                                   | HCI.  | LiCi.             | HCI.                     | Solutions. |
| 120                                     | 0.0   | 51.0              | 0.0                      | 1.255      |
| 97 · 5                                  | 22.5  | 41.4              | 8.2                      | I.243      |
| 67.0                                    | 66.0  | 28.5              | 24 . I                   | I . 249    |
| 5 <sup>8</sup> .0                       | 0. IS | 24.6              | 29.5                     | 1.251      |

#### SOLUBILITY OF LITHIUM CHLORIDE IN SEVERAL SOLVENTS. (von Laszczynski – Ber. 27, 2285, '94; de Coninck – Chem. Centrh. 76, II. 883, '05.)

|              | In Acetone.<br>(von L.)                                          |              |                                                                  | In           | Pyridine.<br>(von L.)              | In Glycol.<br>(de C.) |                                        |
|--------------|------------------------------------------------------------------|--------------|------------------------------------------------------------------|--------------|------------------------------------|-----------------------|----------------------------------------|
| <b>t °</b> . | Gms. LiCi<br>per 100 Gms.<br>(CH <sub>3</sub> ) <sub>2</sub> CO. | <b>t °</b> . | Gms. LiCl<br>per 100 Gms.<br>(CH <sub>3</sub> ) <sub>7</sub> CO. | <b>t °</b> . | Gms. LiCl<br>per 100 Gms.<br>CsHsN | t°.                   | Gms. LiCl<br>per 100 Gms.<br>Sat. Sol. |
| 0            | 4.60                                                             | 46           | 3.76                                                             | 15°          | 7.78                               | 15°                   | II .O                                  |
| 12           | 4.41                                                             | 53           | 3.12                                                             | 100          | 14.26                              |                       |                                        |
| 25           | 4.11                                                             | 58           | 2.14                                                             |              |                                    |                       |                                        |

LITHIUM CHROMATE LigCrO4.2H2O.

#### LITHIUM BICHROMATE Li2Cr2O7.2H2O.

#### SOLUBILITY IN WATER AT 30°.

173

(Schreinemaker - Z. physik. Chem. 55, 79, 'o6; at 18°, Mylius and Funk - Ber. 30, 1718, '97.)

| Co      | mposition in | Weight per o | cent:   | Solid                         |
|---------|--------------|--------------|---------|-------------------------------|
| Of S    | olution.     |              | esidue. | Phase.                        |
| % CrO3. | % Li2O.      | % CrO3.      | % Li2O. | LiOH.H <sub>2</sub> O         |
| 0.0     | 7.09         |              | -0 -0   | "                             |
| 6.986   | 7.744        | 4.322        | 18.538  |                               |
| 16.564  | 8.888        | 10.089       | 19.556  |                               |
| 25.811  | 10.611       | 15.479       | 21.106  | "                             |
| 33.618  | 12.886       | 24.365       | 19.398  |                               |
| 37.411  | 14.306       | 44.555       | 17.411  | LiOH.H2O + Li2CrO.2H2O        |
| 37.588  | 14.381       | 36.331       | 18.552  |                               |
| 37.495  | 13.311       | 51.075       | 16.384  | Li2CrO4.2H2O                  |
| 40.280  | 10.858       |              |         | 4(                            |
| 43.404  | 11.809       | 53.793       | 14.070  | Li2Cr2O4.2H2O + Li2Cr2O7.2H2C |
| 45.130  | 9.515        | 56.085       | 10.190  | Li2Cr2O7-2H2O                 |
| 47.945  | 7.951        | 58.029       | 9.238   |                               |
| 57.031  | 6.432        | 65.560       | 8.733   |                               |
| 67.731  | 5.713        | 71.687       | 8.513   | Li2Cr2O7.2H2O + CrO3          |
| 67.814  | 5.689        | 80.452       | 3.780   |                               |
| 65.200  | 4.661        |              |         | CrOa                          |
| 63.257  | 2.141        | 85.914       | 0.758   |                               |
| 62.28   |              |              |         |                               |
|         |              |              |         |                               |

A saturated aqueous solution contains:

49.985 per cent Li2CrO4, or 100 grams H2O dissolve 99.94 grams Li2CrO4 at 30° (S.).

56.6 per cent Li2Cr2O7, or 100 grams H2O dissolve 130.4 grams

Li<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> at 30° (S.). 52.6 per cent Li<sub>2</sub>CrO<sub>4</sub>, or 100 grams H<sub>2</sub>O dissolve 110.9 grams LiCrO<sub>4</sub> at 18° (M. and F.).

Sp. Gr. of sat. solution at 18° = 1.574.

#### LITHIUM CITRATE C.H.(OH)(COOLi),.

100 gms. H<sub>2</sub>O dissolve 50 gms. citrate at 25°, and 66.6 gms.at b. pt. 100 gms. alcohol of 0.941 Sp. Gr. dissolve 4 gms. citrate at 15.5°. (U. S. P.)

#### LITHIUM FLUORIDE LiF.

100 grams H<sub>2</sub>O dissolve 0.27 gram LiF at 18°. Sp. Gr. of sol. = 1.003. (Mylius and Funk.)

#### LITHIUM FORMATE HCOOLi.

#### SOLUBILITY IN WATER. (Groschuff – Ber. 36, 179, '03.)

174

| <b>t °</b> . | Gms.<br>HCOOLi<br>per 100<br>Gms.<br>Solution. | Mols.<br>HCOOLi<br>per 100<br>Mols.<br>H <sub>3</sub> O. | Solid<br>Phase.         | t°.  | Gms.<br>HCOOLi<br>per 100<br>Gms.<br>H <sub>2</sub> O. | Mols.<br>HCOOLI<br>per 100<br>Mols.<br>H <sub>2</sub> O. | Solid<br>Phase          |
|--------------|------------------------------------------------|----------------------------------------------------------|-------------------------|------|--------------------------------------------------------|----------------------------------------------------------|-------------------------|
| - 20         | 21.14                                          | 9.28                                                     | HCOOLI.H <sub>2</sub> O | 91   | 54 . 16                                                | 40.90                                                    | HCOOLi.H <sub>2</sub> O |
| 0            | 24 . 42                                        | 11.18                                                    | 64                      | 98   | 57.05                                                  | 45 · 99                                                  | HCOOLi                  |
| 18           | 27.85                                          | 13.36                                                    | 64                      | 104  | 57.04                                                  | 47 . 1 1                                                 | 14                      |
| 49.5         | 35.60                                          | 19.14                                                    | **                      | I 20 | 59.63                                                  | 51.13                                                    | "                       |
| 74           | 44.91                                          | 28.22                                                    | **                      |      |                                                        |                                                          |                         |

Sp. Gr. sat. sol. at  $18^{\circ} = 1.142$ .

# Solubility of Neutral Lithium Formate in Annydrous Formic Acid.

| t°. | Gms. per 100 Gms. Solution. |        | Mols. per 100 | Mols. H2O. | Solid  |
|-----|-----------------------------|--------|---------------|------------|--------|
| U   | HCOOLI.                     | нсоон. | HCOOLi.       | нсоон.     | Phase. |
| 0   | 25 . 4                      | 47 .02 | 11.80         | 39 . 27    | HCOOLI |
| 18  | 25.9                        | 46.92  | 12.11         | 39.11      | 4.     |
| 39  | 26.4                        | 46.92  | 12.42         | 39 . 1 3   | 66     |
| 60  | 26.9                        | 46.94  | 12.74         | 39.13      | -      |
| 79  | 27 .8                       | 47.02  | 13.36         | 39.26      | 4      |

#### LITHIUM HYDROXIDE LiOH.

#### Solubility in Water.

(Dittmar - J. Soc. Ch. Ind. 7, 730, '88; Pickering - J. Chem. Soc. 63, 909, '03.)

| t° | Solu               | tion.         | Gms. LiOH<br>per 100 Gms.<br>H <sub>2</sub> O. | <b>t °</b> . | <u>So</u> | t 100 Gms. | Gms. LiOH.<br>per 100 Gms |
|----|--------------------|---------------|------------------------------------------------|--------------|-----------|------------|---------------------------|
|    | Li <sub>2</sub> O. | LiOH.         | <b>HgO</b> .                                   |              | LigO.     | LIÓH.      | H <sub>2</sub> O.         |
| 0  | 6.67               | 10.64         | 12.7                                           | 40           | 7.29      | 11.68      | 13.0                      |
| 10 | 6.74               | 10.80         | 12.7                                           | 50           | 7.56      | 12.12      | 13.3                      |
| 20 | 6.86               | 10. <b>99</b> | 12.8                                           | 60           | 7.96      | 12.76      | 13.8                      |
| 25 | 6.95               | 11.14         | 12.9                                           | 8o           | 8.87      | 14.21      | 15.3                      |
| 30 | 7.05               | 11.27         | 12.9                                           | 100          | IO . 02   | 16.05      | 17.5                      |

# LITHIUM IODATE Li(IO3).

100 grams H<sub>2</sub>O dissolve 80.3 grams LiIO, at 18°, or 100 grams solution contain 44.6 grams. Sp. Gr. of sol. = 1.568.

(Mylius and Funk - Ber. 30, 1718, '97.)

## LITHIUM IODIDE Lil.

#### SOLUBILITY IN WATER.

#### (Kremers - Pogg. Ann. 104, 133, '58; 111, 60, '60.)

| t°. | Gms. Lil per 100 Gms. |           | t°. | Grams Lil per 100 Gms. |           |
|-----|-----------------------|-----------|-----|------------------------|-----------|
|     | Water.                | Solution. |     | Water.                 | Solution. |
| 0   | 151                   | 60.2      | 40  | 179                    | 64.2      |
| 10  | 157                   | 61.1      | 50  | 187                    | 65.2      |
| 20  | 165                   | 62.2      | 60  | 202                    | 66.9      |
| 25  | 167                   | 62.6      | 70  | 230                    | 69.7      |
| 30  | 171                   | 63.1      | 75  | 263                    | 72.5      |

100 grams sat. solution in Glycol  $(C_2H_4(OH)_2, H_2O)$  contain 28.0 grams LiI at 15.3°. (de Coninck – Chem. Centrb. 76, II, 883, '05.) 100 cc. saturated solution in Furfurol  $(C_4H_3O.COH)$  contain 45.86 gms. LiI at 25°.

100 cc. saturated solution in Nitro Methane  $(CH_3NO_2)$  contain 1.219 gms. LiI at 0°, and 2.519 gms. at 25°.

(Walden - Z. physik. Ch. 55, 713, 718, 'o6.)

#### LITHIUM NITRATE LiNO3.

|       | (Donn                                | SOLUBILIT<br>an and Burt - |       |                                      |                 |
|-------|--------------------------------------|----------------------------|-------|--------------------------------------|-----------------|
| t°.   | Gms. LiNO2 per<br>100 Gms. Solution. | Solid<br>Phase.            | t°.   | Gms. LiNO3 per<br>100 Gms. Solution. | Solid<br>Phase. |
| O.I   | 34.8                                 | LiNO3.3H2O                 | 29.87 | 56.42                                | LINO2.3H2O      |
| 10.5  | 37.9                                 |                            | 29.86 | 56.68                                | **              |
| 12.1  | 38.2                                 |                            | 29.64 | 57.48                                |                 |
| 13.75 | 39.3                                 |                            | 29.55 | 58.03                                |                 |
| 19.05 | 40.4                                 | **                         | 43.6  | 60.8                                 | LINO2.H2O       |
| 2I.I  | 42.9                                 |                            | 50.5  | 61.3                                 |                 |
| 27.55 | 47.3                                 |                            | 55.0  | 63.0                                 |                 |
| 29.47 | 53.67                                | **                         | 60.0  | 63.6                                 |                 |
| 29.78 | 55.09                                |                            | 64.2  | 64.9                                 | LINO3           |
|       |                                      |                            | 70.9  | 66.I                                 |                 |
|       |                                      |                            |       |                                      |                 |

Cryohydrate point of the trihydrate, 17.8°. Transition points, 29.6° and 61.1°.

#### LITHIUM OXALATE LigCO4.

SOLUBILITY OF MIXTURES OF LITHIUM OXALATE AND OXALIC ACID IN WATER AT 25°. (Foote and Andrew – Am. Ch. J. 34, 153, '05.)

Mixtures of the two substances were dissolved in water, and the solutions cooled in a thermostadt to  $25^{\circ}$ .

| Gms. per 100 ( | Jms. Solution. | Mols. per 10                                   | Mols. H2O. | Solid                                         |
|----------------|----------------|------------------------------------------------|------------|-----------------------------------------------|
| H2C2O4.        | Li2C2O4.       | H <sub>2</sub> C <sub>2</sub> O <sub>4</sub> . | Li2C2O4.   | Phase.                                        |
| 10.20          |                | 2.274                                          |            | H2C2O4.2H2O                                   |
| 10.66          | 2.961          | 2.457                                          | 0.622      | H2C2O4.H2O and HLiC2O4.H2O                    |
| 10.55          | 3.115          | 457                                            |            | michod mich and HINCLOWINGO                   |
| 8.08           | 3.18           | 1.823                                          | 0.6331     | Double Salt                                   |
| 2.60           | 5.03           | 0.563                                          | 0.962)     | HLiC2O4.4H2O<br>= 39.2H2C2O4 and 44.7 Li2C2O2 |
| 2.16           | 6.54)          | 0.460                                          | I.273      | HLiC2O4.H2O and Li2C2O4                       |
| 2.12           | 1.615          | 01409                                          |            | 11110204.1120 and 1120204                     |
|                | 5.87           |                                                | 1.901      | Li <sub>2</sub> C <sub>2</sub> O <sub>4</sub> |

#### LITHIUM PHOSPHATE

#### LITHIUM PHOSPHATE Li,PO,.

100 grams H<sub>2</sub>O dissolve 0.04 gram Li<sub>2</sub>PO<sub>4</sub>. (Mayer - Liebig's Ann. 98, 193, '56.)

176

#### LITHIUM (Hypo) PHOSPHATE Li,P2O,.7H2O.

100 grams H<sub>2</sub>O dissolve 0.83 gram hypophosphate at ord. temp.

(Rammelsberg - J. pr. Ch. [2] 45, 153, '92.)

#### LITHIUM PERMANGANATE LiMnO4.3H2O.

100 grams water dissolve 71.4 grams permanganate at 16°.

(Ashoff.)

#### LITHIUM SALTS of Fatty Acids.

SOLUBILITY IN WATER AND IN ALCOHOL OF 0.797 Sp. Gr. at 18° AND AT 25°.

(Partheil and Ferie - Archiv. Pharm. 241, 554, '03.)

Grams Salt per 100 cc. Sat. Solution in:

| Salt.     | Formula.                              | Water at |               | Alcohol at |        |
|-----------|---------------------------------------|----------|---------------|------------|--------|
|           |                                       | 18°.     | 25°.          | 18°.       | 25°.   |
| Stearate  | C <sub>17</sub> H <sub>86</sub> COOLi | 0.010    | 0.011         | 0.041      | 0.0532 |
| Palmitate | C <sub>15</sub> H <sub>31</sub> COOLi | 0.011    | <b>8</b> 10.0 | 0.0796     | 0.0956 |
| Myristate | C <sub>12</sub> H <sub>27</sub> COOLi | 0.0232   | 0.0234        | 0.184      | 0.2100 |
| Laurinate | C <sub>11</sub> H <sub>22</sub> COOLi | 0.158    | 0.1726        | 0.418      | 0.4424 |
| Oleate    | C <sub>17</sub> H <sub>33</sub> COOLi | 0.0074   | 0.1320        | 0.9084     | 1.010  |

#### LITHIUM SULPHATE Li,SO.

#### SOLUBILITY IN WATER.

(Average curve from Kremers - Pogg. Ann. 95, 468, '55; Etard - Ann. chim. phys. [7] 2, 547, '94.)

| <b>t°.</b> | Gms. Li <sub>2</sub> SO <sub>4</sub> per<br>100 Gms. Solution. | t°. | Gms. Li <sub>2</sub> SO <sub>4</sub> per<br>100 Gms. Solution. | <b>t°</b> . | Gms. Li <sub>2</sub> SO <sub>4</sub> per<br>100 Gms. Solution. |
|------------|----------------------------------------------------------------|-----|----------------------------------------------------------------|-------------|----------------------------------------------------------------|
| - 20       | 18.4                                                           | 20  | 25.5                                                           | 50          | 24:5                                                           |
| - 10       | 24.2                                                           | 25  | 25.3                                                           | 60          | 24.2                                                           |
| 0          | <b>2</b> 6.1                                                   | 30  | 25.1                                                           | 80          | 23.5                                                           |
| 10         | 25.9                                                           | 40  | 24.7                                                           | 100         | 23.0                                                           |

Note. - For equilibrium between lithium sulphate ammonia and water, see Schreinemaker and Cochert - Chem. Weekblad. 2, 771; 3, 157, '06.

EQUILIBRIUM BETWEEN LITHIUM SULPHATE, ALUMINUM SULPHATE, AND WATER AT 30°. (Schreinemaker and De Waal — Chem. Weekblad. 3, 539, '06.)

|              | Composition in | Weight per cent        | :            |                                                        |
|--------------|----------------|------------------------|--------------|--------------------------------------------------------|
| Of Solution. |                | Of Residue.            |              | Solid<br>Phase.                                        |
| % Li2SO4.    | % Alg(SO4)3.   | % Li <sub>2</sub> SO4. | % Alg(SO4)3. |                                                        |
| 25 · I       | 0              | • • •                  | • • •        | Li <sub>2</sub> SO <sub>4</sub> .H <sub>2</sub> O      |
| 21.93        | 5.34           | • • •                  | • • •        | **                                                     |
| 16.10        | 14.89          | 63.70                  | 4.02         | **                                                     |
| 13.63        | 20.76          | 14.72                  | 31 . 17      | $Li_2SO_4.H_2O + Al_2(SO_4)_2.18H_2O$                  |
| 13.24        | 21.71          | бі . 24                | 7.22         | LisSO4.4H2O                                            |
| 11.73        | 22.08          | 6.92                   | 33.54        | Al <sub>2</sub> (SO <sub>4</sub> )2.18H <sub>2</sub> O |
| 6.75         | 24 · 34        | 3.77                   | 37.06        | "                                                      |
| 3.44         | 26.12          | •••                    | •••          | **                                                     |
| 0.0          | <b>28</b> .0   |                        | •••          | ••                                                     |

NOTE. - For solubility of lithium sulphate in mixtures of alcohol and water at 30°, see Schreinemaker and Van Dorp, Jr. — Chem. Weekblad. 3, 557, '06.

#### MAGNESIUM BROMATE 177

#### MAGNESIUM BROMATE Mg(BrO3)2.6H2O.

100 cc. sat. solution contain 42 grams Mg(BrO<sub>3</sub>)2, or 0.15 gram mols. at 18°. (Kohlrausch - Sitzb, K. Akad. Wiss. (Berlin), i. oo, '07.)

#### MAGNESIUM BROMIDE MgBr\_.6H\_O.

SOLUBILITY IN WATER.

(Menschutkin - Chem. Centrb. 77, I, 646, 'o6; at 18°, Mylius and Fuak - Ber. 30, 1718, '97.)

| t°  | Grams MgBr2 per 100 Gms. |                   | 4.0 | Grams MgBrg per 100 Grams. |         |
|-----|--------------------------|-------------------|-----|----------------------------|---------|
|     | Solution.                | Water.            | t°. | Solution.                  | Water.  |
| -10 | 47.2                     | 89.4              | 40  | 50.4                       | 101.6 . |
| 0   | 47.9                     | 91.9              | 50  | 51.0                       | 104.I   |
| IO  | 48.6                     | 94.5              | 60  | 51.8                       | 107.5   |
| 18  | 49.0                     | 96.1              | 80  | 53.2                       | 113.7   |
| 18  | 50.8                     | 103.4 (M. and F.) | 100 | 54.6                       | 120.2   |
| 20  | 49.I                     | 96.5              | 120 | 56.0                       | 127.5   |
| 25  | 49.4                     | 97.6              | 140 | 58.0                       | 138.1   |
| 30  | 49.8                     | 99.2              | 160 | 62.0                       | 163.1   |

Density of saturated solution at 18° = 1.655 (M. and F.) Etard — Ann. chim. phys. [7] 2, 541, '94, gives solubility results which are evidently too high.

SOLUBILITY OF MAGNESIUM BROMIDE ALCOHOL COMPOUNDS IN THE CORRESPONDING ALCOHOLS.

(Menschutkin - Chem. Centrb. 77, I. 334, 647, '06.)

#### In the Corresponding Alcohols.

|     | Results Expressed                                   | in Mols. per cent.          |
|-----|-----------------------------------------------------|-----------------------------|
| t°. | MgBrg.6CH <sub>3</sub> OH<br>in CH <sub>3</sub> OH. | MgBr2.6C2H6OH<br>in C2H6OH. |
| 0   | 6.0                                                 | 2.0                         |
| 20  | 6.4                                                 | 4.6                         |
| 40  | 6.9                                                 | 8.4                         |
| 50  | 7.2                                                 | 10.9                        |
| 60  | 7.5                                                 | 14.1                        |
| 80  | 8.25                                                | 22.I                        |
| 100 | 9.6                                                 | 38.6                        |
| 150 | 16.7                                                | 100.0 (108.5°)              |
| 190 | 100.0                                               |                             |
|     |                                                     |                             |

Determinations are also given for the solubility of MgBr<sub>2</sub>.6C<sub>3</sub>H<sub>2</sub>OH in C<sub>3</sub>H<sub>2</sub>OH, of MgBr<sub>2</sub>.6(CH<sub>3</sub>)<sub>2</sub>C<sub>3</sub>H<sub>3</sub>OH in (CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>H<sub>3</sub>OH, and of MgBr<sub>2</sub>. 6(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>H<sub>3</sub>OH in (CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>H<sub>3</sub>OH, also of MgBr<sub>2</sub>.4(CH<sub>3</sub>)<sub>2</sub>.CHOH in iso propyl alcohol and in tri methyl carbinol. For the solubility magnesium bromide mono etherate (MgBr<sub>2</sub>. (C<sub>2</sub>H<sub>4</sub>)<sub>2</sub>O) in ethyl ether, see Menschutkin — Chem. Centrb. **77**, I, 1868, 'o6; also Z. anorg. Ch. **49**, 208, 'o6. For magnesium bromide di etherate (MgBr<sub>2</sub>.2C<sub>4</sub>H<sub>10</sub>O) in ethyl ether, see Menschutkin — Z. anorg. Ch. **49**, 35, 'o6. For magnesium bromide hexa formic acid and mag-nesium bromide hexa acetic acid compounds in anhydrous solutions of the corresponding acids, see Iswietja d. Petersburger, Polytechn. Inst. **5**, 293, 'o6; Chem. Centrb. **77**, II, 1482, 'o6.

#### MAGNESIUM CARBONATE 178

•

# MAGNESIUM CARBONATE MgCO,

SOLUBILITY IN WATER IN PRESENCE OF CARBON DIOXIDE AT 15°.

| cc CO2 Der 100 cc.                            | Partial                                   | Grams per 100 cc. Solution. |                     |                                      |           |  |
|-----------------------------------------------|-------------------------------------------|-----------------------------|---------------------|--------------------------------------|-----------|--|
| Gas Phase (at o <sup>®</sup><br>and 765 mm.). | Pressure of CO <sub>2</sub><br>in mm. Hg. | Free COg.                   | MgCO <sub>3</sub> . | Mg(HCO <sub>3</sub> ) <sub>3</sub> . | Total Mg. |  |
| <b>18.8</b> 6                                 | 143.3                                     | 0.1190                      | •••                 | 1.2105                               | 0.2016    |  |
| 5 · 47                                        | 41.6                                      | 0.0866                      | •••                 | 1.2105                               | 0.2016    |  |
| 4 · 47                                        | 33.8                                      | 0.0035                      |                     | 1.2105                               | 0.2016    |  |
| 1 <sup>°</sup> .54                            | 11.7                                      | •••                         | <b>o</b> .0773      | 1.0766                               | 0.2016    |  |
| I.35                                          | 10.3                                      | • • •                       | <b>0</b> .0765      | 0.7629                               | 0.1492    |  |
| I.07                                          | 8.2                                       | • • •                       | 0.0807              | 0.5952                               | 0.1224    |  |
| 0.62                                          | 4.7                                       | • • •                       | 0.0701              | 0.3663                               | 0.0865    |  |
| o.60                                          | 4.6                                       | • • •                       | 0.0758              | 0.3417                               | o.o788    |  |
| 0.33                                          | 2.5                                       | •••                         | 0.0748              | 0.2632                               | 0.0655    |  |
| 0.21                                          | 1.6                                       | •••                         | 0.0771              | 0.2229                               | 0.0594    |  |
| 0.14                                          | 1.1                                       | •••                         | <b>0</b> .0710      | 0.2169                               | 0.0566    |  |
| 0.03                                          | 0.3                                       | •••                         | 0.0711              | 0.2036                               | 0.0545    |  |
| •••                                           | •••                                       | •••                         | o.o685              | 0.2033                               | 0.0536    |  |
| •••                                           | •••                                       | •••                         | 0.0702              | 0.1960                               | 0.0529    |  |
| •••                                           | •••                                       | •••                         | 0.0625              | 0.2036                               | 0.0520    |  |
| •••                                           | •••                                       | •••                         | 0.0616              | 0.1954                               | 0.0511    |  |
| •••                                           | •••                                       | • • •                       | 0.0641              | 0.1954                               | 0.0518    |  |

(Treadwell and Reuter - Z. anorg. Ch. 17, 200, '08.)

Therefore at 0 partial pressure of CO<sub>2</sub> and at  $15^{\circ}$  and mean barometric pressure, one liter of saturated aqueous solution contains 0.641 gram of MgCO<sub>2</sub> plus 1.954 grams Mg(HCO<sub>3</sub>)<sub>2</sub>.

# Solubility of Magnesium Carbonate in Water Charged with Carbon Dioxide at Pressures Greater than One Atmosphere.

(Engel and Ville -- Compt. rend. 93, 340. '81; Engel -- Ann. chim. phys. [6] 13, 349, '88.)

| Pressure of<br>CO <sub>2</sub> in | G. MgCO <sub>3</sub> * per Liter. |                    | Pressure of<br>CO <sub>2</sub> in | G. MgCO <sub>8</sub> * per Liter. |                |
|-----------------------------------|-----------------------------------|--------------------|-----------------------------------|-----------------------------------|----------------|
| Atmospheres.                      | At 12°.                           | At 19°.            | Atmospheres.                      | At 12°.                           | At 19°.        |
| 0.5                               | 20.5                              | • • • •            | 4.0                               | 42.8                              | •••            |
| Ι.Ο                               | 26.5                              | 25.8               | 4 · 7                             | • • •                             | 43 · 5         |
| 2.0                               | 34 . 2                            | 33.1 (2.1 At.)     | 6.0                               | 50.6                              | 48.5 (6.2 At.) |
| 3.0                               | 39.0                              | 37 · 2 (3 · 2 At.) | 9.0                               | •••                               | 56.6           |

Solubility in Water Saturated with CO<sub>2</sub> at One Atmosphere.

|              | (Engel.)                               |             |                           |             |                                        |  |  |
|--------------|----------------------------------------|-------------|---------------------------|-------------|----------------------------------------|--|--|
| <b>t °</b> . | Gms. MgCO <sub>3</sub> *<br>per Liter. | <b>t</b> °. | Gms. MgCOg*<br>per Liter. | <b>t</b> °. | Gms. MgCO <sub>3</sub> *<br>per Liter. |  |  |
| 5            | 36                                     | 30          | 21                        | бо          | 11                                     |  |  |
| 10           | 31                                     | 40          | 17                        | 80          | 5                                      |  |  |
| 20           | 26                                     |             |                           | 100         | Ō                                      |  |  |
|              |                                        |             |                           |             |                                        |  |  |

\* Dissolved as Mg(HCO<sub>3</sub>)<sub>2</sub>.

Solubility of MAGNESIUM CARBONATE IN AQUEOUS Solutions of Sodium CARBONATE AT 25°. The solutions being in equilibrium with an atmosphere free from  $CO_2$ .

| Wt. of I Liter<br>of Solution. | Grams p                           | er Liter.           | Reacting Weights per Lite |                     |
|--------------------------------|-----------------------------------|---------------------|---------------------------|---------------------|
| of Solution.                   | Na <sub>2</sub> CO <sub>3</sub> . | MgCO <sub>3</sub> . | NagCO3.                   | MgCO <sub>3</sub> . |
| 996.8                          | 0.00                              | 0.223               | 0.000                     | 0.00266             |
| 1019.9                         | 23.12                             | o.288               | 0.220                     | 0.00344             |
| 1047.7                         | 50.75                             | 0.510               | 0.482                     | 0.00620             |
| 1082.5                         | 86.42                             | 0.879               | 0.820                     | 0.01027             |
| 1118.9                         | 127.3                             | 1.314               | I . 209                   | 0.01570             |
| 1147.7                         | 160.8                             | 1.636               | 1.526                     | 0.01955             |
| 1166.1                         | 181 .9                            | 1.972               | 1.727                     | 0.02357             |
| 1189.4                         | 213.2                             | 2.317               | 2.024                     | 0.02770             |

(Cameron and Seidell - J. Physic. Ch. 7, 588, '03.)

SOLUBILITY OF MAGNESIUM BI CARBONATE AND OF MAGNESIUM CAR-BONATE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AT 23°. The solutions being in equilibrium with an atmosphere of CO, in the one case, and in equilibrium with air free from CO, in the other.

| (C. | and | S.) |
|-----|-----|-----|
|-----|-----|-----|

| In Presence of          | CO <sub>2</sub> as Gas Phase.                         |                    | resence of Air Fr       | ee from CO <sub>2</sub> .            |
|-------------------------|-------------------------------------------------------|--------------------|-------------------------|--------------------------------------|
| Gms. NaCl<br>per Liter. | Gms. Mg(HCO <sub>3</sub> ) <sub>2</sub><br>per Liter. | Wt. of 1<br>Liter. | Gms. NaCl<br>per Liter. | Gms. MgCO <sub>3</sub><br>per Liter. |
| 7.0                     | 30.64                                                 | 996.9              | 0.0                     | 0.176                                |
| 56.5                    | 30.18                                                 | 1016.8             | 28 · O                  | 0.418                                |
| 119.7                   | 27.88                                                 | 1041 . 1           | 59 · 5                  | 0.527                                |
| 163.9                   | 24.96                                                 | 1070.5             | 106.3                   | 0.585                                |
| <b>224</b> . 8          | 20.78                                                 | 1094 - 5           | 147 . 4                 | 0.544                                |
| 306.6                   | 10.75                                                 | 1142.5             | 231 . 1                 | o.460                                |
|                         |                                                       | 1170 . 1           | 272.9                   | o.393                                |
|                         |                                                       | 1199.3             | 331.4                   | 0.293                                |

.

.

SOLUBILITY OF MAGNESIUM CARBONATE IN AQUEOUS SOLUTIONS OF SODIUM SULPHATE AT 24° AND AT 35.5°. The solutions being in equilibrium with an atmosphere free from CO<sub>2</sub>.

(Cameron and Seidell.)

Results at 24°.

#### Results at 35.5.°

|                                                    | •                                                                        |                                                                                                      |                                                       |                                                       |  |
|----------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--|
| Gms. Na <sub>2</sub> SO <sub>4</sub><br>per Liter. | Gms. MgCO <sub>3</sub><br>per Liter.                                     | Wt. of<br>1 Liter.                                                                                   | Gms. Na <sub>2</sub> SO,<br>per Liter.                | Gms. MgCO <sub>3</sub><br>per Liter.                  |  |
| 0.00                                               | 0.216                                                                    | 995 . I                                                                                              | 0.32                                                  | 0.131                                                 |  |
| 25.12                                              | o.586                                                                    | 1032 . 9                                                                                             | 41 .84                                                | 0.577                                                 |  |
| 54.76                                              | o · 828                                                                  | 1067 . 2                                                                                             | 81.84                                                 | 0.753                                                 |  |
| 95.68                                              | I .020                                                                   | 1094.8                                                                                               | 116.56                                                | 0.904                                                 |  |
| 160.8                                              | I . 230                                                                  | 1120.4                                                                                               | 148.56                                                | 0.962                                                 |  |
| 191.9                                              | 1.280                                                                    | 1151.7                                                                                               | 186.7                                                 | I .047                                                |  |
| 254.6                                              | 1.338                                                                    | 1179.8                                                                                               | 224.0                                                 | 1.088                                                 |  |
| 305 . I                                            | 1.388                                                                    | 1236.5                                                                                               | <b>29</b> 9 · 2                                       | I · I 30                                              |  |
|                                                    | per Liter.<br>0.00<br>25.12<br>54.76<br>95.68<br>160.8<br>191.9<br>254.6 | 0.00 0.216<br>25.12 0.586<br>54.76 0.828<br>95.68 1.020<br>160.8 1.230<br>191.9 1.280<br>254.6 1.338 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |  |

# MAGNESIUM OHLORATE 180

# MAGNESIUM CHLORATE Mg(ClO<sub>3</sub>),

SOLUBILITY IN WATER. (Meusser - Ber. 35, 1416, '02.) .

| t°. : | Gm9.<br>Mg(ClO <sub>2</sub> )2<br>per 100 Gms<br>Solution. | Mols.<br>Mg(ClO <sub>3</sub> ) <sub>3</sub><br>. per 100<br>Mols. H <sub>5</sub> O. | Solid<br>Phase.                          | <b>t°</b> . | Gms.<br>Mg(ClO <sub>3</sub> ) <sub>3</sub><br>per 100 Gms.<br>Solution. | Mols.<br>Mg(ClO <sub>2</sub> ) <sub>2</sub><br>per 100<br>Mols. H <sub>2</sub> O, | Solid.<br>Phase.                                      |
|-------|------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------|-------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|
| - 18  | 51.64                                                      | 10. <b>05</b>                                                                       | Mg(ClO <sub>3</sub> ) <sub>3</sub> .6HgO | 42          | 63.82                                                                   | 16.16                                                                             | Mg(ClO <sub>3</sub> ) <sub>3-4</sub> H <sub>g</sub> O |
| 0     | 53.27                                                      | 10.73                                                                               | *                                        | 65.5        | 69.12                                                                   | 20.08                                                                             | 54                                                    |
| 18    | 56.50                                                      | 12.22                                                                               | 64                                       | 39.5        | 65.37                                                                   | 17.76                                                                             | Mg(ClO <sub>3</sub> ) <sub>3-2</sub> H <sub>g</sub> O |
| 29    | 60.23                                                      | 14.25                                                                               | **                                       | 61.0        | 69.46                                                                   | 21.40                                                                             | *                                                     |
| 35    | 63.65                                                      | 16.48                                                                               | 64                                       | 68          | 70.69                                                                   | 22.69                                                                             | **                                                    |
| •••   |                                                            |                                                                                     |                                          | 93          | (73.71)                                                                 | (26.38)                                                                           | **                                                    |
| Sn    | Gr of                                                      | eaturate                                                                            | 1 co1 o+ _ + 8                           | °           | -64                                                                     |                                                                                   |                                                       |

Sp. Gr. of saturated sol. at  $+ 18^{\circ} = 1.564$ .

#### MAGNESIUM OHLORIDE MgCl.

SOLUBILITY IN WATER.

(van 't Hoff and Meyerhoffer - Z. physik. Chem. 27, 75, '98; Engel; Lowenherz. Results quoted from Landolt and Börnstein - Tabellen, 3d, ed. p. 549, '06.)

Solubility of Magnesium Chloride in Aqueous Solutions of Hydrochloric Acid at 0°.

(Engel — Compt. rend. 104, 433, '87.)

| Milligram Mols. pe | r 10 cc. Solution.   | Sp. Gr. of<br>Solutions. | Grams per Liter of Solution. |                     |  |
|--------------------|----------------------|--------------------------|------------------------------|---------------------|--|
| HCI.               | ⅓MgCl <sub>2</sub> . | Solutions.               | HCl.                         | MgCl <sub>2</sub> . |  |
| 0.0                | 99 · 55              | 1.362                    | 0.0                          | 474 . 2             |  |
| 4.095              | 95 · 5               | I.354                    | 14.93                        | 454 . 8             |  |
| 9.5                | 90.0                 | I.344                    | 34.63                        | 428. <b>6</b>       |  |
| 17.0               | 82.5                 | I . 300                  | 61.97                        | 393.0               |  |
| 20.5               | <b>7</b> 9.0         | I . 297                  | 74·74                        | 376 . 2             |  |
| 28.5               | 71.O                 | 1.281                    | 103.9                        | 338.3               |  |
| 42.0               | 60.125               | • • •                    | 153.1                        | 286.4               |  |
| 58.75              | 46.25                | • • •                    | 214.2                        | 220.3               |  |
| 76.0               | 32.0                 | •••                      | 277 . I                      | 152.0               |  |
|                    |                      |                          | sat. HCl (Ditte)             | 6.5                 |  |

#### 181 MAGNESIUM CHLORIDE

#### Solubility of Mixtures of Magnesium Chloride and Other Salts in Water at 25°.

(Löwenherz - Z. physik. Chem. 13, 479, '94.)

| Mixture.                                                                        | Gram Mols. per 1000 Mols. H2O.  | Gms. per Liter of Solution. |
|---------------------------------------------------------------------------------|---------------------------------|-----------------------------|
| MgCl <sub>2</sub> .6H <sub>2</sub> O + MgSO <sub>4</sub> .6H <sub>2</sub> O     | 104 MgCl <sub>2</sub> +14 MgSO4 | 25.0 Cl+4.4 SO4             |
| $MgCl_{2}TH_{0}O + MgSO_{4}OH_{0}O$                                             | 73 " +15 "                      | 19.5 "+5.3 "                |
| MgCl <sub>2</sub> .6H <sub>2</sub> O + MgCl <sub>2</sub> .KCl.6H <sub>2</sub> O | 106 Cl+1 K <sub>2</sub> +105 Mg | 26.9 Cl+0.3 K+45.7 SO.      |

Results for the remaining possible combinations of magnesium sulphate and potassium chloride are also given.

#### MAGNESIUM CHROMATE MgCrO,.7H2O.

100 grams H<sub>2</sub>O dissolve 72.3 grams MgCrO<sub>4</sub> at 18°, or 100 grams solution contain 42.0 grams. Sp. Gr. = 1.422.

(Mylius and Funk - Ber. 30, 1718, '97.)

(Schweitzer.)

#### MAGNESIUM POTASSIUM CHROMATE MgCrO, KgCrO, 2H,0.

100 grams H<sub>2</sub>O dissolve 28.2 grams at 20°, and 34.3 grams at 60°.

#### MAGNESIUM PLATINIC CYANIDE MgPt(CN).

SOLUBILITY IN WATER.

(Buxhoevden and Tamman - Z. anorg. Ch. 15, 319, '97.)

| t°.   | Gms. MgPt(CN<br>per 100 Gms.<br>Solution. |                      | t°.   | Gms. MgPt(CN)<br>per 100 Gms.<br>Solution. | Solid Phase.   |
|-------|-------------------------------------------|----------------------|-------|--------------------------------------------|----------------|
| -4.12 | 24.90                                     | MgPt(CN)4.6.8-8.1H2O | 48.7  | 40.89                                      | MgPt(CN)4-4H2O |
| 0.5   | 26.9                                      | " (Red)              | 55    | 41.33                                      |                |
| 5.5   | 28.65                                     |                      | 58.I  | 42.15                                      | **             |
| 5.5   | 32.46                                     |                      | 69.0  | 43.49                                      |                |
| 36.6  | 39.53                                     |                      | 77.8  | 44.90                                      |                |
| 45.0  | 41.33                                     |                      | 87.4  | 45.52                                      |                |
| 46.2  | 42.0                                      |                      | 90.0  | 45.65                                      |                |
| 42.2  | 40.21                                     | MgPt(CN)4-4H2O       | 93.0  | 45.04                                      |                |
| 46.3  | 39.85                                     | " (Bright Green)     | 96.4  | 44.33                                      | MgPt(CN)4.2H2O |
|       |                                           |                      | 100.0 | 44.0                                       | " (White)      |

#### MAGNESIUM FLUORIDE MgF2.

One liter of water dissolves 0.076 gram MgF<sub>2</sub> at 18° by conductivity method. (Kohlrausch-Z. physik. Ch. 50, 356,'04-'05.

#### MAGNESIUM HYDROXIDE Mg(OH)2.

One liter of water dissolves 0.008 - 0.009 gm. Mg(OH)<sub>2</sub> at 18° by conductivity method. (Dupre and Brutus - Z. angew. Ch. 16, 55, '03.)

Solubility of Magnesium Oxide in Aqueous Solutions Containing Sodium Chloride and Sodium Hydroxide.

(Maigret - Bull. soc. chim. 33, 631, '05.)

| 0 N.Cl                  | Grams MgO per Liter Solution with Added: |                           |  |  |  |
|-------------------------|------------------------------------------|---------------------------|--|--|--|
| Gms. NaCl<br>per Liter. | o.8 g. NaOH<br>per Liter.                | 4.0 g. NaOH<br>per Liter. |  |  |  |
| 125                     | 0.07                                     | 0.03                      |  |  |  |
| 140                     | 0.045                                    |                           |  |  |  |
| 160                     | none                                     | none                      |  |  |  |

# MAGNESIUM HYDROXIDE 182

۰

#### SOLUBILITY OF MAGNESIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF Ammonium Chloride and of Ammonium Nitrate at 29°. (Herz and Muhs - Z. anorg. Ch. 38, 140, '04.)

NOTE. — Pure Mg(OH), was prepared and an excess shaken with solutions of ammonium chloride and of ammonium nitrate of different concentrations.

| Concentration of<br>NH4Cl or of NH4NO3.<br>(Normal.) | Acid Required<br>for Liberated<br>NH4OH in 25 cc.<br>(Normal.) | Mg(OH)2. |            | Grams pe<br>Mg(OH) <sub>2</sub> . |                |
|------------------------------------------------------|----------------------------------------------------------------|----------|------------|-----------------------------------|----------------|
| .7 (NH4Cl)                                           | 0.09835                                                        | 0.156    | 0.388      | 4.55                              | 20.86          |
| 0.466 "                                              | 0.1108                                                         | 0.108    | 0.250      | 3.15                              | 13.39          |
| 0.35 "                                               | 0.09835                                                        | 0.089    | 0.172      | 2.60                              | 9.21           |
| 0.233 "                                              | 0.1108                                                         | 0.0638   | 0.106      | 1.86                              | 5.67           |
| 0.175 "                                              | 0.1108                                                         | 0.049    | 0.0771     | I.43                              | 4.13           |
| 0.35 (NH4NO3)                                        | 0.1108                                                         | 0.0833   | 0.1834 (NH | NO3)2.43                          | 14.69 (NH4NO3) |
| 0.175 "                                              | 0.1108                                                         | 0.0495   | 0.076      | " I.45                            | 6.09 "         |

#### MAGNESIUM IODATE Mg(IO3)2.

#### SOLUBILITY IN WATER.

(Mylius and Funk - Ber. 30, 1722, '97; Wiss. Abh. p. t. Reichanstalt 3, 446, '00.)

| t°. | Gms.<br>Mg(IO <sub>8</sub> ) <sub>2</sub><br>per 100<br>Gms. Solution | Mols.<br>Mg(IO3)3<br>per 100 Mol<br>. H3O. | Solid<br>s. Phase.                                    | t°. | Gms.<br>Mg(IO <sub>3</sub> ) <sub>3</sub><br>per 100<br>Gms. Solution | Mols.<br>Mg(IO <sub>3</sub> ) <sub>2</sub><br>per 100 Mols<br>1. H <sub>3</sub> O. | Solid<br>Phase.                                      |
|-----|-----------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------|-----|-----------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------|
| 0   | 3.I                                                                   | 0.15                                       | Mg(IO <sub>3</sub> ) <sub>2</sub> .10H <sub>2</sub> O | ο   | 6.8                                                                   | 0.34                                                                               | Mg(IO <sub>3</sub> ) <sub>3-4</sub> H <sub>2</sub> O |
| 20  | 10.2                                                                  | 0.55                                       | - 68                                                  | 10  | 6.4                                                                   | 0.30                                                                               | 44                                                   |
| 30  | 17.4                                                                  | I.OI                                       | 44                                                    | 18  | 7.6                                                                   | 0.40                                                                               | "                                                    |
| 35  | 21.9                                                                  | 1.35                                       | 44                                                    | 20  | 7.7                                                                   | 0.40                                                                               | 44                                                   |
| 50  | 67.5                                                                  | 10.0                                       | 64                                                    | 35  | 8.9                                                                   | 0.47                                                                               | **                                                   |
| -   |                                                                       |                                            |                                                       | 63  | 12.6                                                                  | 0.69                                                                               | 4                                                    |
|     |                                                                       |                                            |                                                       | 100 | 19.3                                                                  | 1.13                                                                               | 66                                                   |

Sp. Gr. of solution sat. at  $18^\circ = 1.078$ .

# MAGNESIUM IODIDE MgI.

#### SOLUBILITY IN WATER.

(Menschutkin - Chem. Centrb. 77, I, 646, '06; at 18°, Mylius and Funk - Ber. 30, 1718, '97.)

| <b>t°</b> . | Gms. MgI2 per<br>100 Grams Solution. | Solid<br>Phase. | t°. | Grams MgI <sub>2</sub> per<br>100 Grams Solution. | Solid<br>Phase. |
|-------------|--------------------------------------|-----------------|-----|---------------------------------------------------|-----------------|
| 0           | 50.0                                 | MgI2.8H2O       | 50  | 61.6                                              | MgI2.6H2O       |
| 10          | 51.65                                | "               | 70  | 61.85                                             | **              |
| 18          | 53.0 (59.7 M. and F.)                | •               | 90  | 62.1                                              | "               |
| 20          | 53.4                                 | •               | 110 | 62.25                                             | •               |
| 25          | 54.4                                 | •               | 140 | 62.5                                              | ••              |
| 30          | 55.4                                 | **              | 160 | 63.0                                              | 41              |
| 40          | 57.8                                 | **              | 200 | 64 . I                                            | *               |
| 45          | 59.9                                 | 64              |     |                                                   |                 |

Density of saturated solution at  $18^\circ = 1.909$ . (M. and F.)

#### MAGNESIUM IODIDE 183

# SOLUBILITY OF MAGNESIUM IODIDE ALCOHOL COMPOUNDS IN THE CORRESPONDING ALCOHOLS.

(Menschutkin - Chem. Centrb. 77, I, 335, 'o6.)

Results expressed in molecular per cent.

| t°. | MgI <sub>2.6</sub> CH <sub>3</sub> OH<br>in CH <sub>3</sub> OH. | MgI <sub>2.6</sub> C <sub>2</sub> H <sub>5</sub> OH<br>in C <sub>2</sub> H <sub>5</sub> OH. | t°. | MgI2.6CH3OH<br>in CH3OH. | MgI2.6C2H5OH<br>in C2H5OH. |
|-----|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----|--------------------------|----------------------------|
| 0   | 6.3                                                             | 2.3                                                                                         | 100 | 10.5                     | 19.7                       |
| 10  | 6.6                                                             | 3.1                                                                                         | 120 | 11.8                     | 28.2                       |
| 20  | 7.0                                                             | 4.0                                                                                         | 140 | 13.4                     | 53.6                       |
| 40  | 7.8                                                             | 6.2                                                                                         | 160 | 15.7                     | 80.3 (145°)                |
| 60  | 8.6                                                             | 9.3                                                                                         | 180 | 18.7                     | 100.0 (146.5°)             |
| 80  | 9.5                                                             | 13.5                                                                                        | 200 | 23.I                     | ***                        |

# SOLUBILITY OF MAGNESIUM IODIDE DI ETHERATE (MgI2.2C4H10O) IN ETHYL ETHER.

(Menschutkin - Z. anorg. Ch. 49, 46, 'o6.)

| Synthetic Method used, see page 9. |                      | Results in the Critical<br>Vicinity. |      |                      |               |
|------------------------------------|----------------------|--------------------------------------|------|----------------------|---------------|
| t°.                                | Grams per 1<br>MgI2. | MgI2.2C4H10O.                        | t°.  | Gms. per 10<br>MgI2. | MgI2.2C4H10O. |
| 5.4                                | 1.45                 | 2.2                                  | 37.3 | 19.4                 | 29.3          |
| 11.8                               | 2.43                 | 3.7                                  | 38.5 | 22.45                | 34.4          |
| 15.6<br>18.1                       | 3.46                 | 5.3                                  | 38.5 | 26.07                | 39.9          |
| 18.1                               | 5.4                  | 8.3                                  | 38.5 | 29.8                 | 45.7          |
| 20.4                               | 7.55                 | 11.6                                 | 38   | 32.8                 | 50.3          |
| 22.2                               | 11.28                | 17.3                                 |      |                      |               |

Two liquid phases appear near the melting point of the magnesium iodide di etherate. The lower may be considered as a solution of ether in di etherate, and the upper as a solution of the lower layer in ether. The critical temperature is 38.5°.

| Lower Layer. |                    |                   |      | Upper Layer.               |               |  |
|--------------|--------------------|-------------------|------|----------------------------|---------------|--|
|              | Gms. per 1         | oo Gms. Solution. | t°.  | Gms. per 100 Gms. Solution |               |  |
| t°,          | MgI <sub>2</sub> . | MgI2.2C4H10O.     |      | MgI2.                      | MgI2.2C4H10O. |  |
| 14.8         | 35.5               | 54.4              | 18.6 | 13-57                      | 20.8          |  |
| 20.0         | 35·5<br>35.8       | 54.8              | 23.2 | 14.4                       | 22.I          |  |
| 28.4         | 35.5               | 54.4              | 24.4 | 14.6                       | 22.4          |  |
| 33           | 35.7               | 54.7              | 32.4 | 15.82                      | 24.2          |  |
| 35           | 35.3               | 54.1              |      |                            |               |  |

The solubility of double compounds of magnesium iodide and alkyl esters in the corresponding acetates is given by Menschutkin — Chem. Centrb. 77, I, 647, 'o6. For the solubility of magnesium iodide hexa acetic acid compound in anhydrous acetic acid solutions, see Chem. Centrb. 77, II, 1482, 'o6.

#### MAGNESIUM NITRATE 184

#### MAGNESIUM NITRATE Mg(NO,),

SOLUBILITY IN WATER. (Funk — Wiss. Abh. p. t. Reichanstalt 3, 437, '00.)

| t°.  | Gms.<br>Mg(NO <sub>2</sub> ) <sub>2</sub><br>per 100 Gms.<br>Solution. | Mols.<br>Mg(NO3)2<br>per 100 Mols<br>H2O. | Solid<br>. Phase.                                    | t°.  | Gms.<br>Mg(NO <sub>3</sub> ) <sub>2</sub><br>per 100 Gms.<br>Solution. | Mols.<br>Mg(NO <sub>3</sub> ) <sub>2</sub><br>per 100 Mo<br>H <sub>2</sub> O. |                                                      |
|------|------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------|------|------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|
| -23  | 35.44                                                                  | 6.6                                       | Mg(NO <sub>3</sub> ) <sub>2</sub> .9H <sub>2</sub> O | 40   | 45 . 87                                                                | 10.3                                                                          | Mg(NO <sub>3</sub> ) <sub>2</sub> .6H <sub>2</sub> O |
| - 20 | 36.19                                                                  | 7.0                                       | •4                                                   | 80   | 53.69                                                                  | 14.6                                                                          | **                                                   |
| - 18 | 38.03                                                                  | 7.4                                       | **                                                   | 90   | 57.81                                                                  | 16.7                                                                          | **                                                   |
| -18  | 38.03                                                                  | 7.37                                      | Mg(NO <sub>8</sub> ) <sub>2.6</sub> H <sub>2</sub> O | 89   | 63.14                                                                  | 20.9)                                                                         |                                                      |
| - 4  | .5 39.50                                                               | 7.92                                      | **                                                   | 77 . | \$ 65.67                                                               | 23.2                                                                          | . *                                                  |
| o    | 39.96                                                                  | 8.08                                      | -4                                                   | 67   | 67.55                                                                  | 25.1)                                                                         |                                                      |
| +18  | 42.33                                                                  | 8.9                                       | ••                                                   | •    | * Reverse                                                              | •                                                                             |                                                      |

Sp. Gr. of solution saturated at  $18^{\circ} = 1.384$ .

#### MAGNESIUM OXALATE Mg.C.O. 2H.O.

One liter of water dissolves 0.3 gram MgC<sub>2</sub>O<sub>4</sub> at 18° (conductivity method). (Kohlrausch – Z. physik. Ch. 50, 356, '05.)

#### MAGNESIUM (Hypo) PHOSPHATE Mg\_P\_O. 12H2O.

One liter of water dissolves 0.066 gram hypophosphate.

(Salzer - Liebig's Ann. 232, 114, '86.) One liter of water dissolves 5.0 grams magnesium hydrogen hypophosphate  $MgH_2P_2O_{6.4}H_2O$ . (Salzer.)

# MAGNESIUM SALICYLATE Mg(C,H,O,)2.4H2O.

One liter of saturated solution contains 8.015 grams of the salt. (Barthe - Bull. soc. chim. [3] 11, 519, '94.)

#### MAGNESIUM FLUOSILICATE MgSiF.,6H,O.

One liter of water dissolves 652 grams of the salt at 17.5°. Sp. Gr. of solution - 1.235. (Stolba -- Chem. Centrb. 578, '77.)

#### MAGNESIUM SULPHATE MgSO.

SOLUBILITY IN WATER. (Mulder; Tilden — J. Ch. Soc. 45, 409, '84; Etard — Compt. rend. 106, 741, '88.) Etard's results for the lower temperatures are somewhat low. Mulder's and Tilden's results agree very well.

| ŧ°. | Gms. MgSO4   | per 100 Gms. |                         | t°. | Gms. MgSO4     | per 100 Gm | s. Solid   |
|-----|--------------|--------------|-------------------------|-----|----------------|------------|------------|
| • • | Solution.    | Water.       | Phase.                  | • • | Solution.      | Water      | Phase.     |
| 0   | 21.2         | 26.9         | MgSO <sub>4.7</sub> HgO | 50  | 33 · 5         | 50.3       | MgSO4.6H2O |
| 10  | 24.0         | 31.5         | **                      | 60  | 35.5           | 55.0       |            |
| 20  | 26.5         | 36.2         | **                      | 70  | 37 · 5         | 59.6       | **         |
| 25  | 28.2         | 38.5         | ••                      | 80  | 39 . I         | 64.2       | **         |
| 30  | <b>2</b> 9.0 | 40.9         | **                      | 90  | 40.7           | 68.9       | **         |
| 40  | 31.2         | 45.6         | "                       | 100 | 42.5           | 73.8       | **         |
|     |              |              |                         | 110 | <b>4</b> 5 · 5 | 83.6       | **         |

For temperatures between 123° and 190°, grams MgSO4 per 100 grams solution = 48.5 - 0.4403 t. (Etard). For densities of aqueous solutions of MgSO4, see Barnes and Scott-

J. Physic. Ch. 2, 542, '98.

# Solubility of Magnesium Sulphate in Methyl and Ethyl Alcohols.

#### (de Bruyn - Rec. trav. chim. 11, 112, '92.)

| Solvent.                | t°.       | Per 100 Gms. Solvent.                                                      | Solvent.                              | t°.      | Per 100 Gms. Solvent. |
|-------------------------|-----------|----------------------------------------------------------------------------|---------------------------------------|----------|-----------------------|
| Abs. CH <sub>9</sub> OH | 18        | 1.18 gms. MgSO <sub>4</sub><br>41.0 " MgSO <sub>4.7</sub> H <sub>2</sub> O | 93% Methyl Alc.                       | 17       | 9.7 gms. MgSO4.7HgO   |
| 66                      | 17<br>3-4 | 41.0 MgSO4.7HgO<br>29.0 " "                                                | Abs. C <sub>2</sub> H <sub>8</sub> OH | 3-4<br>3 | 4.1<br>1.3 " "        |

SOLUBILITY IN AQUEOUS ETHYL ALCOHOL. (Schiff – Liebig's Ann. 118, 365, '61.)

| Wt. per cent Alcohol               | ю    | 20     | 40   |
|------------------------------------|------|--------|------|
| G. MgSO4.7H2O per 100 gms. solvent | 64.7 | 27 . I | 1.65 |

SOLUBILITY OF MAGNESIUM SULPHATE IN SATURATED SUGAR SOLUTION AT 31.25°.

(Köhler - Z. Ver. Zuckerind. 47, 447, '97.)

100 grams saturated aqueous solution contain 46.52 grams sugar + 14.0 grams MgSO<sub>4</sub>.

100 grams water dissolve 119.6 grams sugar + 36.0 grams MgSO4.

#### MAGNESIUM POTASSIUM SULPHATE MgK<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>.6H<sub>2</sub>O.

SOLUBILITY IN WATER. (Tobler – Liebig's Ann. 95, 193, '55.) t°. – 0° 20° 30° 45° 60° 75° Gms. MgK<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>

per 100 gms. H2O 14.1 25.0 30.4 40.5 50.2 59.8

#### MAGNESIUM SULPHITE MgSO,.6H2O.

100 grams cold water dissolve 1.25 grams sulphite; 100 grams boiling water dissolve 0.83 gram.

(Hager -- Chem. Centrb. 135, '75.)

#### MALONIC ACID CH<sub>2</sub>(COOH)<sub>2</sub>.

SOLUBILITY IN WATER.

(Klobbie - Z. physik. Chem. 24, 622, '97; Miczynski - Monatsh. Ch. 7, 259, '86; Henry - Compt. rend. 99, 1157, '84; Lamouroux - Ibid. 128, '998, '99.)

| t°. | Grams CH <sub>2</sub> (CO | OOH), per 100      | <b>t*</b> . | Grams CH <sub>2</sub> (COOH) <sub>2</sub> per 100 |                    |  |
|-----|---------------------------|--------------------|-------------|---------------------------------------------------|--------------------|--|
| • . | Gms. Solution.*           | cc. Solution (L.). | • •         | Gms. Solution.*                                   | cc. Solution (L.). |  |
| 0   | 52.0                      | o. 10              | 50          | 71.0                                              | 93.0               |  |
| 10  | 56.5                      | 67.0               | 60          | 74 · 5                                            | 100.0              |  |
| 20  | 60.5                      | 73.0               | 70          | • • •                                             | 106.0              |  |
| 25  | 62.2                      | 76.3               | 8o          | 82.0                                              | •••                |  |
| 30  | 64.0                      | 80.0               | 100         | 8g.o                                              | •••                |  |
| 40  | 68.o                      | 86 . 5             | 132 (n      | n. pt.) 100 o                                     | •••                |  |

\* Average curve from results of K., M., and H.

#### SOLUBILITY OF MALONIC ACID IN ETHER. (Klobbie.)

| <b>\$</b> ". | Gms. CH <sub>2</sub> (COOH) <sub>2</sub><br>per 100 Gms.<br>Solution. | <b>t°</b> . | Gms. CH <sub>2</sub> (COOH) <sub>2</sub><br>per 100 Gms.<br>Solution. | <b>t°</b> . | Gms. CH <sub>2</sub> (COOH) <sub>3</sub><br>per 100 Gms.<br>Solution. |
|--------------|-----------------------------------------------------------------------|-------------|-----------------------------------------------------------------------|-------------|-----------------------------------------------------------------------|
| 0            | 6.25                                                                  | 30          | 10.5                                                                  | 100         | 46.0                                                                  |
| 10           | 7.74                                                                  | 30<br>80    | 33.0                                                                  | 110         | 56.0                                                                  |
| 20           | 9.00                                                                  | 90          | 39.0                                                                  | 120         | 70.0                                                                  |
| 25           | 9.7                                                                   |             |                                                                       | 132 (m. pt  | .) 100.0                                                              |

100 grams saturated solution of malonic acid in pyridine contain 14.6 grams at 26°.

(Holty - J. Physic. Ch. 9, 764, '05.)

SOLUBILITY OF SUBSTITUTED MALONIC ACIDS IN WATER. (Lamouroux.)

| Gram | , per | 100 | cc. Saturated | Aqueous | Solution. |
|------|-------|-----|---------------|---------|-----------|
|      |       |     |               |         |           |

| t •. | Malonic<br>Acid. | Methyl<br>Malonic<br>Acid. | Ethyl<br>Malonic<br>Acid. | n Propyl<br>Malonic<br>Acid. | n Butyl<br>Malonic<br>Acid. | Iso Amyl<br>Malonic<br>Acid. |  |  |
|------|------------------|----------------------------|---------------------------|------------------------------|-----------------------------|------------------------------|--|--|
| ο    | бі.і             | <b>44</b> · 3              | 52.8                      | 45.6                         | 11.6                        | 38.5                         |  |  |
| 15   | 70.2             | 58.5                       | 63.6                      | 60.1                         | 30.4                        | 51.8                         |  |  |
| 25   | 76.3             | 67.9                       | 71.2                      | 70. <b>0</b>                 | 43.8                        | 79 · 3                       |  |  |
| 30   | 92.6             | 91.5                       | <b>90</b> .8              | 94·4                         | <b>79</b> · 3               | 83.4                         |  |  |

#### MANGANESE BORATE MnH<sub>4</sub>(BO<sub>3</sub>),H<sub>2</sub>O.

SOLUBILITY IN WATER AND IN AQUEOUS SALT SOLUTIONS. (Hartley and Ramage - J. Ch. Soc. 63, 137, '93.)

#### Grams MnH<sub>4</sub>(BO<sub>3</sub>)<sub>2</sub> per Liter in Solutions of:

| <b>t °</b> . | H <sub>2</sub> O +<br>trace<br>Na <sub>2</sub> SO <sub>4</sub> . | Na <sub>2</sub> SO <sub>4</sub><br>(o.2 Gms.<br>per Liter). | NasSO <sub>4</sub><br>(20 Gms.<br>per Liter). | NaCl<br>(20 Gms.<br>per Liter). | CaCl <sub>2</sub><br>(20 Gms.<br>per Liter). |  |  |  |  |
|--------------|------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|---------------------------------|----------------------------------------------|--|--|--|--|
| 14           | o.94                                                             | I.7                                                         | • • •                                         | •••                             | • • •                                        |  |  |  |  |
| 18           |                                                                  | •••                                                         | 0.77                                          | 1.31                            | 2 · 91                                       |  |  |  |  |
| 40           | 0.50                                                             | 0.69 (5                                                     | 2°) 0.65                                      |                                 | 2.44                                         |  |  |  |  |
| 60           |                                                                  |                                                             | o.36                                          | 0.60                            | 2.25                                         |  |  |  |  |
| 80           | o.o8                                                             | •••                                                         | O.I2                                          | 0.29                            | I.35                                         |  |  |  |  |

#### MANGANESE BROMIDE MnBr\_.4H2O.

SOLUBILITY IN WATER. (Etard — Ann. chim. phys. [7] 2, 537, '94.)

| <b>t °</b> . | Gms. MnBr <sub>2</sub><br>per 100 Gms.<br>Solution. | Solid<br>Phase.                      | <b>t °</b> . | Gms. MnBrg<br>per 100 Gms.<br>Solution. | Solid<br>Phase. |
|--------------|-----------------------------------------------------|--------------------------------------|--------------|-----------------------------------------|-----------------|
| - 20         | 52.3                                                | MnBr <sub>2-4</sub> H <sub>2</sub> O | 40           | 62.8                                    | MnBr2.4H2O      |
| -10          | 54.2                                                | 44                                   | 50           | 64 . 5                                  | "               |
| 0            | 56.0                                                | **                                   | δo           | 66.3                                    | "               |
| 10           | 57.6                                                | 64                                   | 70           | 68.0                                    | ••              |
| 20           | 59.5                                                | **                                   | 80           | 69.2                                    | MnBr.2HzO       |
| 25           | 60.2                                                | *                                    | 90           | 69.3                                    |                 |
| 30           | 61 - 1                                              | *                                    | 100          | 69.5                                    | ••              |

#### MANGANESE CHLORIDE MnCl2.4H2O.

|       |                          | DOLUBILI                           | II IN WA       | IBR.                                                      |                                       |
|-------|--------------------------|------------------------------------|----------------|-----------------------------------------------------------|---------------------------------------|
|       | (Etard; Da               | awson and Willia                   | ms — Z. physik | . Chem. 31, 63, '99.)                                     |                                       |
| t°.   | Sp. Gr. of<br>Solutions. | Grams MnCl <sub>2</sub> J<br>Water | Solution.      | Mols. MnCl <sub>2</sub><br>per 100 Mols. H <sub>2</sub> O | Solid<br>Phase.                       |
| -20   |                          | 53.8                               | 35.0           |                                                           | MnCl <sub>2-4</sub> H <sub>2</sub> Oa |
| -10   |                          | 58.7                               | 37.0           |                                                           |                                       |
| 0     |                          | 63.4                               | 38.8           |                                                           |                                       |
| +10   |                          | 68.1                               | 40.5           |                                                           |                                       |
| 20    |                          | 73.9                               | 42.5           |                                                           |                                       |
| 25    | 1.4991                   | 77.18                              | 43.55          | 11.08                                                     | **                                    |
| 30    | 1.5049                   | 80.71                              | 44.68          | 11.55                                                     |                                       |
| 40    | 1.5348                   | 88.59                              | 46.96          | 12.60                                                     |                                       |
| 50    | 1.5744                   | 98.15                              | 49.53          | 14.05                                                     |                                       |
| 57.65 | 1.6097                   | 105.4                              | 51.33          | 15.10                                                     |                                       |
| 60    | 1.6108                   | 108.6                              | 52.06          | 15.55                                                     | MnCl2.2H2O                            |
| 70    | 1.6134                   | 110.6                              | 52.52          | 15.85                                                     |                                       |
| 80    |                          | 112.7                              | 52.98          | 16.14                                                     | **                                    |
| 90    |                          | 114.1                              | 53.2           |                                                           | **                                    |
| 100   |                          | 115.3                              | 53.5           |                                                           |                                       |
| 120   |                          | 118.8                              | 54.3           |                                                           | **                                    |
| 140   |                          | 119.5                              | 55.0           |                                                           |                                       |
|       |                          |                                    |                |                                                           |                                       |

SOLUBILITY IN WATER.

One liter of water dissolves 87.0 grams MnCl<sub>2</sub>. One liter of sat. HCl dissolves 19.0 grams MnCl<sub>2</sub> at 12°. (Ditte - Compt. rend. 92, 242, '81.)

## MANGANESE FLUO SILICATE MnSiF.6H2O.

100 grams H<sub>2</sub>O dissolve 140 grams salt at 17.5°. Sp. Gr. of solution = 1.448. (Stolba - Chem. Centrb. 292, '83.)

#### MANGANESE NITRATE Mn(NO3)2.6H2O.

SOLUBILITY IN WATER. (Funk — Wiss. Abh. p. t. Reichanstalt 3, 438, 'co.)

| £°. | Gms.<br>Mn(NO <sub>2</sub> )2<br>per 100<br>Gms. Sol. | per 100  | Solid<br>Phase. | t*.   | Gms.<br>Mn(NO <sub>3</sub> ) <sub>2</sub><br>per 100<br>Gms. Sol. | per too | Solid<br>Phase.                                       |
|-----|-------------------------------------------------------|----------|-----------------|-------|-------------------------------------------------------------------|---------|-------------------------------------------------------|
| -29 | 42.29                                                 | 7.37     | Mn(NO3)2.6H2O.  | 18    | 57.33                                                             | 13.5    | Mn(NO3)2.6H2O.                                        |
| -26 | 43.15                                                 | 7.63     |                 | 25    | 62.37                                                             | 16.7    | -14                                                   |
| -21 | 44.30                                                 | 8.0      |                 | 27    | 65.66                                                             | 19.2    | Mn(NO <sub>3</sub> ) <sub>2-3</sub> H <sub>2</sub> O. |
| -16 | 45.52                                                 | 8.4      |                 | 29    | 66.99                                                             | 20.4    |                                                       |
| - 5 | 48.88                                                 | 9.61     |                 | 30    | 67.38                                                             | 20.7    |                                                       |
| 0   | 50.49                                                 | 10.2     |                 | 34    | 71.31                                                             | 24.9    |                                                       |
| +11 | 54.50                                                 | 12.0     |                 | 35.5  | 76.82                                                             | 33.3    | **                                                    |
| Sp  | Gr. of                                                | solution | saturated at    | 18° = | 1.624.                                                            |         |                                                       |

MANGANESE (Hypo) PHOSPHITE Mn(PH2O2)2H2O.

100 grams  $H_2O$  dissolve 15.15 grams salt at 25°, and 16.6 grams at b. pt.

#### MANGANESE SULPHATE MnSO4.5H2O.

#### SOLUBILITY IN WATER.

(Cottrell – J. Physic. Ch. 4, 651, '01; Richards and Fraprie – Am. Ch. J. 26, 77, '01. The results of Linebarger – Am. Ch. J. 25, 225, '93, were shown to be incorrect by Cottrell, and this conclusion was confirmed by R. and F.)

| <b>t°</b> . | Grams MnSO <sub>4</sub> per<br>100 Gms. |           | Solid Phase.                         | t°.  | Grams MnSO <sub>4</sub> per<br>100 Gms. |           | Solid Phase                         |
|-------------|-----------------------------------------|-----------|--------------------------------------|------|-----------------------------------------|-----------|-------------------------------------|
|             | Water.                                  | Solution. |                                      |      | Water.                                  | Solution. |                                     |
| - 10        | 47.96                                   | 32.40     | MnSO4.7HgO                           | 16   | 63.94                                   | 38.99     | MnSO4.4H3O                          |
| 0           | 53.23                                   | 34.73     | **                                   | 18.5 | 64.19                                   | 39.10     | **                                  |
| 5           | 56.24                                   | 35.99     | 66                                   | 25   | 65.32                                   | 39.53     | 66                                  |
| 9           | 59.33                                   | 37.24     | 64                                   | 30   | 66.44                                   | 39.93     | •                                   |
| 12          | 61.77                                   | 38.19     | 64                                   | 39.9 | <b>68</b> .81                           | 40.77     | **                                  |
| 14.3        | 63.93                                   | 39.00     | "                                    | 49.9 | 72.63                                   | 42.08     | "                                   |
| 5           | 58.00                                   | 36.69     | MnSO <sub>4</sub> .5H <sub>2</sub> O | 41.4 | 60.87                                   | 37 .84    | MnSO <sub>4</sub> .H <sub>2</sub> O |
| 9           | 59.19                                   | 37.18     | **                                   | 50   | 58.17                                   | 36.76     | **                                  |
| 15          | 61.08                                   | 37.91     | "                                    | 60   | 55.0                                    | 35.49     | 44                                  |
| 25          | 64.78                                   | 39.31     | "                                    | 70   | 52.0                                    | 34.22     | **                                  |
| 30          | 67.76                                   | 40.38     | **                                   | 80   | 48.0                                    | 32.43     | *                                   |
| 35.5        | 71.61                                   | 41.74     | *                                    | 90   | 42.5                                    | 29.83     | "                                   |
|             |                                         |           |                                      | 100  | 32.0                                    | 24.24     | **                                  |

#### SOLUBILITY OF MANGANESE SULPHATE, COPPER SULPHATE MIXED CRYSTALS IN WATER AT 18°. (Stortenbecker – Z. physik. Chem. 34, 112, '00.)

Mols. per 100 Mols. HgO. Mol. per cent Cu in : Mols. per 100 Mols. H<sub>2</sub>O. Mol. per cent Cu in : Mn Mn. Solution. Crystals. Cu. Ĉu. Solution. Crystals. Solid Phase, CuMnSO4.5H2O, Triclinic. Solid Phase, CuMnSO4.5H2O. Triclinic. 2.282 0 100 100 6.37 10.27 10.5] 0.73 . . . 90.5 5.0 4.9 . . . . . . • • • . . . 2.23 0.44 83.5 0.34 7.03 4.60 . . . . . . 97.3 2.31 . . . • • • 74.I • • • . . . 2.15 . . . • • • 57.7 95.I • • • 7.375 0.0 0.0 81.3 . . . • • • 31.0 Solid Phase. CuMnSO4. Monoclinic. 7H2O. 1.54 3.76 29.0 . . . 28.2\* • • • 20.4 . . . 26.1 . . . • • • 70.4 **[1.06** 5.58 15.9 23.5] 4.70 21.8 1.31 . . . 12.45 20.8 • • • . . . 42.6 21.2 . . . . . . 6.37 10.27 16.0] [0.73 . . . 20.0 34.4 . . . 4.60 . . . 5.8\* • • • **60**. I] 5.58 15.9 22.9] ±8 0.0 0.0 . . . 15.2\* . . . . . . 13.9

\* Indicates meta stabil points.

 $CuMnSO_{4.5}H_{2}O = 100-90.8$  and 2.11-0 mol. per cent Cu. CuMnSO\_{4.7}H\_{2}O = 37.8-4.92 mol. per cent Cu.

SOLUBILITY OF MANGANESE SULPHATE IN GLYCOL.

100 grams saturated solution contain 0.5 gram MnSO<sub>4</sub>. (de Coninck — Bul. acad. roy. Belgique, 359, 105.)

#### 189 MANGANESE SULPHATE

SOLUBILITY OF MANGANESE SULPHATE IN AQUEOUS ETHYL AND PROPYL ALCOHOL SOLUTIONS AT 20°.

(Linebarger - Am. Ch. J. 14, 380, '92; Snell - J. Physic. Ch. 2, 474. '98.)

| Conc. of Alcohol | Gms. MnSO4 p | er 100 Gms. Aq. | Conc. of Alcohol | Gms. MnSO4 per 100 Gms. Aq. |             |  |
|------------------|--------------|-----------------|------------------|-----------------------------|-------------|--|
| in Wt. per cent. | Ethyl Alc.   | Propyl Alc.     | in Wt. per cent. | Ethyl Alc.                  | Propyl Alc. |  |
| 34               | 9.5          | 6.0             | 44               | 3.3                         | 1.9         |  |
| 36               | 7.2          | 4.6             | 48               | 2.2                         | I.4         |  |
| 38               | 5.8          | 3.5             | 52               | 1.4                         | I.I         |  |
| 40               | 4.7          | 2.8             |                  |                             |             |  |

#### MANGANESE POTASSIUM VANADATE MnKV.O.4.8H2O.

100 grams H<sub>2</sub>O dissolve 1.7 grams salt at 18°.

(Radan - Liebig's Ann. 251, 129, '89.)

#### MANNITE C.H. (OH).

SOLUBILITY IN WATER. (Campetti — Abs. in Z. physik. Chem. 41, 109, '02.)

| t°. | Grams CeHs(OH)e per 100 Grams. |           |  |  |  |  |  |
|-----|--------------------------------|-----------|--|--|--|--|--|
| t.  | Water.                         | Solution. |  |  |  |  |  |
| IO  | 13.94                          | 12.78     |  |  |  |  |  |
| 15  | 16.18                          | 14.63     |  |  |  |  |  |
| 20  | 18.98                          | 16.86     |  |  |  |  |  |

100 grams of saturated solution of mannite in Pyridine contain 0.47 gram C<sub>6</sub>H<sub>8</sub>(OH)<sub>6</sub> at 26°. (Holty - J. Physic. Ch. 9, 764, '05.)

#### MANNITOL C.H.(OH).

#### SOLUBILITY IN WATER. (Findlay - J. Ch. Soc. 81, 1210, '02.)

| t°. | Wt. of 1 cc.<br>in Grams. | Gms.<br>Mannitol<br>per 100<br>Gms. H <sub>2</sub> O. | G. M.<br>Mannitol<br>per 100<br>G.M. H <sub>2</sub> O. | t°. | Wt. of 1 cc.<br>in Grams. | Gms.<br>Mannitol<br>per 100<br>Gms.H <sub>2</sub> O. | G. M.<br>Mannitol<br>per 100<br>G.M.H <sub>2</sub> O. |
|-----|---------------------------|-------------------------------------------------------|--------------------------------------------------------|-----|---------------------------|------------------------------------------------------|-------------------------------------------------------|
| 0   | 1.044                     | 7.59                                                  | 0.75                                                   | 50  | 1.099 (47.7°)             | 47.0I                                                | 4.65                                                  |
| IO  |                           | 11.63                                                 | 1.15                                                   | 60  | ***                       | 60.01                                                | 5-94                                                  |
| 15  | 1.05                      | 14.38                                                 | 1.42                                                   | 70  | 1.148 (68°)               | 74.50                                                | 7.35                                                  |
| 20  |                           | 17.71                                                 | I.75                                                   | 80  |                           | 91.5                                                 | 9.04                                                  |
| 25  |                           | 21.39                                                 | 2.11                                                   | 90  | I.207 (85.9°)             | 110.8                                                | 10.96                                                 |
| 30  | 1.076(31.                 | 1°)25.40                                              | 2.51                                                   | 100 |                           | 133.I                                                | 13.17                                                 |
| 40  |                           | 35.40                                                 | 3.50                                                   |     |                           |                                                      | - · ·                                                 |

NOTE. — In the original paper the author writes, "grams of substance in 100 grams of solvent (percentage solubility)" and "moles of substance in 100 mols of solvent (percentage molar solubility)," thus implying equivalence of the terms and giving rise to uncertainty as to which is really intended.

#### MERCURY BROMIDE (ic) HgBr2. SOLUBILITY IN WATER.

| tº. | Gms. HgBr <sub>2</sub> per<br>100 Gms. H <sub>2</sub> O. | Authority.                                |
|-----|----------------------------------------------------------|-------------------------------------------|
| 9   | 1.06                                                     | (Lassaigne — J. chim. med. 12, 177, '76.) |
| 25  | 0.61                                                     | (Sherrill — Z. physik. Ch. 43, 727, '03.) |
| 100 | 20-25                                                    | (Lassaigne.)                              |

#### MERCURY BROMIDE

190

SOLUBILITY OF MERCURIC BROMIDE ORGANIC SOLVENTS.

| In Carbon Bisulphide. |                                                     |             |                                                     | In Other Solvents at 18°-20°. |                                  |                                                    |  |
|-----------------------|-----------------------------------------------------|-------------|-----------------------------------------------------|-------------------------------|----------------------------------|----------------------------------------------------|--|
| (Arcto                | wski — Z. anor                                      | g. Ch. 6,   | , 267, '94.)                                        | (Sulc Ibid. 25, 401, '00.)    |                                  |                                                    |  |
| t°.                   | Gms. HgBr <sub>2</sub><br>per 100 Gms.<br>Solution, | <b>t°</b> . | Gms. HgBr <sub>2</sub><br>per 100 Gms.<br>Solution. | Solvent.                      | Formula.                         | Gms. HgBr <sub>2</sub><br>per 100 Gms.<br>Solvent. |  |
| - 10                  | 0.049                                               | 15          | 0.140                                               | Chloroform                    | CHCl,                            | 0.126                                              |  |
| - 5                   | 0.068                                               | 20          | 0.187                                               | Bromoform                     | CHBr,                            | 0.679                                              |  |
| ŏ                     | 0.087                                               | 25          | 0.232                                               | Tetra Chlor Methane           | CCl,                             | 0.003                                              |  |
| + 5                   | 0.105                                               | 30          | 0.274                                               | Ethyl Bromide                 | C <sub>2</sub> H <sub>3</sub> Br | 2.31                                               |  |
| 10                    | 0.122                                               | -           | • -                                                 | Ethylene Di Bromide           | C,H,Br,                          | 2.34                                               |  |

Mercurous bromide Hg<sub>2</sub>Br<sub>2</sub>. One liter of saturated aqueous solution contains 0.000039 gram Hg<sub>2</sub>Br<sub>2</sub> at 25°. (Sherrill)

# MERCURY CHLORIDE (ic) HgCl<sub>2</sub>.

#### SOLUBILITY IN WATER.

(Etard — Ann. chim. phys. [7] 2, 563, '94; at 25°, Foote and Levy — Am. Ch. J. 35, 238, '96; at room temp. Rohland — Z. anorg. Ch. 18, 338' '98; see also Poggiale — Ann. chim. phys. [3] 8, 468, '43.)

| <b>t°</b> . | Gms. HgCl <sub>2</sub> per<br>100 Gms. Solution. | <b>t°</b> . | Gms. HgCl <sub>2</sub> per<br>100 Gms. Solution. | <b>t°</b> . | Gms. HgCl <sub>2</sub> per<br>100 Gms. Solution. |
|-------------|--------------------------------------------------|-------------|--------------------------------------------------|-------------|--------------------------------------------------|
| 0           | 3.5                                              | 30          | 7.2                                              | 100         | 38.0                                             |
| IO          | 4.5                                              | 40          | 9.3                                              | 120         | 59.0                                             |
| 20          | 5.4 (6.88,R.                                     | 60          | 14.0                                             | 140         | <b>7</b> 7.0                                     |
| 25          | 6.9 (F. and L.)                                  | 80          | 23 . I                                           | 150         | 78.5                                             |

Solubility of Mercuric Chloride in Aqueous Solutions of Sodium Chloride.

(Homeyer and Ritsert - Pharm. Ztg. 33, 738, '88.)

| Per cent Concentration | Gms. HgCl <sub>2</sub> per 100 Gms. NaCl Solution at: |     |      |  |  |  |
|------------------------|-------------------------------------------------------|-----|------|--|--|--|
| of NaCl Solutions.     | 15°                                                   | 65° | 100° |  |  |  |
| 0.5                    | 10                                                    | 13  | 44   |  |  |  |
| I.O                    | 14                                                    | 18  | 48   |  |  |  |
| 5.0                    | 30                                                    | 36  | 64   |  |  |  |
| IO . O                 | 58                                                    | 68  | 110  |  |  |  |
| 25.0                   | 120                                                   | 142 | 196  |  |  |  |
| 26.0 (saturate         | d) 128                                                | 152 | 208  |  |  |  |

Solubility of Mercuric Chloride in Aqueous Solutions of Hydrochloric Acid at:

|                       | C                     | °.               | 20-25° (?).                         |                          |                                                 |                                                       |  |
|-----------------------|-----------------------|------------------|-------------------------------------|--------------------------|-------------------------------------------------|-------------------------------------------------------|--|
| (Engel                | — Ann. chim.          | phys. [6] 17,    | 362, '89.)                          |                          | 5] 22, 551, '81.)                               |                                                       |  |
| Mg. Mols. per<br>HCl. | 100 cc. Sol.<br>HgCl. | Gms. per<br>HCl. | 100 cc. Sol.<br>HgCl <sub>2</sub> . | Sp. Gr. of<br>Solutions. | Parts HCl<br>per 100<br>Parts H <sub>2</sub> O. | Parts HgCl <sub>2</sub><br>per 100<br>Parts Solution. |  |
| 4.3                   | 9.7                   | I.57             | 13.11                               | 1.117                    | 0.0                                             | 6.8                                                   |  |
| 9.9                   | 19.8                  | 3.61             | 18.04                               | 1 · 238                  | 5.6                                             | 46.8                                                  |  |
| 17.8                  | 35 · 5                | 6.49             | 32.44                               | I . 427                  | <b>IO</b> . <b>I</b>                            | 73·7                                                  |  |
| 26.9                  | 55.6                  | 9.81             | 49.04                               | 1.665                    | 13.8                                            | 87.8                                                  |  |
| 32.25                 | 68.9                  | 11.76            | 58.80                               | 1.811                    | 2I.I                                            | 127 . 4                                               |  |
| 34 - 25               | 72.4                  | 12.48            | 62 . 40                             | 1.874                    | 31.0                                            | 141.9                                                 |  |
| 41.5                  | 85 5                  | 15.13            | 75.65                               | 2.023                    | 50.0                                            | 148.0                                                 |  |
| 48 · I                | 88 6                  | 17.54            | 87.70                               | 2.066                    | 68.o                                            | 154.0                                                 |  |
| 70.9                  | 95 · 7                | 25.84            | 129.20                              | 2 . 198                  |                                                 |                                                       |  |

# SOLUBILITY OF MIXTURES OF SODIUM AND MERCURIC CHLORIDE IN WATER AT 25°. (Foote and Levy – Am. Ch. J. 35, 239, '06.)

| Gms. per 100 ( | Gms. Solution.      | Gms. per 100   | Gms. Undisso        | lved Residue |                                                                    |
|----------------|---------------------|----------------|---------------------|--------------|--------------------------------------------------------------------|
| NaCl.          | HgCl <sub>2</sub> . | NaCl.          | HgCl <sub>2</sub> . | <b>Н₂</b> О. | Phase.                                                             |
| 26.5           | none                | 100            | none                | none         | NaCl                                                               |
| 18.66          | 51.35               | • • •          | 16.39               |              |                                                                    |
| 18.71          | 51.32               | •••            | 21.98               | •••          | NaCl and                                                           |
| 18.64          | 51.42               | •••            | 65.42               |              | NaCl.HgCl2.2HgO                                                    |
| 18.87          | 51.26               | ••••           | 71.25               | )            |                                                                    |
| 14.97          | 57.74               | 16.38          | 74 . 18             | 9.44         | Double Salt                                                        |
| 14.03          | 59.69               | 16.36          | 74.21               | 9.43         | NaCl.HgCla.2H-O                                                    |
| 13.25          | 62.16               | 16. <b>16</b>  | 74.70               | 9.14         | Calc. Comp. = 16.01% NaCl<br>74-14% HgCl-9.85% HgO                 |
| 13.17          | 62.59               | 15.96          | 74.76               | 9.28         | 144/0                                                              |
| 12.97          | 62.50               | • • •          | 78 . 20             | ••• ]        | NoCl Hard and O                                                    |
| 13.14          | 62.48               | • • •          | 88.64               |              | NaCl.HgCl <sub>2.2</sub> H <sub>2</sub> O<br>and HgCl <sub>2</sub> |
| 13.15          | 62.55               | •••            | <b>90</b> .83       | J            |                                                                    |
| Two determ     | ninations made      | at 10.3° gave: | :                   |              |                                                                    |
| 19.46          | 46 · 49             | 67.46          | 29.19               | 3.35         |                                                                    |
| 19.48          | 46.50               | 22.83          | 68.85               | 8.32         |                                                                    |

#### SOLUBILITY OF MIXTURES OF POTASSIUM AND MERCURIC CHLORIDES IN WATER AT 25°. (Foote and Levy.)

| Composition of Solution.<br>Grams per 100 Grams<br>Solution. |                     | Pero    | entage Compo<br>Undissolved<br>Residue | sition            | Solid<br>Phase.                                             |  |
|--------------------------------------------------------------|---------------------|---------|----------------------------------------|-------------------|-------------------------------------------------------------|--|
| KCl.                                                         | HgCl <sub>2</sub> . | KCI.    | HgCl <sub>2</sub> .                    | H <sub>2</sub> O. |                                                             |  |
| <b>26</b> .46                                                | none                | 100     | none                                   | •••               | KCI                                                         |  |
| 26.24                                                        | 15.04               |         | 3.63                                   | · · · )           |                                                             |  |
| 26.43                                                        | 15.02               |         | 26.15                                  |                   | KCl and                                                     |  |
| 26.33                                                        | 15.02               |         | 52.01                                  |                   | 2KCl.HgCl <sub>3</sub> .H <sub>2</sub> O                    |  |
| 26.33                                                        | 14.92               | • • •   | 61 . <b>04</b>                         | · · · J           |                                                             |  |
| 23 . 74                                                      | 18.91               | 34.61   | 61.66                                  | 3.73)             | 2KCl.HgCl2.HzO                                              |  |
| 22.36                                                        | 21.39               | 34 · 77 | 62.02                                  | 3.21              | Calc. Composition<br>34.05% KCl, 61 84% HgCl <sub>2</sub> , |  |
| 21.39                                                        | 23.88               | 34.05   | 61 .84                                 | 3·35 J            | 4.11% H2O                                                   |  |
| 20.32                                                        | 27 . 62             | • • •   | 65.24                                  | ··· }             | 2KCl.HgCl2.HgO and                                          |  |
| 20.26                                                        | 27 . 38             | •••     | 73.98                                  | )                 | KCl.AgCl <sub>2</sub> A <sub>3</sub> O                      |  |
| 17.85                                                        | 25.34               | 21 .89  | 75.10                                  | 3.01              |                                                             |  |
| 9.26                                                         | 18.95               | 21.02   | 73.36                                  | 5.62              | KCl.HgCl <sub>2</sub> H <sub>2</sub> O                      |  |
| 7.80                                                         | 19.56               | 20.76   | 73.06                                  | 6.18              | Calc. Composition<br>20.52% KCl. 74.53% HgCl <sub>2</sub> , |  |
| 6.84                                                         | 22.81               | 20.75   | 74 · 54                                | 4.7I              | 5.47% H2O                                                   |  |
| 6.66                                                         | 24.32               | 20 · 54 | 73 · 99                                | 5·47 J            |                                                             |  |
| 6.52                                                         | 25.13               | •••     | 76.46                                  | ••• )             | KCl.HgCl <sub>2</sub> .H <sub>2</sub> O and                 |  |
| 6.64                                                         | 25 . 16             | • • •   | 80.60                                  | }                 | KCl.aHgCla.aH2O                                             |  |
| 6.27                                                         | 25 . 1 1            | 12.09   | 83.20                                  | 4.71              | KCl.2HgCl2.2HgO<br>Calc. Composition                        |  |
| 5.77                                                         | 24.73               | 11.87   | 83 . 18                                | 4.95              | 11.43% KCl. 83.05% HgCla.5.52% HgO                          |  |
| 4.68                                                         | 24.75               | • • •   | 84 . 46                                | ••• ]             |                                                             |  |
| 4.66                                                         | 25.17               | • • •   | 93.68                                  | •••               | KCl.2HgCl2.2H2O and HgCl2                                   |  |
| 4.69                                                         | 24.82               | • • •   | 98.50                                  | ••• )             | ·                                                           |  |
| none                                                         | 6. <b>90</b>        | none    | 100.00                                 | none              | HgCla                                                       |  |

# MERCURIC CHLORIDE 192

.

# SOLUBILITY OF MIXTURES OF RUBIDIUM AND MERCURIC CHLORIDES IN WATER AT 25°. (Foote and Levy.)

| Composition of Solution.<br>Grams per 100 Grams.<br>Solution. |                |               | entage Compo<br>indissolved Res | Solid<br>Phase.   |                                                                   |
|---------------------------------------------------------------|----------------|---------------|---------------------------------|-------------------|-------------------------------------------------------------------|
| RbCl.                                                         | HgClg.         | RbCl.         | HgCl <sub>2</sub> ,             | H <sub>2</sub> O. |                                                                   |
| 48.57                                                         | none           | 100.0         | none                            | none              | RbCl                                                              |
| 46.76                                                         | 9.18           | 88.04         | II.24                           | 0.72              |                                                                   |
| <b>4</b> 7 · 54                                               | 9.49           | 60.33         | 37.51                           | 2.16              | RbCl and 2RbCl.HgCla.HrO                                          |
| <b>4</b> 7 · 55                                               | 9.39           | 56.59         | 40.75                           | 2.66              | KOCI and SKOCI.HgCl3.H2O                                          |
| 47 · 3                                                        | 9 · 47         | 46.73         | 49.38                           | 3.88 J            |                                                                   |
| 47 .65                                                        | 10.35          | 46.50         | 50.92                           | 2.58              | 2RbCl.HgCl2.H2O Calc. Com-                                        |
| 35.16                                                         | 19.58          | 45.98         | 50.80                           | 3.22 \$           | position 45.55% RbCl, 51.05%<br>HgCl2.3.4% H2O                    |
| 34.77                                                         | 19.94          | 43.07         | 52.44                           | 4.49              | 2RbCl.HgCl2 H2O and 3RbCl.                                        |
| 34.76                                                         | <b>20</b> · IO | 41.10         | 55.36                           | 3.54              | 2HgCl <sub>2</sub> .2H <sub>2</sub> O                             |
| 30.27                                                         | 20.17          | 39.07         | 57 · 34                         | 3.59              | 3RbCl.2HgCl2.2H2O                                                 |
| 29.20                                                         | 20.55          | 39 . 10       | 57 · 47                         | 3.43)             | Calc. Composition<br>38.55% RbCl, 57.62% HgCl2.                   |
| 27.38                                                         | 20.63          | 38.67         | 57 · <b>40</b>                  | 3.93              | 38.55% RbCl, 57.62% HgCl <sub>2</sub> .<br>3.82% H <sub>2</sub> O |
| 26.83                                                         | 20.87          | 38.48         | 57.36                           | 4.16              | 3RbCl.2HgCl2.2H2O and                                             |
| 27.09                                                         | 20.97          | 31.40         | 64.35                           | 4.25              | RbCl.HgCl2.HgO                                                    |
| 26.15                                                         | 20 . 58        | 30.34         | 65.48                           | 4.18 J            |                                                                   |
| 23.81                                                         | 18.71          | 30.87         | 65 . 10                         | 4.03)             | RbCl.HgCl <sub>2</sub> .H <sub>2</sub> O<br>Calc. Composition     |
| 18 . 10                                                       | 14.25          | 29.87         | 65.28                           | 4.85              | 29-49% RbCl, 66.11% HgCls<br>4-40% HgO                            |
| 10.87                                                         | 10.42          | <b>29</b> .33 | 66.15                           | 4.52 J            | 4-40% H2O                                                         |
| 10.68                                                         | 10.56          | 28.59         | 67.99                           | 3.42 )            | RbCl.HgCl2.HgO and 3RbCl                                          |
| 10.06                                                         | 10.05          | 26.22         | 72.20                           | I.58 ∮            | 4HgClaHgO                                                         |
| 10.c6                                                         | 9.86           | 25.28         | 73.3 <b>8</b>                   | 0.84              |                                                                   |
| 8.48                                                          | 8.71           | 25.30         | 73.15                           | I.55              | 3KbCl_4HgClg_HgO<br>Calc. Composition                             |
| 8.46                                                          | 8.80           | 25.44         | 73.67                           | 0.89              | 24.76% RbCl, 74.01% HgCl <sub>3</sub><br>1.23% H <sub>2</sub> O   |
| 5.68                                                          | 8.70           | 25.09         | 73. <b>46</b>                   | I.45              | 1.23%H2O                                                          |
| 5.10                                                          | 8.33           | 24.92         | 73 · <b>93</b>                  | 1.15              |                                                                   |
| 3 · 43                                                        | 8.25           | 22.79         | 75.72                           | 1.49              | 3RbCl_4HgCl2.H2O and RbCl<br>5HgCl2                               |
| 3.38                                                          | 8.00           | 12.68         | 86.74                           | 0.58              | 2                                                                 |
| 2.98                                                          | 7.71           | 8.40          | 91.24                           | )                 |                                                                   |
| 1.89                                                          | 7.64           | 8.38          | 91.78                           |                   | RbCl.5HgCl2<br>Calc. Composition                                  |
| I . 50                                                        | 7.55           | 8.30          | 91.81                           | (                 | 8.20% RbCl, 91.8% HgCl2                                           |
| I.IO                                                          | 7.21           | 8.07          | 91.58                           | J                 |                                                                   |
| o · 79                                                        | 7.16           | 6.91          | 93.15                           | ≀                 | RbCl.5HgCl <sub>2</sub> and HgCl <sub>2</sub>                     |
| o . 84                                                        | 7 · 42         | 2.27          | 97.09                           | \$                |                                                                   |
| none                                                          | 6.90           | none          | 100.0                           | •••               | HgCl <sub>2</sub>                                                 |

#### SOLUBILITY OF MERCURIC CHLORIDE IN METHYL, ETHYL PROPYL, *n* BUTYL, ISO BUTYL AND ALLYL ALCOHOLS. (Etard — Ann. chim. phys. [7] 2, 563, '94.)

193

NOTE. — For the solubility in Me, Et, and propyl alcohols at room temperature, see Rohland — Z. anorg. Ch. 18, 328, '98; at 8.5°, 20° and 38.2°, see Timofejew — Compt. rend. 112, 1224, '91; in Me and Et alcohols at 25°, see de Bruyn — Z. physik. Ch. 10, 783, '92. The determinations of these investigators agree well with those of Etard, which are given below.

| t°. | Grams HgCl <sub>2</sub> per 100 Grams Saturated Solution in: |                                   |                                   |              |                                                       |               |  |  |  |  |
|-----|--------------------------------------------------------------|-----------------------------------|-----------------------------------|--------------|-------------------------------------------------------|---------------|--|--|--|--|
| • • | снаон.                                                       | C <sub>2</sub> H <sub>5</sub> OH. | C <sub>0</sub> H <sub>7</sub> OH. | CH3(CH2)3OH. | (CH <sub>3</sub> ) <sub>2</sub> CHCH <sub>2</sub> OH. | CH2.CH.CH.OH. |  |  |  |  |
| -30 |                                                              | 14.5                              | 15.0                              |              |                                                       |               |  |  |  |  |
| -20 |                                                              | 20.I                              | 15.7                              | 13.5         |                                                       | 21.0          |  |  |  |  |
| -10 | 15.2                                                         | 26.5                              | 16.5                              | 13.7         |                                                       | 25.5          |  |  |  |  |
| 0   | 20.I                                                         | 29.8                              | 17.4                              | 14.0         | 5.2                                                   | 30.0          |  |  |  |  |
| +10 | 26.3                                                         | 30.6                              | 18.0                              | 14.3         | 6.0                                                   | 37.5          |  |  |  |  |
| 20  | 34.0                                                         | 32.0                              | 18.8                              | 14.6         | 6.8                                                   | 46.5          |  |  |  |  |
| 25  | 40.0                                                         | 32.5                              | 19.5                              | 15.5         | 7.2                                                   |               |  |  |  |  |
| 30  | 44.4                                                         | 33.7                              | 20.0                              | 16.5         | 7.5                                                   |               |  |  |  |  |
| 40  | 58.6                                                         | 35.6                              | 23.0                              | 19.6         | 9.7                                                   |               |  |  |  |  |
| 60  | 62.5                                                         | 41.2                              | 29.8                              | 26.5         | 17.0                                                  |               |  |  |  |  |
| 80  | 66.0                                                         | 47.5                              | 36.8                              | 33.0         | 24.9                                                  |               |  |  |  |  |
| 100 | 70.I                                                         | 54.3                              | 43.8                              |              | 31.7                                                  |               |  |  |  |  |
| 120 | 73.5                                                         | 61.5                              | 50.6                              |              | 39.2                                                  |               |  |  |  |  |
| 150 | 78.5                                                         |                                   |                                   |              |                                                       |               |  |  |  |  |

#### SOLUBILITY OF MERCURIC CHLORIDE IN ACETIC ACID.

(Etard.)

| t°. | Gms.<br>HgCl <sub>2</sub> per<br>100 Gms.<br>Solution. | t°. | Gms.<br>HgCl <sub>2</sub> per<br>100 Gms.<br>Solution. | t°. | Gms.<br>HgCl <sub>2</sub> per<br>100 Gms.<br>Solution. |
|-----|--------------------------------------------------------|-----|--------------------------------------------------------|-----|--------------------------------------------------------|
| 20  | 2.5                                                    | 70  | 8.5                                                    | 110 | 13.6                                                   |
| 30  | 3.5                                                    | 80  | 9.7                                                    | 120 | 16.5                                                   |
| 40  | 4.7                                                    | 90  | II.O                                                   | 130 | 20.7                                                   |
| 50  | 6.0                                                    | 100 | 12.4                                                   | 140 | 25.2                                                   |
| 60  | 7.2                                                    |     |                                                        | 160 | 34.8                                                   |

#### SOLUBILITY OF MERCURIC CHLORIDE AND SODIUM CHLORIDE IN ETHYL ACETATE AT 40°.

(Linebarger - Am. Ch. J. 16, 214, '94.)

| Mols. per 100 Mols.<br>Acetate. |        |       | per 100 Gms. | Gms. per<br>Solu | Solid  |                   |
|---------------------------------|--------|-------|--------------|------------------|--------|-------------------|
| NaCl.                           | HgCl2. | NaCl. | HgCl2.       | NaCl.            | HgCl2. | Phase.            |
| 0.8                             | 12.9   | 0.53  | 39-7         | 0.53             | 28.4   | HgCl <sub>2</sub> |
| 2.3                             | 12.4   | 1.53  | 38.15        | 1.51             | 27.61  |                   |
| 4.3                             | 16.4   | 2.85  | 50.44        | 2.78             | 33.54  |                   |
| 9.1                             | 22.85  | 6.05  | 86.14        | 5.60             | 46.28  |                   |
| 18.5                            | 34.9   | 12.29 | 107.4        | 10.95            | 51.76  | **                |
| 20.0                            | 40.0   | 13.29 | 123.0        | 11.73            | 55.18  | HgCl2 + NaCl      |

The double salt (HgCl<sub>2</sub>)<sub>2</sub>. NaCl is formed under proper conditions.

#### MERCURIC CHLORIDE

# Solubility of Mercuric Chloride in Ethyl Acetate and in Acetone.

194

(Etard; von Laszcynski – Ber. 27, 2285, '94; Krug and McElroy – J. Anal. Ch. 6, 186, '92; Linebarger – Am. Ch. J. 16, 214, 94; Aten – Z. physik. Ch. 54, 121, '05.)

NOTE. — The results obtained by the above named investigators were calculated to a common basis and plotted on cross-section paper. The variations which were noted could not be satisfactorily harmonized, and therefore all the results are included in the following table.

#### SOLUBILITY.

| • |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |

In Ethvl Acetate.

#### In Acetone.

é

| Grams HgCl <sub>2</sub> per 100 Grams Solution. |             |          |                           | Gms                               | HgCl <sub>2</sub> per | 100 Gms. Solutio | <b>n</b> .                |          |
|-------------------------------------------------|-------------|----------|---------------------------|-----------------------------------|-----------------------|------------------|---------------------------|----------|
| £.                                              | Laszcynski. | Aten.    | Linebarger.               | Etard.                            | K and McE.            | Laszcynsk        | i. Aten.                  | Etard.   |
| -10                                             | •••         | 23.0     | • • •                     | 40                                | • • • •               | •••              | 44 ·0 <b>*</b>            | 57.0     |
| 0                                               | 22.0        | 23.2     | 32.0                      | 40                                |                       | <b>4</b> 9 · 7   | 43.0*                     | 61.7     |
| +10                                             | 22.2        | 23.5     | 32 5                      | 40                                |                       | 52.0             | * ^ +                     | 61.7     |
| 20                                              | 22.5        | 23.4     | 32.7                      | 40                                |                       | 54               | 58.5 †                    | 61.7     |
| 25                                              | 22.7        | 23.5     | 33.0                      | 40                                | 37 · 4                | 55.2             | 58.2 +                    | 61.7     |
| 30                                              | 23.0        |          | 33.2                      | 40                                |                       |                  |                           | 61.7     |
| 40                                              | 23.5        |          | 33.5                      | 40                                | • • •                 | • • •            |                           | 61.7     |
| 50                                              | 24.0        |          | 33.5                      | 41                                |                       |                  | •••                       | 61.7     |
| 60                                              | 24.7        |          |                           | 42.5                              |                       |                  |                           | 61.7     |
| 80                                              | 26.0        |          |                           | 45.2                              | · · ·                 |                  | • • • •                   | 61.7     |
| 100                                             | •••         | •••      |                           | 48.0                              |                       |                  |                           |          |
| 120                                             |             |          |                           | 50.8                              |                       |                  | • • •                     | <b>.</b> |
| 150                                             |             |          |                           | 55.0                              |                       |                  |                           |          |
|                                                 |             | Solid ph | ase HgCl <sub>2</sub> (Cl | H <sub>3</sub> ) <sub>2</sub> CO. |                       | (†) Solid        | Phase HgCl <sub>2</sub> . |          |

100 grams absolute acetone dissolve 143 grams HgCl, at 18°. (Naumann – Ber. 37, 4332, '04.)

SOLUBILITY OF MERCURIC CHLORIDE IN SEVERAL SOLVENTS. (Arctowski – Z. anorg. Ch. 6, 267, '94; von Laszcynski; Sulc. – Z. anorg. Ch. 25, 401, '00.)

| In Carbon Bisul-<br>phide (A.). |                                                     |     | enzene<br>n L.).                                    | In Several Solvents<br>at 18-20° (S.).        |                                                    |  |
|---------------------------------|-----------------------------------------------------|-----|-----------------------------------------------------|-----------------------------------------------|----------------------------------------------------|--|
| t°.                             | Gms. HgCl <sub>2</sub><br>per 100 Gms.<br>Solution. | t°. | Gms. HgCl <sub>2</sub><br>per 100 Gms.<br>Solution. | Solvent.                                      | Gms. HgCl <sub>2</sub><br>per 100 Gms.<br>Solvent. |  |
| - 10                            | 0.010                                               | 15  | o · 537                                             | CHBr <sub>3</sub>                             | o.486                                              |  |
| 0                               | 810.0                                               | 41  | 0.616                                               | CHCl,                                         | 0.106                                              |  |
| 10                              | o.026                                               | 55  | o . 843                                             | CCl                                           | 0.002                                              |  |
| 15                              | 0.032                                               | 84  | 1.769                                               | C <sub>2</sub> H <sub>5</sub> Br              | 2.010                                              |  |
| 20                              | 0.042                                               |     |                                                     | C <sub>2</sub> H <sub>4</sub> Br <sub>2</sub> | I . 530                                            |  |
| 25                              | 0.053                                               |     |                                                     |                                               |                                                    |  |
| 30                              | 0.063                                               |     |                                                     |                                               |                                                    |  |

SOLUBILITY OF MERCURIC CHLORIDE IN ABSOLUTE ETHYL ETHER. (Etard; Laszcynski; Köhler – Z. anal. Ch. 18, 242, '79.)

195

| t°.  | Gms. HgCl <sub>2</sub> per<br>100 Gms. Solution. | t°. | Gms. HgCl <sub>2</sub> per<br>100 Gms. Solution. | t°. | Gms. HgCl <sub>2</sub> per<br>100 Gms. Solution. |
|------|--------------------------------------------------|-----|--------------------------------------------------|-----|--------------------------------------------------|
| - 20 | 6.0                                              | 60  | 6.0                                              | 90  | 7.5                                              |
| 0    | 6.0                                              | 70  | 6.4                                              | 100 | 8.0                                              |
| 20   | 6.0                                              | 80  | 7.0                                              | 110 | 8.5                                              |

SOLUBILITY OF MERCURIC CHLORIDE AND OF DOUBLE MERCURIC AND TETRA METHYL AMINE CHLORIDE (CH<sub>3</sub>)<sub>4</sub>NCl.6HgCl<sub>2</sub> IN AQ. ETHER AT 17°. (Strömholm – J. pr. Ch. [2] 66, 443, '02; Z. physik. Chem. 44, 64, '03.)

| Molecula | r Concentration | per Liter. | Gram              | s per Liter of S | olution.   |
|----------|-----------------|------------|-------------------|------------------|------------|
| H2O.     | HgCl2 (*).      | HgCl2 (†). | H <sub>2</sub> O. | HgCl2 (*).       | HgCl2 (†). |
| 0.0      | 0.1515          | 0.0342     | 0                 | 41.16            | 9.26       |
| 0.0656   | 0.1795          | 0.0428     | 1.18              | 48.64            | 11.60      |
| 0.1311   | 0.2069          | 0.0516     | 2.36              | 56.08            | 14.00      |
| 0.1956   | 0.2339          | 0.0603     | 3.52              | 63.38            | 16.34      |
| 0.2611   | 0.2489          | 0.0690     | 4.70              | 70.16            | 18.70      |
| 0.3267   | 0.2849          | 0.0779     | 5.88              | 77.20            | 21.10      |
| 0.2022   | 0.2100          | 0.0866     | 7.06              | 84.02            | 22.48      |

(\*) Results in this column are for solutions in contact with the Solid Phase HgCl<sub>2</sub>. (†) Results in this column are for solutions in contact with the Solid Phase (CH<sub>2</sub>)<sub>4</sub>NCl 6HgCl<sub>2</sub>.

SOLUBILITY OF MERCURIC CHLORIDE AND OF DOUBLE MERCURIC AND TETRA METHYL AMINE CHLORIDE IN ALCOHOL-ETHER SOLUTIONS AT 17°. (Strömholm.)

| Grams C2H5OH per Liter. | Grams HgCl2 (*) per Liter. | Grams HgCl2 (†) per Liter. |
|-------------------------|----------------------------|----------------------------|
| 0.0                     | 41.16                      | 9.26                       |
| 4.58                    | 50.00                      | 11.87                      |
| 9.16                    | 58.76                      | 14.38                      |
| 13.74                   | 66.96                      | 16.90                      |

## Solubility of Double Mercuric Chlorides in Aqueous and Pure Ether at 16.6°.

(Strömholm.)

| Mol. Co        | nc. of H             | Cla per              | Liter of:            | Gms            | HgCl:                | per Lit              | ter of:              |                                                                                     |
|----------------|----------------------|----------------------|----------------------|----------------|----------------------|----------------------|----------------------|-------------------------------------------------------------------------------------|
| Pure<br>Ether. | Aq.<br>Ether<br>(1). | Aq.<br>Ether<br>(z). | Aq.<br>Ether<br>(3). | Pure<br>Ether. | Aq.<br>Ether<br>(4). | Aq.<br>Ether<br>(5). | Aq.<br>Ether<br>(6). | Solid<br>Phase.                                                                     |
| 0.1515         | 0.2387               | 0.2647               | 0.3106               | 41.04          | 64.69                | 71.71                | 86.58                | HgCl <sub>2</sub>                                                                   |
| 0.0673         | 0.0073               | 0.1293               | 0.1017               | 18.23          | 18.23                | 35.05                | 43.79                | (CH3.CH3C2H4)2SCI.6HgCl2                                                            |
| 0.0404         | 0.0720               | 0.0835               | 0.1034               | 10.95          | 19.51                | 22.61                | 28.01                | (CH3.C2H5CH3C2H4)2SCI.6HgCl2                                                        |
| 0.0342         |                      | 0.0706               | ***                  | 9.26           |                      | 19.10                |                      | (CH <sub>3</sub> ) <sub>4</sub> NCl.6HgCl <sub>2</sub>                              |
| 0.0264         |                      | 0.0568               |                      | 7.14           |                      | 15.39                |                      | (C2H3)3SCI.6HgCl2                                                                   |
| 0.0200         | 0.0400               | 0.0460               | 0.0594               | 5.66           | 10.83                | 12.48                | 16.10                | (CH3.C2H5)2SCI.6HgCl2                                                               |
| 0.0063         |                      | 0.0144               |                      | 1.70           |                      | 3.90                 |                      | (CH <sub>3</sub> ) <sub>2</sub> .H <sub>2</sub> NCl. <sub>2</sub> HgCl <sub>2</sub> |

(1) containing 0.21055 mol. H<sub>2</sub>O per liter. (2) 0.2756 mol. H<sub>2</sub>O per liter. (3) 0.421 mol. H<sub>2</sub>O per liter (4) containing 3.79 gms. H<sub>2</sub>O per liter. (5) 4.07 gms. H<sub>2</sub>O per liter. (6) 7.59 gms. H<sub>2</sub>O per liter.

#### MERCURIC CHLORIDE 196

#### DISTRIBUTION OF MERCURIC CHLORIDE BETWEEN WATER AND TOLUENE AT 24°.

|                          | (Brown — J. Pl    | aysic. Ch. 2, 50, '98.)    |                            |  |  |  |  |
|--------------------------|-------------------|----------------------------|----------------------------|--|--|--|--|
| Gms. HgC                 | 2 per 100 cc.     | Gms. HgC                   | l <sub>2</sub> per 100 cc. |  |  |  |  |
| HgO<br>Layer.            | CaHaCHa<br>Layer. | H <sub>2</sub> O<br>Layer. | CeHsCHs<br>Layer.          |  |  |  |  |
| 0.442                    | 0.0270            | 1.816                      | 0.130                      |  |  |  |  |
| 0.732                    | 0.0488            | 3.766                      | 0.292                      |  |  |  |  |
| 0.780                    | 0.0542            | 3.754                      | o . 298                    |  |  |  |  |
| 1.192                    | 0.0812            | 6.688*                     | 0.528*                     |  |  |  |  |
| This solution saturated. |                   |                            |                            |  |  |  |  |

## MERCUROUS CHLORIDE HgCl.

One liter water dissolves 0.002 gram HgCl at 18°, by conductivity method.

(Kohlrausch - Z. physik. Ch. 50, 356, '04-'05.)

SOLUBILITY OF MERCUROUS CHLORIDE (CALOMEL) IN AQUBOUS SOLU-TIONS OF SODIUM CHLORIDE, BARIUM CHLORIDE, CALCIUM CHLORIDE AND OF HYDROCHLORIC ACID AT 25°. (Richards and Archibald – Proc. Am. Acad. 37, 345, '01-'02.)

Solid phase in each case. Calomel + about 0.1 gram of mercury.

| In A                     | queous Na | ιC1.                | In Aqueous BaCl <sub>2</sub> . |                     |                     |  |
|--------------------------|-----------|---------------------|--------------------------------|---------------------|---------------------|--|
| Sp. Gr. of<br>Solutions. | Grams     | per Liter.          | Sp. Gr. of<br>Solutions.       | Grams per Liter.    |                     |  |
| Solutions.               | NaCl.     | HgCl <sub>2</sub> . | Solutions.                     | BaCl <sub>2</sub> . | HgCl <sub>2</sub> . |  |
| • • •                    | 5.85      | 0.0041              | 1 .088                         | 104 . 1 5           | 0.044               |  |
| I.040                    | 58.50     | 0.041               | 1.134                          | 156.22              | o.o88               |  |
| 1.078                    | 119.00    | 0 · I 29            | 1.174                          | 208.30              | <b>0</b> . 107      |  |
| 1.093                    | 148 . 25  | 0.194               | 1.263                          | 312.45              | 0.231               |  |
| 1.142                    | 222.3     | o.380               |                                |                     |                     |  |
| 1.188                    | 292 . 5   | 0.643               |                                |                     |                     |  |

| In Aqueous CaCl,         |                     |                     | In Aqueous HCl.          |          |                     |  |
|--------------------------|---------------------|---------------------|--------------------------|----------|---------------------|--|
| Sp. Gr. of<br>Solutions. | Grams per Liter.    |                     | Sp. Gr. of<br>Solutions. | Grams pe | r Liter.            |  |
| Solutions.               | CaCl <sub>2</sub> . | HgCl <sub>2</sub> . | Solutions.               | HCI.     | HgCl <sub>2</sub> . |  |
| •••                      | 39.96               | 0.022               | • • •                    | 31.69    | 0.034               |  |
| • • •                    | <b>5</b> 5 · 5      | 0.033               | • • •                    | 36.46    | o .048              |  |
| I.064                    | III.O               | 0 · 081             | I.042                    | 95 · 43  | 0.207               |  |
| I . 105                  | 138.75              | 0.118               | 1.069                    | 158.4    | o.399               |  |
| 1.151                    | 195.36              | 0.231               | 1.091                    | 209.2    | 0.548               |  |
| I . 205                  | 257.52              | 0.322               | I.II4                    | 267 . 3  | 0.654               |  |
| 1.243                    | 324.67              | 0.430               | 1.119                    | 278.7    | 0.675               |  |
| 1.315                    | 432 .9              | 0.518               | 1.132                    | 317.3    | 0.670               |  |
| 1.358                    | 499 - 5             | 0.510               | 1.153                    | 364.6    | 0.673               |  |

100 grams bromoform, CHBr<sub>2</sub>, dissolve 0.055 gram HgCl at 18°-20°. (Sulc. – Z. anorg. Ch. 25, 401, '00.)

# MERCURIC CYANIDE Hg(CN).

| So                  | LUBILITY | IN SEVERAL                                        | SOLVENTS.                                 |
|---------------------|----------|---------------------------------------------------|-------------------------------------------|
| Solvent.            | t°.      | Gms. Hg(CN) <sub>2</sub> per<br>100 Gms. Solvent. | Observer.                                 |
| Water               | -0.45    | about 11.0                                        | (Guthrie - Phil. Mag. [5] 6, 40, '78.)    |
| "                   | 15.2     | 8.0                                               | (Wittstein.)                              |
| "                   | IOI . I  | 53.85                                             | (Griffiths.)                              |
| Abs. Ethyl Alcohol  | 19.5     | IO.I                                              | (de Bruyn - Z. physik. Ch. 10, 784, '92.) |
| Abs. Methyl Alcohol | 19.5     | 44.2                                              | " "                                       |
| Glycerine           | 15.5     | 27.0                                              |                                           |

197

SOLUBILITIES OF MERCURIC CYANIDE DOUBLE SALTS IN WATER AND IN ALCOHOL.

| Double Salt.                                             | t°.     | Gms. per<br>Water. | Alcohol. | Observer.                       |
|----------------------------------------------------------|---------|--------------------|----------|---------------------------------|
| Hg(CN)2.2KCN                                             | cold    | 22.7               |          | 2                               |
| Hg(CN)2.2TICN                                            | Io      | 12.6               |          | (Fromuller - Ber. 11, 92, '78.) |
| Hg(CN)2.2TICN                                            | 100     | 9.7                |          |                                 |
| 2Hg(CN)2.CaBr2.5H2O                                      | cold    | 100.0              | 50.0     | (Custer.)                       |
| 2Hg(CN)2.CaBr2.5H2C                                      | boiling | 400.0              | 100.0    |                                 |
| Hg(CN)2.KCl.H2O                                          | 18°     | 14.81              |          | (Brett.)                        |
| Hg(CN)2.KBr.2H2O                                         | 180     | 7.49               |          |                                 |
| Hg(CN)2.KBr.2H2O                                         | boiling | 100.0+             |          |                                 |
| Hg(CN)2.BaI2.4H2O                                        | cold    | 6.42               | 4.42     | (Custer.)                       |
| Hg(CN)2.BaI2.4H2O                                        | boiling | 250.0              |          | (90% Alc.) "                    |
| Hg(CN)2.KI                                               | cold    | 6.2                | 1.04     | (34° B Alc.) (Caillot.)         |
| Hg(CN)2.NaI.2H2O                                         | 180     | 22.2               |          | (90% Alc.) (Custer.)            |
| Hg(CN) <sub>2</sub> .SrI <sub>2</sub> .6H <sub>2</sub> O | 18°     | 14.3               | 25.0     | (90% Alc.) "                    |

#### SOLUBILITY OF MERCURIC CYANIDE IN ORGANIC SOLVENTS AT 18°-20°.

(Sulc - Z. anorg. Ch. 25, 401, '00.)

| Solvent.              | Formula. | G. Hg(CN) <sub>2</sub> per<br>100 Gms. Solvent. |
|-----------------------|----------|-------------------------------------------------|
| Bromoform             | CHBr,    | 0.005                                           |
| Carbon Tetra Chloride | CCl,     | 0.00I                                           |
| Ethyl Bromide         | C2H5Br   | 0.013                                           |
| Ethylene Di Bromide   | C2H4Br2  | 100.0                                           |

# MERCURY FULMINATE C2HgN2O2.

One liter of water dissolves 1.738 - 1.784 grams C<sub>2</sub>HgN<sub>2</sub>O<sub>2</sub> at 12°. (Holleman - Rec. trav. chim. 15, 159, '96.)

# MERCURIC IODIDE Hgl.

SOLUBILITY IN WATER.

| t°.  | G      | rams Hgl <sub>2</sub> per Liter | r. Observer.                                            |
|------|--------|---------------------------------|---------------------------------------------------------|
| 18   | 0.0004 | (conductivity                   | method) (Kohlrausch - Z. physik. Ch. 50, 356, '04-'05.) |
| 17.5 | 0.040  |                                 | (Bourgoin - Bull. soc. chim. [2] 42, '84.)              |
| 22   | 0.054  |                                 | (Rohland - Z. anorg. Ch. 18, 328, '98.)                 |

Solubility of Mercuric Iodide in Alcohols.

| Alcohol.   | Formula.                                             | t°.             | Sp. Gr. of<br>Solution. | G. Hgl <sub>2</sub> per<br>100 Gms.<br>Alcohol. | Observer.         |
|------------|------------------------------------------------------|-----------------|-------------------------|-------------------------------------------------|-------------------|
| Methyl     | CH,OH                                                | 15-20           | 0.799                   | 3.24                                            | (Rohland.)        |
| "          | "                                                    | 19.5            | •••                     | 3. 16                                           | (de Bruyn.)       |
| "          | "                                                    | 66 (b. pt.)     | • • •                   | ō. 512                                          | (Sulc.)           |
| Ethyl      | C,H,OH                                               | 15-20           | 0.810                   | 1.42                                            | (Rohland.)        |
| "          |                                                      | 18              |                         | 1.48                                            | (Bourgoin.)       |
| "          | "                                                    | 19.5            |                         | 2.09                                            | (de Bruyn.)       |
| **         | "                                                    | 25              | 0.803                   | 2.19                                            | (Herz and Knoch.) |
| **         | "                                                    | 78 (b. pt.)     |                         | 4.325                                           | (Sulc.)           |
| Propyl     | C,H,OH                                               | 15-20           | 0.816                   | 0.820                                           | (Rohland.)        |
| Amyĺ       | C <sub>s</sub> H <sub>11</sub> OH                    | 13              |                         | o.66                                            | (Laszcynski.)     |
| "          | ·                                                    | 71              |                         | 3.66                                            | 44                |
| "          | "                                                    | 100             | • • •                   | 5.30                                            | **                |
| "          | ".                                                   | 133.5           | •••                     | 9.57                                            | **                |
| Iso Propyl | (CH <sub>2</sub> ),CH.OH                             | 81 (b. pt.)     |                         | 2.266                                           | (Sulc.)           |
| Iso Butyl  | (CH <sub>2</sub> ) <sub>2</sub> CHCH <sub>2</sub> OH | 105-107 (b. pt. | )                       | 2.433                                           | 44                |

Solubility of Mercuric Iodide in Aqueous Ethyl Alcohol:

| At 18°.                                              | At 25°.                                        |                                                  |                                               |                                                    |                                                          |
|------------------------------------------------------|------------------------------------------------|--------------------------------------------------|-----------------------------------------------|----------------------------------------------------|----------------------------------------------------------|
| (Bourgoin.)                                          | (Herz and Knoch – Z. anorg. Ch. 45, 266, '05.) |                                                  |                                               |                                                    |                                                          |
| Solvent.                                             | Gms. HgI <sub>2</sub>                          | Wt.% Alcohol                                     | HgI2 per 100                                  | cc. Solution                                       | • Sp Gr. of                                              |
|                                                      | per Liter.                                     | in Solvent.                                      | Millimols.                                    | Grams.                                             | Solutions 25°/4°.                                        |
| Abs. Alcohol<br>H2O+80% 90° Alc.<br>H2O+10% 90° Alc. | 11.86<br>2.857<br>0.086                        | 100<br>95.82<br>92.44<br>86.74<br>78.75<br>67.63 | 3.86<br>2.56<br>1.92<br>1.38<br>0.935<br>0.45 | 1.754<br>1.162<br>0.873<br>0.623<br>0.425<br>0.204 | 0.8033<br>0.8095<br>0.8154<br>0.8300<br>0.8405<br>0.8721 |

#### Solubility of Mercuric Iodide in Acetone in Ethyl Acetate and in Benzene.

(Sulc; Krug and McElroy – J. Anal. Ch. 6, 186, '92; Laszcynski – Ber. 27, 2285, '94.)

| In Acetone. |                                                                              | In Ethyl Acetate. |                                                                                             | In Benzene.  |                                                                        |
|-------------|------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------|
| t°.         | Gms. HgI <sub>2</sub><br>per 100 Gms.<br>(CH <sub>3</sub> ) <sub>2</sub> CO. | t°.               | Gms. HgI <sub>2</sub><br>per 100 Gms.<br>CH <sub>3</sub> COOC <sub>2</sub> H <sub>8</sub> . | t°.          | Gms. HgI <sub>2</sub><br>per 100 Gms.<br>C <sub>6</sub> H <sub>6</sub> |
| — I         | 2.83                                                                         | - 20              | I.49                                                                                        | 15           | 0.22                                                                   |
| 18          | 3.36                                                                         | + 17.5            | 1.56                                                                                        | 60           | o.88                                                                   |
| 25          | 2.09 (K. and McE.)                                                           | 21                | 1.6 <b>4</b>                                                                                | 65           | 0.95                                                                   |
| 40          | 4.73                                                                         | 40                | 2.53                                                                                        | 84           | I.24                                                                   |
| 58          | 6.07                                                                         | 55                | 3.19                                                                                        | <b>80</b> (b | .pt.) 0.825 (Sulc.)                                                    |
| 56 (1       | o.pt.) 3 . 249 (Sulc.)                                                       | 76                | 4.31                                                                                        |              | -                                                                      |

74-78 (b.pt.) 4 . 20 (Sulc.)

.

SOLUBILITY OF MERCURIC IODIDE IN CARBON BISULPHIDE. (Linebarger - Am. Ch. J. 16, 214, '94; Arctowski - Z. anorg. Ch. 6, 267, '94; 11, 274, '95.)

199

| t°.    | Gms. HgI2 per<br>100 Gms. Solution. | t°. | Gms. HgI2 per<br>100 Gms. Solution. | t°. | Gms. HgI <sub>2</sub> per<br>100 Gms. Solution. |
|--------|-------------------------------------|-----|-------------------------------------|-----|-------------------------------------------------|
| -116   | 0.017                               | - 5 | 0.141                               | 15  | 0.271                                           |
| - 93   | 0.023                               | 0   | 0.173                               | 20  | 0.320                                           |
| - 86.5 | 0.024                               | + 5 | 0.207                               | 25  | 0.382                                           |
| - 10   | 0.107                               | IO  | 0.239                               | 30  | 0.445                                           |

SOLUBILITY OF MERCURIC IODIDE IN SEVERAL ORGANIC SOLVENTS. (Sulc - Z. anorg. Ch. 25, 401, '00.)

| Solvent.             | Formula.                                             | t°.            | Gms. HgI2 per 100<br>Gms. Solvent. |
|----------------------|------------------------------------------------------|----------------|------------------------------------|
| Chloroform           | CHCl <sub>a</sub>                                    | 18-20          | 0.040                              |
| Chloroform           | CHCl,                                                | 61 (b. pt.)    | 0.163                              |
| Bromoform            | CHBr <sub>3</sub>                                    | 18-20          | 0.486                              |
| Tetra Chlor Methane  | CCL                                                  | 18-20          | 0.006                              |
| Tetra Chlor Methane  | CCL                                                  | 75 (b. pt.)    | 0.004                              |
| Ethyl Bromide        | C,H,Br                                               | 18-20          | 0.643                              |
| Ethyl Bromide        | C <sub>2</sub> H <sub>5</sub> Br                     | 38° (b. pt.)   | 0.773                              |
| Ethylene Di Bromide  | C <sub>2</sub> H <sub>4</sub> Br <sub>2</sub>        | 18-20          | 0.748                              |
| Ethyl Iodide         | C,H,I                                                | 18-20          | 2.041                              |
| Ethylene Di Chloride | C <sub>2</sub> H <sub>4</sub> Cl <sub>2</sub>        | 85.5° (b. pt.) | ) 1.200                            |
| Iso Butyl Chloride   | (CH <sub>a</sub> ), CHCH <sub>2</sub> Cl             | 69 "           | 0.328                              |
| Methyl Formate       | HCOOCH,                                              | 36-38 "        | 1.166                              |
| Ethyl Formate        | HCOOC,H5                                             | 52-55 "        | 2.150                              |
| Methyl Acetate       | CH <sub>3</sub> COOCH <sub>3</sub>                   | 56-59 "        | 2.500                              |
| Acetal               | CH <sub>3</sub> CH(OC <sub>2</sub> H <sub>5</sub> ), | 105 "          | 2.000                              |
| Epi Chlor Hydrine    | CH, O.CH.CH,Cl                                       | 117 "          | 6.113                              |
| Hexane               | C6H14                                                | 67             | 0.072                              |

SOLUBILITY OF MERCURIC IODIDE IN ETHER AND IN METHYLENE

|      | 1001                                             | DE.           |                                                                |  |  |  |
|------|--------------------------------------------------|---------------|----------------------------------------------------------------|--|--|--|
| 1    | n Ether.                                         | In Meth       | In Methylene Iodide.<br>(Retgers – Z. anorg. Ch. 3, 253, '03.) |  |  |  |
| (Sul | c; Laszcynski.)                                  | (Retgers - Z. |                                                                |  |  |  |
| t°.  | Gms. HgI2 per 100<br>Gms. (C2H <sub>8</sub> )2O. | t°.           | Gms. HgI2 per 100<br>Gms. CH2I2.                               |  |  |  |
| 0    | 0.62                                             | 15            | 2.5                                                            |  |  |  |
| 36   | 0.97                                             | 100           | 16.6                                                           |  |  |  |
|      | pt.) 0.47 (Sulc)                                 | 180           | 58.0                                                           |  |  |  |

SOLUBILITY OF MERCURIC IODIDE IN FATTY BODIES. (Mehu-J. pharm. chim. [5] 12, 249, '85.)

| Solvent.          | t°. | Gms. HgI2 per<br>100 Gms. Solvent. | Solvent.      | t°. | Gms. HgI2 per<br>100 Gms. Solvent. |
|-------------------|-----|------------------------------------|---------------|-----|------------------------------------|
| Bitter Almond Oil | 25  | 0.5                                | Vaseline      | 25  | 0.025                              |
| Bitter Almond Oil | 100 | 1.3                                | Vaseline      | 100 | 0.20                               |
| Castor Oil        | 25  | 4.0                                | Poppy Oil     | 25  | I.0                                |
| Castor Oil        | 100 | 20.0                               | Olive Oil     | 25  | 0.4                                |
| Nut Oil           | 100 | I.3                                | Carbolic Acid | 100 | 2.0                                |

100 grams oil of bitter almonds dissolve 5.0 grams HgI<sub>2</sub>.KI at 25°. (Mebu.)

MERCURY OXIDE

200

# MERCURY OXIDE HgO.

# SOLUBILITY IN WATER. (Schick - Z. physik. Ch. 42, 163, '01-'02.)

# Grams per 1000 cc. Solution.

| t *. | Grams per 1000 cc. Solution. |                |  |  |  |  |  |  |
|------|------------------------------|----------------|--|--|--|--|--|--|
| 25   | 0.0518 yellow HgO            | 0.0513 red HgO |  |  |  |  |  |  |
| 100  | 0.410 yellow HgO             | 0.379 red HgO  |  |  |  |  |  |  |

EQUILIBRIUM IN THE SYSTEM, MERCURY OXIDE, SULPHUR TRI-OXIDE, WATER. (Hoitsema – Z. physik. Chem. 17, 651, '95.)

Results expressed in molecules per sum of 100 molecules of the three components of the system.

| Resu                                | Results at 25°.       |                                     |          | Results at 50°. |  |  |  |
|-------------------------------------|-----------------------|-------------------------------------|----------|-----------------|--|--|--|
| Liquid Pha                          |                       | Liquid Phas                         | <u>.</u> | Solid           |  |  |  |
| H <sub>2</sub> O. SO <sub>3</sub> . | HgO. Phase.           | H <sub>2</sub> O. SO <sub>2</sub> . | HgO.     | Phase.          |  |  |  |
| 98.5 1.24                           | 0.33 3HgO.SO8         | 98.9 0.96                           | 0.17     | 3HgO.SO3        |  |  |  |
| 96.6 2.49                           | 0.92 "                | 96.0 3.05                           | 0.93     | **              |  |  |  |
| 94.4 3.93                           | 1.65 "                | 93.2 4.92                           | I . 90   | 64              |  |  |  |
| 93.9 4.24                           | I.85 3HgO.SO3 and     | 92.8 5.10                           | 2.00     | **              |  |  |  |
| 94.4 4.52                           | 2.12 3HgO.2SO3.2H2O   | 92.8 5.16                           | 2.06     | ••              |  |  |  |
| 93.4 4.65                           | I . 94 3HgO.2SO3.2H2O | 92.5 5.34                           | 2.12     | 44              |  |  |  |
| 92.9* 4.81                          | 2.29 3HgO.SO3         | 92.2 5.57                           | 2.20     | 3HgO.SO3 and    |  |  |  |
| 92.9 5.11                           | I . 98 3HgO.2SO3.2H2O |                                     |          | 3HgO.2SO3.2H2O  |  |  |  |
| 92.3* 5.20                          | 2.54 3HgO.SO3         | 92.I 5.75                           | 2.11     | 3HgO.2SO3.2H2O  |  |  |  |
| 92.3 5.58                           | 2.09 3HgO.2SO3.2H2O   | 92.0 5.80                           | 2.16     | **              |  |  |  |
| 92.1 5.81                           | 2.08 "                | 91.2* 6.27                          | 2.56     | 3HgO.SO3 and    |  |  |  |
| 91.9 5.97                           | 2.90 3HgO.SO3         |                                     |          | HgO.SO3         |  |  |  |
| 91.9 6.15                           | 2.05 3HgO.2SO3.2HgO   | 91.5 6.34                           | 2.19     | 3HgO.2SO2.2H2O  |  |  |  |
| 91.3 6.54                           | 2.13 "                |                                     |          | and HgO.SO3     |  |  |  |
| 91.2 6.77                           | 2.02 HgO.SO3.H2O      | 91.3 <b>*</b> 6.37                  | 2.30     | HgO.SO3         |  |  |  |
| 91.3 6.90                           | I.80 "                | 91.6 6.69                           | 1.75     | **              |  |  |  |
| 91.3 7.67                           | I.0I "                | 91.1 8.32                           | 0.57     | 44              |  |  |  |
| 91.3 7.84                           | 0.89 HgO.SOa.HrO      | 89.6 10.2                           | 0.23     | 4               |  |  |  |
| 91.0 8.36                           | 0.69) and HgO.SO      | 31.6 68.4                           | 0.03     | 14              |  |  |  |
| 90.5 8.95                           | 0.53 HgO.SO3          |                                     |          |                 |  |  |  |
| 89.2 10.6                           | 0.22 "                |                                     |          |                 |  |  |  |
| 75.8 24.2                           | trace "               |                                     |          |                 |  |  |  |
| 39.2 60.7                           | trace "               |                                     |          |                 |  |  |  |
|                                     | A 7 11 .              |                                     |          |                 |  |  |  |

#### \* Indicates unstable equilibrium.

# MERCUROUS SULPHATE Hg2SO4.

SOLUBILITY IN WATER, IN SULPHURIC ACID AND IN POTASSIUM SULPHATE AT 25°. (Drucker - Z. anorg. Ch. 28, 362, '01; Wright and Thomson - Phil. Mag. [5] 17, 288; 19, 1, '84-'85; Wilsmore - Z. physik. Ch. 35, 305, '00.)

| Solvent.                            | Hg2SO4 per             | Liter.                          |
|-------------------------------------|------------------------|---------------------------------|
|                                     | Gram Mols.             | Grams.                          |
| Water                               | II.7I IO <sup>-4</sup> | 0.058(0.047 W.and T., 0.039 W.) |
| $Aq.H_2SO_4$ ( 1.96 gms. per liter) | 8.31 "                 | 0.041                           |
| $Aq.H_2SO_4$ ( 4.90 gms. per liter) | 8.78 "                 | 0.044                           |
| $Aq.H_2SO_4$ ( 9.80 gms. per liter) | 8.04 "                 | 0.040                           |
| $Aq.K_2SO_4$ (34.87 gms. per liter) | 9.05"                  | 0.045                           |

.

10

# METHANE CH.

#### SOLUBILITY IN WATER. (Winkler - Ber. 34, 1418, '01.)

| β.      | β'.                                                            | q.                                                                                                                                                                                                | t°.                                                                                                                                                                                                                                                                                                                                                                                       | β.                                                                                                                                                                                                                                                                                                                                                                  | β'.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | g.                                                   |
|---------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 0.05563 | 0.05530                                                        | 0.00396                                                                                                                                                                                           | 40                                                                                                                                                                                                                                                                                                                                                                                        | 0.02369                                                                                                                                                                                                                                                                                                                                                             | 0.02198                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00159                                              |
| 0.04805 | 0.04764                                                        | 0.00341                                                                                                                                                                                           | 50                                                                                                                                                                                                                                                                                                                                                                                        | 0.02134                                                                                                                                                                                                                                                                                                                                                             | 0.01876                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00136                                              |
| 0.04177 | 0.04127                                                        | 0.00296                                                                                                                                                                                           | 60                                                                                                                                                                                                                                                                                                                                                                                        | 0.01954                                                                                                                                                                                                                                                                                                                                                             | 0.01571                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00115                                              |
| 0.03690 | 0.03628                                                        | 0.00260                                                                                                                                                                                           | 70                                                                                                                                                                                                                                                                                                                                                                                        | 0.01825                                                                                                                                                                                                                                                                                                                                                             | 0.01265                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00093                                              |
| 0.03308 | 0.03233                                                        | 0.00232                                                                                                                                                                                           | 80                                                                                                                                                                                                                                                                                                                                                                                        | 0.01770                                                                                                                                                                                                                                                                                                                                                             | 0.00944                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00070                                              |
| 0.03006 | 0.02913                                                        | 0.00209                                                                                                                                                                                           | 90                                                                                                                                                                                                                                                                                                                                                                                        | 0.01735                                                                                                                                                                                                                                                                                                                                                             | 0.00535                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00040                                              |
| 0.02762 | 0.02648                                                        | 10100.0                                                                                                                                                                                           | 100                                                                                                                                                                                                                                                                                                                                                                                       | 0.01700                                                                                                                                                                                                                                                                                                                                                             | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00000                                              |
|         | 0.05563<br>0.04805<br>0.04177<br>0.03690<br>0.03308<br>0.03006 | 0.05563         0.05530           0.04805         0.04764           0.04177         0.04127           0.03690         0.03628           0.03308         0.02233           0.03006         0.02913 | B.         B'.         q.           0.055503         0.05530         0.00396           0.04805         0.04764         0.00341           0.04177         0.04127         0.00296           0.03560         0.03628         0.00260           0.03308         0.023233         0.00232           0.03006         0.02913         0.00209           0.02762         0.02648         0.00191 | 0.05563         0.05530         0.00396         40           0.04805         0.04764         0.00341         50           0.04177         0.04127         0.00296         60           0.03690         0.03628         0.00260         70           0.03308         0.03233         0.00232         80           0.03006         0.02913         0.00209         90 | 0.05563         0.05530         0.00396         40         0.02369           0.04805         0.04764         0.00341         50         0.02134           0.04177         0.04127         0.00296         60         0.01954           0.03690         0.03628         0.00206         70         0.01825           0.03308         0.02333         0.00232         80         0.01770           0.03006         0.02913         0.00209         90         0.01735 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

For the values of  $\beta$ ,  $\beta'$  and q see Ethane, page 133.

SOLUBILITY OF METHANE IN METHYL ALCOHOL AND IN ACETONE. (Levi - Gazz. chim. ital. II, 513, 'o1; abs. in Z. physik. Ch. 41, 110, 'o2.)

In methyl alcohol l (Ostwald expression, see page 105) =  $0.5644 - 0.0046t - 0.0004t^{2}$ .

In acetone l (Ostwald expression) =  $0.5906 - 0.00613t - 0.0000146t^2$ . From which is calculated the following values:

| In Methyl Alcohol. |        |     |        | In A | cetone |     |        |
|--------------------|--------|-----|--------|------|--------|-----|--------|
| t°.                | 1.     | t°. | Ι.     | tº.  | 1.     | t°. | 1.     |
| 0                  | 0.5644 | 40  | 0.3164 | 0    | 0.5906 | 40  | 0.3220 |
| IO                 | 0.5144 | 50  | 0:2344 | IO   | 0.5278 | 50  | 0.2476 |
| 20                 | 0.4564 | 60  | 0.1444 | 20   | 0.4622 | 60  | 0.1702 |
| 30                 | 0.3904 | 70  | 0.0464 | 30   | 0.3936 | 70  | 0.0900 |

Tetra Chlor METHANE CCl, (Carbon Tetra Chloride).

# SOLUBILITY IN WATER.

| (Rex - Z.  pnys)                                     | ak. Chem. 55 | 355, 00.) |       |       |
|------------------------------------------------------|--------------|-----------|-------|-------|
| t°.                                                  | 0°.          | 100.      | 200.  | 30°.  |
| Grams CCl <sub>4</sub> per 100 gms. H <sub>2</sub> O | 1.097        | 0.083     | 0.080 | 0.085 |

#### Tri Phenyl METHANE CH(C.H.s)s.

#### SOLUBILITY IN ANILIN.

(Hartley and Thomas - J. Ch. Soc. 89, 1026, 'o6.)

By synthetic method, see page 9.

| ŧ°.  | Gms.<br>CH(C6H5)3<br>per 100<br>Gms. So-<br>lution. | Mol. per<br>cent<br>CH(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> | Solid<br>Phase,             | ŧ°.  | Gms.<br>CH(CaHa)a<br>per 100<br>Gms. So-<br>lution. | cent | Soud                        |
|------|-----------------------------------------------------|---------------------------------------------------------------------|-----------------------------|------|-----------------------------------------------------|------|-----------------------------|
| 23.0 | 5.4                                                 | 1.85                                                                | CH(CoH5)3.CoH5NH2<br>rhombs | 71.3 | 67.9                                                | 44.6 | CH(CoHa)3.CoHaNH2<br>rhombs |
| 35.3 | 9.5                                                 | 3.8                                                                 |                             | 71.6 | 71.7                                                | 49.1 |                             |
| 43.0 | 13.5                                                | 5.6                                                                 |                             | 71.2 | 76.3                                                | 55.I |                             |
| 52.1 | 21.9                                                | 9.7                                                                 | **                          | 70.6 | 78.3                                                | 57.9 |                             |
| 61.4 | 36.5                                                | 17.8                                                                |                             | 71.6 | 82.1                                                | 63.5 | CH(C6H8)3 monoclinic        |
| 66.0 | 47.2                                                | 25.4                                                                |                             | 74.3 | 84.9                                                | 68.2 |                             |
| 68.7 | 54.8                                                | 31.6                                                                |                             | 82.1 | 91.7                                                | 80.9 |                             |
| 70.1 | 64.6                                                | 40.9                                                                |                             | 87.3 | 96.I                                                | 90.2 |                             |

# Tri Phenyl METHANE

SOLUBILITY OF TRI PHENYL METHANE IN BENZENE. (Linebarger – Am. Ch. J. 15, 45, '93.) (Hartley and Thomas.)

202

| <b>t*</b> . | Gms.<br>CH(C <sub>6</sub> H <sub>8</sub> ) <sub>3</sub> per<br>100 Grams<br>C <sub>6</sub> H <sub>6</sub> . | Solid Phase.                                    | t*.    | Gms.<br>CH(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub><br>per 100 Gms.<br>Solution. | Mol.<br>per cent<br>CH(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> | Solid Phase.                                                  |
|-------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|
| 3.9         | 3.90                                                                                                        | $C_6H_6 + CH(C_6H_8)_3.C_6H_6$                  | 33     | 12.6                                                                                 | 4.4                                                                 | CH(CeHa)3.CeHa<br>rhombs                                      |
| 4.0         | 4.06                                                                                                        | CH(CeHs)2.CeHe                                  | 49 • 4 | 24.0                                                                                 | 8.8                                                                 |                                                               |
| 12.5        | 5.18                                                                                                        | <b>61</b>                                       | 65.6   | 38.9                                                                                 | 17.2                                                                | **                                                            |
| 16.1        | 6.83                                                                                                        | 44                                              | 73.8   | 57.5                                                                                 | 30.2                                                                | "                                                             |
| 19.4        | 7 . 24                                                                                                      | 46                                              | 77 · I | 67.4                                                                                 | 39.7                                                                | 44                                                            |
| 23 · I      | 8.95                                                                                                        | **                                              | 77.9   | 76.3                                                                                 | 50.7                                                                | •                                                             |
| 37 · 5      | 10.48                                                                                                       | (CeHs)2CH.CeHs<br>+ CH(CeHs)3                   | 77.5   | 80.2                                                                                 | 56.4                                                                | 46                                                            |
| 42.0        |                                                                                                             | CH(C <sub>6</sub> H <sub>6</sub> ) <sub>3</sub> | 76.2   | 84 . 1                                                                               | 62.8                                                                | "                                                             |
| 44.6        | 22.64                                                                                                       | 44                                              | 74.6   | 87.5                                                                                 | 69.I                                                                | CH(C <sub>6</sub> H <sub>6</sub> ) <sub>3</sub><br>monoclinic |
| 50 · I      | 30.64                                                                                                       | "                                               | 76.0   | 89.0                                                                                 | 72.2                                                                | 44                                                            |
| 55·5        | 40.51                                                                                                       | **                                              | 78.8   | 90.5                                                                                 | 75.3                                                                | 44                                                            |
| 71.0        | 140.00                                                                                                      | 44                                              | 82.3   | 93.1                                                                                 | 81.3                                                                | **                                                            |
| 76.2        | 319.67                                                                                                      | 4                                               | 86.6   | 95·7                                                                                 | 87 . <b>Š</b>                                                       | "                                                             |

NOTZ. — Hartley and Thomas call attention to the inaccuracy of Linebarger's results and the correctness of Kuriloff's determinations (Z. physik. Chem. 22, 547, '97).

SOLUBILITY OF TRI PHENYL METHANE IN CARBON BISULPHIDE. (Etard - Ann. chim. phys. [7] 2, 570, '94; below - 80°, Arctowski - Z. anorg. Ch. 11, 273, '05.)

| t°.    | Gms. CH(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub><br>per 100 Gms.<br>Solution. | <b>t°</b> . | Gms. CH(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub><br>per 100 Gms.<br>Solution. | t°. | Gms. CH(CeHa)a<br>per 100 Gms.<br>Solution. |
|--------|-----------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------|-----|---------------------------------------------|
| -113.5 | o.98                                                                              | -40         | 7.5                                                                               | 40  | 63 . 7                                      |
| - 102  | I . 24                                                                            | 20          | 13.7                                                                              | 50  | 72.4                                        |
| - 91   | 1.56                                                                              | 0           | 25.8                                                                              | 60  | 78.6                                        |
| - 83   | 1.91                                                                              | +10         | 38.7                                                                              | 70  | 85.6                                        |
| - 60   | 3.4                                                                               | 20          | 43.2                                                                              | 8o  | 92.2                                        |
|        | -                                                                                 | 30          | 52.9                                                                              |     |                                             |

#### SOLUBILITY OF TRI PHENYL METHANE IN HEXANE AND IN CHLOROFORM. (Etard.)

| <b>t°</b> . | Gms. CH(Cel<br>Solut | H <sub>6</sub> ) <sub>3</sub> per 100 Gms.<br>tion in: | t°. | Gms. CH(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> per 100 Gms.<br>Solution in: |             |  |
|-------------|----------------------|--------------------------------------------------------|-----|-----------------------------------------------------------------------------------|-------------|--|
|             | Hexane.              | Chloroform.                                            |     | Hexane.                                                                           | Chloroform. |  |
| - 50        |                      | 10.5                                                   | 30  | 12.5                                                                              | 48.8        |  |
| - 30        | I.2                  | 15.2                                                   | 40  | 20.0                                                                              | 56 · I      |  |
| - 20        | 1.6                  | 19.0                                                   | 50  | 25.8                                                                              | 63.8        |  |
| — IO        | 2.2                  | 23.5                                                   | 60  | 45 . 7                                                                            | 71.7        |  |
| 0           | 3.5                  | 28.9                                                   | 70  | 62.0                                                                              | 79.8        |  |
| + 10        | 5.6                  | 35.0                                                   | 8o  | 78.5                                                                              | 87.2        |  |
| 20          | <b>8</b> .3          | 41.5                                                   | 90  | 97.0                                                                              |             |  |

#### SOLUBILITY OF TRI PHENYL METHANE IN PYRIDINE. (Hartley and Thomas - J. Ch. Soc. 89, 1028, '06.)

203

Synthetic method used, see note, page 9.

| t°.  | Gms.<br>CH(C <sub>6</sub> H <sub>8</sub> ) <sub>3</sub><br>per 100 Gms.<br>Solution. |      | Solid<br>Phase. | t°.  | Gms.<br>CH(C <sub>6</sub> H <sub>6</sub> ) <sub>3</sub><br>per 100 Gms.<br>Solution. |      | Solid<br>Phase. |
|------|--------------------------------------------------------------------------------------|------|-----------------|------|--------------------------------------------------------------------------------------|------|-----------------|
| 22.8 | 46.2                                                                                 | 22.0 | CH(C6H5)3       | 59.3 | 75.6                                                                                 | 50.3 | CH(C6H5)3       |
| 31.7 | 53.3                                                                                 | 27.2 | " monoclinic    | 67.8 | 81.9                                                                                 | 59.7 |                 |
| 37.9 | 57.6                                                                                 | 30.7 |                 | 72.8 | 85.7                                                                                 | 66.4 |                 |
| 48.7 | 66.6                                                                                 | 39.5 |                 | 80.6 | 91.5                                                                                 | 77.2 |                 |
| 53.1 | 70.1                                                                                 | 43.5 |                 | 86.8 | 95.8                                                                                 | 88.1 |                 |

SOLUBILITY OF TRI PHENYL METHANE IN:

|      |                                                                                | -                                                       | (Hartley and     | Thomas     | s.)                                                                                  |                     |                 |
|------|--------------------------------------------------------------------------------|---------------------------------------------------------|------------------|------------|--------------------------------------------------------------------------------------|---------------------|-----------------|
|      |                                                                                | Py                                                      | rrole.           | Thiophene. |                                                                                      |                     |                 |
| t°.  | Gms.<br>CH(C <sub>6</sub> H <sub>8</sub> ) <sub>3</sub><br>per 100 Gms<br>Sol. | Mol.<br>per<br>cent<br>CH(C <sub>6</sub> H <sub>5</sub> | Solid<br>Phase.  | t°.        | Gms.<br>CH(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub><br>per 100 Gms.<br>Solution. | Mol.<br>per<br>cent | Solid<br>Phase. |
| 24.6 | 24.3                                                                           | 8.1                                                     | CH(C6H5)3.C4H4NH | 25.7       | 26.0                                                                                 | 10.8                | CH(C6H5)3.C4H4S |
| 29.0 | 0                                                                              | 10.4                                                    | " rhombs         | 33.5       | 31.1                                                                                 | 13.5                | " rhombs        |
| 31.5 | 33.4                                                                           | 12.1                                                    |                  | 44.0       | 43.6                                                                                 | 21.1                |                 |
| 36.8 | 40.6                                                                           | 15.8                                                    | CH(CsHs)3        | 47.6       | 48.4                                                                                 | 24.4                |                 |
| 42.7 | 49.I                                                                           | 20.9                                                    | " monoclinic     | 53.5       | 58.7                                                                                 | 32.9                |                 |
| 46.9 | 56.0                                                                           | 25.9                                                    |                  | 57.4       | 70.2                                                                                 | 44.7                |                 |
| 53.2 | 63.9                                                                           | 32.8                                                    |                  | 57.6       | 74.8                                                                                 | 50.6                |                 |
| 60.0 | 72.3                                                                           | 41.8                                                    |                  | 62.7       | 78.7                                                                                 | 56.0                | CH(C6H5)3       |
| 63.9 | 76.7                                                                           | 47.4                                                    |                  | 67.0       | 81.9                                                                                 | 60.8                | " monoclinic    |
| 68.5 | 81.9                                                                           | 55.6                                                    | **               | 67.2       | 82.1                                                                                 | 61.3                |                 |
| 71.1 | 84.4                                                                           | 59.8                                                    |                  | 74.2       | 87.4                                                                                 | 70.5                |                 |
| 80.0 | 91.5                                                                           | 74.8                                                    |                  | 79.0       | 90.3                                                                                 | 76.3                |                 |
| 89.2 | 97.6                                                                           | 91.8                                                    | u                | 87.2       | 96.2                                                                                 | 89.9                |                 |
|      |                                                                                |                                                         |                  |            |                                                                                      |                     |                 |

# METHYL ACETATE, Butyrate and Propionate.

SOLUBILITY IN WATER AT 22°. (Traube - Ber. 17, 2304, '84.)

100 grams H<sub>2</sub>O dissolve 25.0 grams CH<sub>3</sub>COOCH<sub>3</sub>; 1.7 grams C<sub>3</sub>H, COOCH<sub>3</sub>; 5.0 grams C<sub>2</sub>H<sub>5</sub>COOCH<sub>3</sub>.

METHYL IODIDE, Methylene Chloride and Methylene Bromide.

SOLUBILITY OF EACH IN WATER. (Rex-Z. physik. Chem. 55, 355, '66.)

| £°. | Grams per 100 Grams H2O. |                                   |         |
|-----|--------------------------|-----------------------------------|---------|
|     | CH <sub>3</sub> I.       | CH <sub>2</sub> Cl <sub>2</sub> . | CH2Br2. |
| 0   | 1.565                    | 2.363                             | 1.173   |
| IO  | 1.446                    | 2.122                             | 1.146   |
| 20  | 1.419                    | 2.000                             | 1.148   |
| 30  | 1.429                    | 1.969                             | 1.176   |

#### METHYL BUTYRATE. 204

#### METHYL BUTYRATE, METHYL VALERATE.

SOLUBILITY OF EACH IN AQUEOUS ALCOHOL MIXTURES. (Bancroft - Phys. Rev. 3, 193, '95.)

100 cc. H<sub>2</sub>O dissolve 1.15 cc. methyl butyrate at 20°.

| cc. Alcohol | cc. H <sub>2</sub> | 0 Added.*     | cc. Alcohol | cc. H <sub>2</sub> O Added.* |  |
|-------------|--------------------|---------------|-------------|------------------------------|--|
| in Mixture. | Butyrate.          | Valerate.     | in Mixture. | Valerate.                    |  |
| 3           | 2.34               | 1.66          | 27          | 41.15                        |  |
| 6           | 6.96               | 5.06          | 30          | 52.37                        |  |
| 9           | 12.62              | 9.03          | 33          | 62.25                        |  |
| 12          | 19.45              | 13.40         | 36          | 74.15                        |  |
| 15<br>18    | 28.13              | 18.41         | 39          | 91.45                        |  |
| 18          | <u>33.80</u>       | 24.00         | 42          | 00                           |  |
| 21          | 55.64              | 30. <b>09</b> |             |                              |  |
| 24          | 90                 | 36.72         |             |                              |  |

\* cc. H<sub>3</sub>O added to cause the separation of a second phase in mixtures of the given amounts of ethyl alcohol and 3 cc. portions of methyl butyrate and of methyl valerate respectively.

#### METHYL ETHYL KETONE CH,.CO.C.H.

SOLUBILITY IN WATER. (Rothmund - Z. physik. Chem. 26, 475. '98.)

By synthetic method, see Note, page 9.

| £ °. | Gms. Ketone per 100 Gms. |               | <b>t °</b> . | Gms. Ketone per 100 Gms. |               |
|------|--------------------------|---------------|--------------|--------------------------|---------------|
|      | Aq. Layer.               | Ketone Layer. | 6            | Aq. Layer.               | Ketone Layer. |
| -10  | 34 - 5                   | 89.7          | 90           | 16.1                     | 84.8          |
| + 10 | 26 · I                   | 90.0          | 110          | 17.7                     | 8o.o          |
| 30   | 21.9                     | 89.9          | 130          | 21.8                     | 71.9          |
| 50   | 17.5                     | 89.0          | 140          | 26.0                     | 64.0          |
| 70   | 16.2                     | 85.7          | 151.8        | (crit. temp.)            | 44 . 2        |

#### MOLYBDENUM TRIOXIDE MOO.

100 gms. cold H<sub>2</sub>O dissolve 0.187 gm. MoO<sub>3</sub>. (Dumas: Buchlolz.) 100 gms. hot H<sub>2</sub>O dissolve 0.104 gm. MoO<sub>3</sub>. (Hatchett.)

#### MORPHINE C<sub>17</sub>H<sub>10</sub>NO<sub>2</sub>.H<sub>2</sub>O.

.

SOLUBILITY IN SEVERAL SOLVENTS. (U. S. P.; Müller - Apoth.-Ztg. 18, 257, '03.)

| Solvent. Gr                | Gms. Morphine per 100 Gms. Solution. |           |                      | C<br>Solvent. | Gms. Morphine per 100 Gms.<br>Solution. |             |
|----------------------------|--------------------------------------|-----------|----------------------|---------------|-----------------------------------------|-------------|
|                            | At 18°-22°                           | . At 25°. | At 80 <sup>3</sup> . |               | At 18°-22°.                             | At 25°.     |
| Water                      | 0.0283                               | 0.030     | 0.0961               | Chloroform    | 0.0655                                  | 0.0555      |
| Alcohol                    |                                      | 0.600     | 1.31 (60°)           | Amyl Alcohol  | •••                                     | 0.8810      |
| Ether                      | 0.0131                               | 0.0224    | •••                  | Ethyl Acetate | 0.1861                                  | 0.1905      |
| Ether sat. with            |                                      |           |                      | Petroleum     | •                                       |             |
| H,O                        | 0.0094                               | • • •     | •••                  | Ether         | 0.0854                                  | • • •       |
| H <sub>2</sub> O sat. with |                                      |           |                      | Carbon Tetra  |                                         |             |
| Ether                      | 0.0447                               | • • •     | • • •                | Chloride      | 0.0156                                  | 0.032 (17°) |
| Benzene                    | 0.0625                               | •••       | •••                  | Glycerine     | 0.45 (15.5°)                            | •••         |

•

#### Solubility of Morphine in Aqueous Solutions of Salts and Bases at Room Temperature, Shaken Eight Days.

(Dieterich - Pharm. Centrh. 31, 395, '90.)

|                                                 | In N/10 Sa    | lt or Base. | In N/1 Salt or Base.<br>Grams per Liter. |               |  |
|-------------------------------------------------|---------------|-------------|------------------------------------------|---------------|--|
| A. C. h D                                       | Grams pe      | er Liter.   |                                          |               |  |
| Aq. Salt or Base.                               | Salt or Base. | Morphine.   | Salt or Base.                            | Morphine.     |  |
| NHOH                                            | 3.51          | 0.20        | 35.08                                    | 0.505         |  |
| (NH <sub>4</sub> ) <sub>2</sub> CO <sub>2</sub> | 4.80          | 0.031       | 48.03                                    | 0. <b>040</b> |  |
| KOH                                             | 4.62          | 2.78        | 46.16                                    | •••           |  |
| K <sub>2</sub> CO <sub>2</sub>                  | 6.92          | 0.20        | 69.15                                    | 0.379         |  |
| KHCÔ,                                           | 10.02         | 0.024       | 100.16                                   | 0.040         |  |
| NaOH                                            | 4.00          | 3.33        | 40.05                                    | •••           |  |
| Na <sub>2</sub> CO <sub>2</sub>                 | 5.30          | 0.09        | 53.03                                    | 0.14          |  |
| NaHCÕ <b>,</b>                                  | 8.41          | 0.032       | 84.06                                    | 0.044         |  |
| Ca(OH), (sat.)                                  |               | I.00 (25°)  | •••                                      | •••           |  |

**MORPHINE ACETATE** CH<sub>2</sub>COOH.C<sub>17</sub>H<sub>19</sub>NO<sub>3</sub>.3H<sub>2</sub>O, Morphine Hydrochloride HCl.C<sub>17</sub>H<sub>19</sub>NO<sub>3</sub>.3H<sub>2</sub>O, Morphine Sulphate H<sub>2</sub>SO<sub>4</sub>. (C<sub>17</sub>H<sub>19</sub>NO<sub>3</sub>)<sub>3</sub>.5H<sub>2</sub>O, and Apo Morphine Hydrochloride HCl.C<sub>17</sub> H<sub>17</sub>NO<sub>2</sub>.

#### SOLUBILITY IN SEVERAL SOLVENTS.

(U. S. P.)

|            | Grams per 100 Grams of Solvent. |       |                     |            |       |        |           |              |
|------------|---------------------------------|-------|---------------------|------------|-------|--------|-----------|--------------|
| Solvent.   | Acet                            | ate.  | Hydro               | chloride.  | Sul   | phate. | Apo M. Hy | trochloride. |
|            | 25°.                            | 80°.  | 25°.                | 80°.       | 25°.  | 80°.   | 25°.      | 80°.         |
| Water      | 44.9                            | 50.0  | 5.81                | 200.0      | 6.53  | 166.6  | 2.53      | 6.25         |
| Alcohol    | 4.6                             | 40.0* | 2.4                 | 2.8*       | 0.22  | 0.53*  | 2.62      | 3.33         |
| Chloroform | 0.21                            |       |                     | •••        | • • • |        | 0.026     | •••          |
| Ether      | •••                             | • • • | •••                 | •••        | • • • | • • •  | 0.053     | •••          |
| Glyœrine   | 19.2                            | •••   | 20.0†               | •••        | • • • | • • •  | •••       | • • •        |
|            |                                 |       | € 60 <sup>8</sup> . | <b>†</b> I | 5·5°· |        |           |              |

100 gms. H<sub>2</sub>O dissolve 1.69 gms. apo morphine hydrochloride at 15.5°, and 2.04 gms. at 25°.

100 gms. 90% alcohol dissolve 1.96 gms. apo morphine hydro chlorde at 25°. (Doit – Pharm. J. [4] 22, 345, '75.)

100 gms. H<sub>2</sub>O dissolve 4.17 gms. morphine sulphate at 15°. (Power - Am. J. Pharm. March, '8e.)

#### MUSTARD OIL Allyl Isosulphocyanic Ester CS:NC,H,

.

SOLUBILITY IN SULPHUR BY SYNTHETIC METHOD. See Note, p. 9.

#### (Alezejew-Ann. Physik. Chem. 28, 305, '86.)

| <b>t</b> *.     | Grams Mustard Oil per 100 grams. |                    |  |  |  |
|-----------------|----------------------------------|--------------------|--|--|--|
| 6               | Sulphur Layer.                   | Mustard Oil Layer. |  |  |  |
| 90              | 10                               | 72                 |  |  |  |
| 100             | 12                               | 67                 |  |  |  |
| 110             | 15                               | 62                 |  |  |  |
| I 20            | 23                               | 51                 |  |  |  |
| 124 (crit. temp | .)                               | 35                 |  |  |  |

#### a NAPHTHYLAMINE

- **a NAPHTHYLAMINE** p Sulphonic Acid (Naphtion Acid), I: 4 **a**  $C_{10}H_4NH_4.SO_3H$  and **a** Naphthalamine o Sulphonic Acid, I: 2 **a**  $C_{10}H_6NH_4.SO_2H$ .

| Solubility | OF  | Елсн       | IN   | WATER.        |
|------------|-----|------------|------|---------------|
| (Dolinsk   | i — | Ber. 38, 1 | 836, | <b>'o</b> 5.) |

|              | Gms.per 100      | Gms. H <sub>2</sub> O. |     | Gms. per 100 Gms. H2O. |                    |  |
|--------------|------------------|------------------------|-----|------------------------|--------------------|--|
| <b>t °</b> . | Sulphonic<br>Ac. | o Sulphonic<br>Ac.     | t°. | ∳ Sulphonic<br>Ac.     | o Sulphonic<br>Ac. |  |
| ο            | 0.027            | 0.24                   | 50  | 0.059                  | 0.81               |  |
| IO           | 0.029            | 0.32                   | 60  | 0.075                  | <b>I</b> .0I       |  |
| 20           | 0.031            | 0.41                   | 70  | 0.097                  | I.37               |  |
| 30           | 0.037            | 0.52                   | 8o  | 0.130                  | I.80               |  |
| 40           | 0.048            | 0.65                   | 90  | 0.175                  | 2 . 40             |  |
|              |                  | -                      | 100 | 0.228                  | 3.19               |  |

#### **NAPHTHALENE** C<sub>10</sub>H<sub>8</sub>.

÷

,

SOLUBILITY IN METHYL, ETHYL, AND PROPYL ALCOHOLS. (Speyers — Am. J. Sci. [4] 14, 294, '02; at 19.5°, de Bruyn — Z. physik. Chem. 10, 784, '92; at 11°, Timo feiew -- Compt. rend. 112, 1137, '91.)

The original results were calculated to a common basis, plotted on cross-section paper, and the following table read from the curves.

|              | In Methyl Alcohol.        |                                                                            | In Ethyl Alcohol.         |                                                                                          | In P-opyl Alcohol.        |                                                                                          |
|--------------|---------------------------|----------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------|
| <b>t °</b> . | Wt. of 1 cc.<br>Solution. | Gms. C <sub>10</sub> H <sub>8</sub><br>per 100 Gms.<br>CH <sub>3</sub> OH. | Wt. of 1 cc.<br>Solution. | Gms. C <sub>10</sub> H <sub>8</sub><br>per 100 Gms.<br>C <sub>2</sub> H <sub>6</sub> OH. | Wt. of 1 cc.<br>Solution. | Gms. C <sub>10</sub> H <sub>8</sub><br>per 100 Gms.<br>C <sub>8</sub> H <sub>7</sub> OH. |
| 0            | 0.8194                    | 3.48                                                                       | 0.8175                    | 5.0                                                                                      | 0.8285                    | <b>4</b> · 45                                                                            |
| 10           | 0.812                     | 5.6                                                                        | 0.814                     | 7.0                                                                                      | 0.824                     | 5.6                                                                                      |
| 20           | o.807                     | 8.2                                                                        | 0.810                     | 9.8                                                                                      | 0.821                     | 8.2                                                                                      |
| 25           | 0.805                     | 9.6                                                                        | 0.809                     | 11.3                                                                                     | 0.820                     | 9.6                                                                                      |
| 30           | 0.804                     | II . 2                                                                     | 0.809                     | 13.4                                                                                     | 0.820                     | 11.4                                                                                     |
| 40           | 0.805                     | 16.2                                                                       | 0.812                     | 19.5                                                                                     | 0.823                     | 16.4                                                                                     |
| 50           | 0.813                     | 26.0                                                                       | 0.822                     | 35.0                                                                                     | 0.837                     | 26.o                                                                                     |
| 60           | 0.837                     | 50.0                                                                       | 0.855                     | 67.0                                                                                     | o.867                     | 50.0                                                                                     |
| 65           | 0.870                     | •••                                                                        | 0.890                     | 96.o                                                                                     | 0.897                     | 80.0                                                                                     |
| 70           | 0.9023 (68°               | )                                                                          | 0.930                     | 179.0                                                                                    | 0.933                     | 134.1 (68.5°)                                                                            |

SOLUBILITY OF NAPHTHALENE IN AQUEOUS ACETONE. (Cady - J. Physic. Ch. 2, 168, '98.)

|      | Grams per 100 Grams Solution. |               |              |  |  |
|------|-------------------------------|---------------|--------------|--|--|
| t°.  | Acetone.                      | Water.        | Naphthalene. |  |  |
| 65.5 | 10.0                          | 89.92         | 0.05         |  |  |
| 55.3 | 19.91                         | 80.0          | 0.09         |  |  |
| 45   | 29.92                         | <b>69</b> .67 | 0.41         |  |  |
| 38   | 40.81                         | 58.22         | 0.97         |  |  |
| 32.2 | 48.67                         | 48.68         | 2.65         |  |  |
| 28.5 | 57 43                         | 36.64         | 5.93         |  |  |
| 28.2 | 60.43                         | 25.75         | 13.82        |  |  |

The isotherms for intervals of 10° lie so close together that they are practically indistinguishable for the greater part of their length.

Toluene.

Solubility of Naphthalene in:

|   |             | Chloroform.               | (                                                                           | Carbon Tetra<br>Chloride.                                             | Carbon Di<br>Sulphide.                                                |
|---|-------------|---------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|
|   |             | (Speyers; Etard.)         | (S                                                                          | ichröder — Z. physik<br>Ch. 11, 457, '93.) 1                          | . (Arctowski - Compt.<br>end, 121, 123,'95; Etard.)                   |
|   | <b>t°</b> . | Wt. of 1 cc.<br>Solution. | Gms. C <sub>10</sub> H <sub>8</sub> per<br>100 Grams<br>CHCl <sub>8</sub> . | Gms. C <sub>18</sub> H <sub>8</sub> per<br>100 Gms. Sat.<br>Solution. | Gms. C <sub>10</sub> H <sub>8</sub> per<br>100 Gms. Sat.<br>Solution. |
| - | 108         | •••                       | • • •                                                                       | •••                                                                   | 0.62                                                                  |
| - | 82          | •••                       | •••                                                                         | • • •                                                                 | I.38                                                                  |
| — | 50          | •••                       | • • •                                                                       | •••                                                                   | 2.3                                                                   |
| _ | 30          | • • •                     | 8.8                                                                         | •••                                                                   | 6.6                                                                   |
| _ | 10          |                           | 15.6                                                                        | •••                                                                   | <b>I4</b> · I                                                         |
|   | 0           | 1.393                     | 19.5                                                                        | 9.0                                                                   | 19.9                                                                  |
| + | 10          | 1.355                     | 25.5                                                                        | 14.0                                                                  | 27 . 5                                                                |
|   | 20          | I.300                     | 31.8                                                                        | 20 · O                                                                | 36.3                                                                  |
|   | 25          | 1 . 280                   | 35.5                                                                        | 23.0                                                                  | 41.0                                                                  |
|   | 30          | 1.255                     | 40 · I                                                                      | 26.5                                                                  | 46 o                                                                  |
|   | 40          | I . 205                   | <b>4</b> 9 · 5                                                              | 35.5                                                                  | 57 . 2                                                                |
|   | 50          | 1.150                     | 60.3                                                                        | 47 · 5                                                                | 67.6                                                                  |
|   | 60          | I .090                    | 73 . I                                                                      | 62.5                                                                  | 79 - 2                                                                |
|   | <b>7</b> 0  | I .040                    | 87.2                                                                        | 80.0                                                                  | 90.3                                                                  |

NOTE. — Speyers' results upon the solubility of  $C_{10}H_a$  in CHCl<sub>a</sub>, when calculated to grams per 100 grams of solvent, agree quite well with Etard's (Ann. chim. phys. [7] 2 570, '94 figures, reported on the basis of grams  $C_{10}H_a$  per 100 grams saturated solution.

#### SOLUBILITY OF NAPHTHALENE IN: (Schröder; Etard; Speyers.)

#### Benzene. Chlor Benzene. Hexane.

| t°.  | Gms. C <sub>10</sub> H <sub>8</sub><br>per 100 Gms.<br>Solution. | Gms. C <sub>10</sub> H <sub>8</sub><br>per 100 Gms.<br>Solution. | Gms. C <sub>10</sub> H <sub>0</sub><br>per 100 Gms.<br>Solution. | Wt. of 1 cc.<br>Solution. | Gms. C <sub>10</sub> H <sub>8</sub><br>per 100 Gms.<br>C <sub>6</sub> H <sub>8</sub> -CH <sub>5</sub> |
|------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------|
| - 50 | •••                                                              | • • •                                                            | 0.3                                                              | • • •                     | •••                                                                                                   |
| - 20 | • • •                                                            |                                                                  | 1.9                                                              | • • •                     | • • •                                                                                                 |
| 0    | •••                                                              | • • •                                                            | 5.5                                                              | 0.9124                    | •••                                                                                                   |
| +10  | 27.5                                                             | 24.0                                                             | 9.0                                                              | 0.9126                    | 15.0                                                                                                  |
| 20   | 36.0                                                             | 31.0                                                             | 14.0                                                             | 0.9135                    | <b>2</b> 8.0                                                                                          |
| 25   | 40.5                                                             | 35.0                                                             | 17.5                                                             | 0.9155                    | 36.0                                                                                                  |
| 30   | 45.5                                                             | 39.0                                                             | 21.0                                                             | 0.9180                    | 42.0                                                                                                  |
| 40   | 54.0                                                             | 48.0                                                             | 30.8                                                             | 0.9250                    | 56.0                                                                                                  |
| 50   | 65.0                                                             | 57 5                                                             | 43.7                                                             | 0.9350                    | Ğ9.5                                                                                                  |
| δo   | 77.5                                                             | 70.5                                                             | 60.6                                                             | 0.9475                    | 83.0                                                                                                  |
| 70   | 88.0                                                             | 85.0                                                             | 78.8                                                             | 0.9640                    | 97.5                                                                                                  |
| 80   | •••                                                              | •••                                                              | •••                                                              | 0.9770                    | III.O                                                                                                 |

#### β NAPHTHOIC ACID C<sub>10</sub>H<sub>7</sub>COOH.

One liter of aqueous solution contains 0.058 gram C<sub>10</sub>H<sub>7</sub>COOH at 25°. (Paul - Z. physik. Ch. 14, 111, '94.)

#### β NAPHTHOL

208

#### β NAPHTHOL C<sub>10</sub>H<sub>7</sub>OH.

100 grams  $H_2O$  dissolve 0.105 gram at 25°, and 1.33 grams at b. pt.; 100 grams alcohol dissolve 164.0 grams at 25°.

#### NARCEINE.

100 grams pure carbon tetra chloride dissolve 0.011 gram narceine at 17°. (Schindelmeiser – Chem.-Ztg. 25, 129, '01.)

#### NEODYMIUM CHLORIDE NdCl,

100 grams H<sub>2</sub>O dissolve 98.7 grams NdCl<sub>1</sub> at 13°, and 140.4 grams at 100°. (Matignon - Compt. rend. 133, 289, '01)

#### NEODYMIUM SULPHATE Nd<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>.

SOLUBILITY IN WATER. (Muthmann and Rolig — Ber. 31, 1728, '98.)

| <b>t°</b> . | Gms. Nd <sub>2</sub> (SO <sub>4</sub> ); | per 100 Gms. | <b>t°</b> . | Gms. Ndg(SO4)3 per 100 Gms. |        |  |
|-------------|------------------------------------------|--------------|-------------|-----------------------------|--------|--|
|             | Solution.                                | Water.       | ¥*.         | Solution.                   | Water. |  |
| 0           | 8.7                                      | 9.5          | 50          | 3.5                         | 3.7    |  |
| 16          | 6.6                                      | 7.1          | Šo          | 2.6                         | 2.7    |  |
| 30          | 4.7                                      | 5.0          | 108         | 2.2                         | 2.3    |  |

#### NICKEL BROMATE Ni(BrO,),.6H,O.

100 grams cold water dissolve 27.6 grams nickel bromate.

#### NICKEL BROMIDE NiBr.

#### SOLUBILITY IN WATER. (Etard — Ann. chim. phys. [7] 2, 530, '94.)

| t°.  | G ms. NiBr <sub>2</sub> per<br>100 Gms. Solution. | ŧ°. | Gms. NiBr <sub>3</sub> per<br>100 Gms. Solution. | t°.  | Gms. NiBr <sub>2</sub> per<br>100 Gms. Solution. |
|------|---------------------------------------------------|-----|--------------------------------------------------|------|--------------------------------------------------|
| - 20 | <b>47</b> · 7                                     | 25  | 57.3                                             | 8o   | 60.6                                             |
| - 10 | 50.5                                              | 30  | 58.0                                             | 100  | 6o.8                                             |
| 0    | 53.0                                              | 40  | 59 · I                                           | I 20 | 60.9                                             |
| +10  | 55 · O                                            | 50  | 60.0                                             | 140  | 0. IÒ                                            |
| 20   | 56.7                                              | 60  | 60.4                                             |      |                                                  |

#### NICKEL CHLORATE Ni(ClO<sub>3</sub>)<sub>2</sub>.

#### SOLUBILITY IN WATER. (Meusser – Ber. 35, 1419, '02.)

| t°.         | Gms.<br>Ni(ClO <sub>2</sub> ) <sub>2</sub><br>per 100 Gms.<br>Solution. | Mols.<br>Ni(ClO <sub>3</sub> )<br>per 100<br>Mols. H <sub>2</sub> O | Phase.                                                | t°.   | Gms.<br>Ni(ClO <sub>3</sub> ) <sub>2</sub><br>per 100 Gms.<br>Solution. | Mols.<br>Ni(ClO <sub>3</sub> ) <sub>2</sub><br>per 100<br>Mols. H <sub>2</sub> C | Phase.                                                |
|-------------|-------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------|-------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------|
| <u>– 18</u> | 49 - 55                                                                 | 7.84                                                                | Ni(ClO <sub>3</sub> ) <sub>2.6</sub> H <sub>2</sub> O | 48    | 67.60                                                                   | 16.65                                                                            | Ni(ClO <sub>3</sub> ) <sub>2.4</sub> H <sub>2</sub> O |
| - 8         | 51.52                                                                   | 8.49                                                                | 44                                                    | 55    | 68.78                                                                   | 17.59                                                                            | •                                                     |
| 0           | 52.66                                                                   | 8.88                                                                | "                                                     | 65    | 69.05                                                                   | 18.01                                                                            | "                                                     |
| + 18        | 56.74                                                                   | 10.47                                                               | **                                                    | 79·5  | 75.50                                                                   | 24.68                                                                            | **                                                    |
| 40          | 64 . 47                                                                 | 15.35                                                               | •                                                     | -13.5 | 31 .85                                                                  | 3.73                                                                             | Iœ                                                    |
|             |                                                                         |                                                                     |                                                       | - 9   | 26.62                                                                   | 2.90                                                                             | **                                                    |

Sp. Gr. of solution saturated at + 18 = 1.661.

#### NICKEL OHLORIDE NiCl<sub>2</sub>.

#### SOLUBILITY IN WATER.

200

(Etard; at 12°, Ditte - Compt. rend. 92, 342, '81.)

| <b>t*</b> . | Gms. NiCl <sub>2</sub> per<br>100 Gms. Solution. | ŧ°. | Gms. NiCl <sub>2</sub> per<br>100 Gms. Solution. | t°. | Gms. NiCl <sub>2</sub> per<br>100 Gms. Solution. |
|-------------|--------------------------------------------------|-----|--------------------------------------------------|-----|--------------------------------------------------|
| -17         | <b>29</b> · 7                                    | 25  | 40 · O                                           | 60  | 45 · I                                           |
| 0           | 35.0                                             | 30  | 40.8                                             | 70  | 46.o                                             |
| + 10        | 37 · 3                                           | 40  | 42 . 3                                           | 78  | 46.6                                             |
| 20          | 39.1                                             | 50  | <b>43</b> · 9                                    | 100 | 46.7                                             |

1000 cc. sat. HCl solution dissolve 4.0 grams NiCl, at 12°. 100 grams abs. alcohol dissolve 53.71 grams NiCl, 6H,O at room temperature.

100 grams abs. alcohol dissolve 10.05 grams NiCl<sub>2</sub> at room temperature. (Bödtker – Z. physik. Chem. 22, 511, '97.) 100 grams abs. alcohol dissolve 2.16 grams NiCl<sub>2</sub>.7H<sub>2</sub>O at 17°, and 1.4 grams at 3°. (de Bruyn – Rec. trav. chim. 11, 156, '92.)

100 grams saturated solution in glycol contain 16.2 grams NiCl, at room temperature. (de Coninck – Bul. acad. roy. Belgique, 350, 'os.)

#### NICKEL IODATE Ni(IO1)2.

#### SOLUBILITY IN WATER.

(Meusser - Ber. 34, 2440, '01.)

| t°. | Gms.<br>Ni(IO <sub>2</sub> )2<br>per 100 Gms.<br>Solution. | Mols.<br>Ni(IO <sub>2</sub> );<br>per 100 Mols<br>H <sub>2</sub> O. | Solid<br>. Phase.                                        | t°. | Gms.<br>Ni(IO <sub>3</sub> ) <sub>2</sub><br>per 100 Gms.<br>Solution. | Mols.<br>Ni(IO <sub>2</sub> )2<br>per 100 Mols<br>H2O. | Solid<br>Phase.   |
|-----|------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|-----|------------------------------------------------------------------------|--------------------------------------------------------|-------------------|
| ο   | 0.73                                                       | 0.033                                                               | Ni(IO <sub>3</sub> ) <sub>2-4</sub> H <sub>2</sub> O     | 18  | 0.55                                                                   | 0.0245                                                 | Ni(IO3)3.2H2O (2) |
| 18  | I.OI                                                       | 0.045                                                               | "                                                        | 50  | 0.81                                                                   | 0.035                                                  | "                 |
| 30  | I - 4I                                                     | 0.063                                                               | 64                                                       | 75  | I.03                                                                   | 0.045                                                  | 44                |
| ο   | O · 53                                                     | 0.023                                                               | Ni(IO <sub>3</sub> ) <sub>2</sub> .2H <sub>2</sub> O (1) | 80  | I.I2                                                                   | 0.049                                                  | 46                |
| 18  | o.68                                                       | 0.030                                                               | **                                                       | 30  | 1.135                                                                  | 0.050                                                  | Ni(IO3)2          |
| 30  | o .86                                                      | 0. <b>039</b>                                                       | 44                                                       | 50  | 1.07                                                                   | 0.046                                                  | 44                |
| 50  | 1.78                                                       | 0.080                                                               | **                                                       | 75  | I .02                                                                  | 0.045                                                  | 44                |
| 8   | 0.52                                                       | 0.023                                                               | Ni(IO3)3.2H2O (2)                                        | 90  | o.988                                                                  | 0.044                                                  | •                 |
|     |                                                            | (1)                                                                 | Dihydrate.                                               | (2  | ) 🛱 Dihydrat                                                           | e.                                                     |                   |

#### NICKEL IODIDE Nil,

#### Solubility in Water.

(Etard - Ann. chim. phys. [7] 2, 546, '94.)

| <b>t °</b> . | Gms. Nil <sub>2</sub> per<br>100 Gms. Solution. | t°. | Gms. Nil <sub>2</sub> per<br>100 Gms. Solution. | t°. | Gms. Nils per<br>100 Gms. Solution. |
|--------------|-------------------------------------------------|-----|-------------------------------------------------|-----|-------------------------------------|
| - 20         | 52.0                                            | 25  | 60.7                                            | 60  | 64.8                                |
| 0            | 55.4                                            | 30  | <b>б</b> і.7                                    | 70  | 65.0                                |
| 10           | 57 - 5                                          | 40  | 63.5                                            | 80  | 65.2                                |
| 20           | 59 · 7                                          | 50  | 64 . 7                                          | 90  | 65.3                                |

#### NICKEL NITRATE

### 210

#### NICKEL NITRATE Ni(NO<sub>3</sub>)<sub>2</sub>.

#### SOLUBILITY IN WATER.

(Funk - Wiss. Abh. p. t. Reichanstalt, 3, 439, '00.)

| t°.  | Gms.<br>Ni(NO <sub>2</sub> ) <sub>2</sub><br>per 100 Gms.<br>Solution. | Mols.<br>Ni(NO <sub>3</sub> )3<br>per 100 Mo<br>H2O. | Solid<br>ls. Phase. | <b>t°.</b> ] | Gms.<br>Ni(NO3)3<br>per 100 Gms.<br>Solution. | Mols.<br>Ni(NO <sub>2</sub> )2<br>per 100 Mols.<br>H2O. | Solid<br>Phase.                                      |
|------|------------------------------------------------------------------------|------------------------------------------------------|---------------------|--------------|-----------------------------------------------|---------------------------------------------------------|------------------------------------------------------|
| -23  | 39.02                                                                  | 6.31                                                 | Ni(NO3)3.9H2O       | 20           | 49.06                                         | 9.49                                                    | Ni(NO3)2.6H2O                                        |
| -21  | 39.48                                                                  | 6.43                                                 | **                  | 41           | 55.22                                         | 12.1                                                    | 44                                                   |
| - 10 | .5 44.13                                                               | 7.79                                                 | **                  | 56.7         | 62.76                                         | 16.7                                                    | **                                                   |
| -21  | 39.94                                                                  | 6.55                                                 | Ni(NO3)2.6H2O       | 58           | 61.61                                         | 15.9                                                    | Ni(NO <sub>2</sub> ) <sub>3</sub> .3H <sub>2</sub> O |
| - 12 | .5 41.59                                                               | 7.01                                                 | **                  | 60           | 61.99                                         | 16.0                                                    | **                                                   |
| - 10 | 42.11                                                                  | 7.16                                                 | "                   | 64           | 62.76                                         | 16.6                                                    | **                                                   |
| - 6  | 43.00                                                                  | 7 · 44                                               | 4                   | 70           | 63.95                                         | 17.6                                                    | 66                                                   |
| 0    | 44.32                                                                  | 7.86                                                 | **                  | 90           | 70.16                                         | 23.I                                                    | "                                                    |
| +18  | 48.59                                                                  | 9.3                                                  | **                  | 95           | 77.12                                         | 33 · 3                                                  | 46                                                   |

100 grams sat. solution in glycol contain 7.5 grams Ni(NO<sub>3</sub>) at room temperature. (de Coninck.)

#### NICKEL SULPHATE NiSO.

#### SOLUBILITY IN WATER.

(Steele and Johnson - J. Ch. Soc. 85, 116, '04; see also Etard and Mulder.)

| <b>t°</b> . | Grams Ni<br>100 ( |         | Solid<br>Phase. | t°.        | Grams N<br>100 | iSO <sub>4</sub> per<br>Gms. | Solid<br>Phase. |  |
|-------------|-------------------|---------|-----------------|------------|----------------|------------------------------|-----------------|--|
|             | Solution.         | Water.  | r nase.         |            | Solution.      | Water.                       | r nase.         |  |
| 5           | 20 . 47           | 25.74   | NiSO4.7H2O      | 33.0       | 30.25          | <b>43</b> · 35               | NiSO4.6H2O      |  |
| 0           | 21.40             | 27 . 22 | 44              | 35.6       | 30.45          | <b>4</b> 3 · 79              | ' (blue)        |  |
| 9           | 23.99             | 31.55   | **              | 44.7       | 32.45          | 48.05                        | "               |  |
| 22.6        | 27 . 48           | 37.90   | "               | 50.0       | 33.39          | 50.15                        | **              |  |
| 30          | 29.99             | 42.46   | **              | 53.0       | 34.38          | 52.34                        | ••              |  |
| 32.3        | 30.57             | 44.02   | 44              | 54·5       | 34 · 43        | 52.50                        | NiSO4.6H2O      |  |
| 33          | 31.38             | 45 . 74 | **              | 57.0       | 34.81          | 53.40                        | " (green)       |  |
| 34          | 31.20             | 45.5    | ••              | 60         | 35.43          | 54.80                        | **              |  |
| 32.3        | 30.35             | 43 . 57 | NiSO4.6H2O      | 70         | 37.29          | 59.44                        | "               |  |
| 33.0        | 30.25             | 43.35   | " (blue)        | 8o         | 38.71          | 63.17                        | ••              |  |
| 34.0        | 30.49             | 43.83   | -               | <b>9</b> 9 | 43 . 42        | 76.71                        |                 |  |

Transition points, hepta hydrate  $\rightleftharpoons$  hexa hydrate = 31.5°. Hexa hydrate (blue)  $\rightleftharpoons$  hexa hydrate (green) = 53.3°.

| Desilte                 | -+0     | (Fock - Z    | . Kryst. Min.  | 28, 387, '97.)  |                |                           |
|-------------------------|---------|--------------|----------------|-----------------|----------------|---------------------------|
| Results<br>Gms. per 100 |         | Mol. per cen | t in Solution. | Mol. per cent i | n Solid Phase. | Crystal                   |
| CuSO4.                  | NiSO4.  | CuSO4.       | NiSO4.         | CuSO4.          | NiSO4.         | Form.                     |
| 9.62                    | 583.9   | 1.57         | 98.43          | 0.35            | 99.65          | Rhombic                   |
| 41.66                   | 484.4   | 7.69         | 92.31          | 2.12            | 97.88          | "                         |
| 75.39                   | 553.5   | 11.66        | 88.34          | 4.77            | 95.23          | Tetragonal                |
| 106.40                  | 506.5   | 16.92        | 83.08          | 6.52            | 93.48          |                           |
| 172.0                   | 483.8   | 25.63        | 74.37          | 13.88           | 86.17          |                           |
| 186.9                   | 468.0   | 27.90        | 72.10          | [18.77          | 81.23          | Tetragonal                |
| 100.9                   | 400.0   | -1.90        | 1              | (94.91          | 5.09           | Triclinic                 |
| Results                 | at 67°. |              |                |                 |                |                           |
| 20.04                   | 729.3   | 2.65         | 97.35          | 0.93            | 99.07          | Monoctinic                |
| 66.01                   | 706.2   | 8.31         | 91.69          | 2.86            | 97.14          |                           |
| 88.08                   | 501.6   | 13.55        | 86.45          | 3.92            | 96.08          | "                         |
| 47.94                   | 675.0   | 16.39        | 83.61          | 6.66            | 93.34          |                           |
| 249.9                   | 747.8   | 24.46        | 75.54          | 22.32           | 77.68          | { Monoclinic<br>Triclinic |

SOLUBILITY OF MIXTURES OF NICKEL SULPHATE AND COPPER SULPHATE. (Fock - Z. Kryst. Min. 28, 387, '97.)

C

211

#### SOLUBILITY OF MIXTURES OF NICKEL SULPHATE AND SODIUM SUL-PHATE, ETC.

(Koppel; Wetzel - Z. physik. Chem. 52, 401, '05.)

| t°.  | Gms. S | per 100<br>olution. | Gms.<br>Gms. | per 100<br>H <sub>2</sub> O. | Mols. J<br>Mols. | er 100<br>H <sub>2</sub> O. | Solid                                                                                                                         |
|------|--------|---------------------|--------------|------------------------------|------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------|
|      | NiSO4. | NagSO4.             | NiSO4.       | Na2SO4.                      | NiSO4.           | NagSO4.                     | Phase.                                                                                                                        |
| 0    | 16.94  | 7.61                | 22.46        | 10.09                        | 2.61             | 1.28                        |                                                                                                                               |
| 5    | 17.99  | 10.85               | 25.28        | 15.24                        | 2.94             | 1.93                        | NiSO4.7H2O +<br>Na2SO4.10H2O                                                                                                  |
| IO   | 18.97  | 13.85               | 28.26        | 20.64                        | 3.29             | 2.61                        |                                                                                                                               |
| 20   | 18.76  | 17.21               | 29.31        | 26.87                        | 3.410            | 3.404                       | NiNa2(SO4)2-4H2O                                                                                                              |
| 25   | 17.85  | 16.54               | 27.33        | 25.33                        | 3.181            | 3.208                       |                                                                                                                               |
| 30   | 16.74  | 15.34               | 24.64        | 22.58                        | 2.868            | 2.861                       |                                                                                                                               |
| 35   | 16.28  | 14.91               | 23.66        | 21.67                        | 2.753            | 2.744                       |                                                                                                                               |
| 40   | 15.35  | 14.49               | 21.88        | 20.65                        | 2.546            | 2.616                       |                                                                                                                               |
| 18.5 | 19.61  | 16.49               | 30.70        | 25.80                        | 3.56             | 3.27                        | )                                                                                                                             |
| 20   | 20.13  | 16.15               | 31.59        | 25.35                        | 3.67             | 3.21                        |                                                                                                                               |
| 25   | 21.20  | 14.77               | 33.11        | 23.06                        | 3.85             | 2.92                        | NiNag(SO4)9-4H2O +<br>NiSO4-7H2O                                                                                              |
| 30   | 22.60  | 12.80               | 34.98        | 19.82                        | 4.07             | 2.59                        | N1SO4.7H2O                                                                                                                    |
| 35   | 23.62  | 10.78               | 36.01        | 16.43                        | 4.19             | 2.08                        |                                                                                                                               |
| 40   | 24.92  | 9.39                | 37.93        | 14.29                        | 4.41             | 1.81                        | 1                                                                                                                             |
| 18.5 | 16.80  | 18.93               | 26.14        | 29.45                        | 3.04             | 3.72                        |                                                                                                                               |
| 20   | 15.48  | 20.18               | 24.06        | 31.37                        | 2.80             | 3.97                        | NiNa <sub>2</sub> (SO <sub>4</sub> ) <sub>2-4</sub> H <sub>2</sub> O +<br>Na <sub>2</sub> SO <sub>4</sub> .10H <sub>2</sub> O |
| 25   | 10.92  | 24.12               | 16.81        | 37.13                        | 1.96             | 4.70                        | 1102001.101120                                                                                                                |
| 30   | 6.40   | 28.71               | 9.87         | 44.25                        | 1.15             | 5.60                        | ,                                                                                                                             |
| 35   | 4.54   | 31.65               | 7.13         | 49.59                        | 0.838            | 6.28                        | ) NiNa2(SO4)2-4H2O+                                                                                                           |
| 40   | 4.63   | 31.37               | 7.24         | 49.03 -                      | 0.843            | 6.21                        | Na <sub>2</sub> SO <sub>4</sub>                                                                                               |

#### NICKEL SULPHATE

#### 212

#### SOLUBILITY OF NICKEL POTASSIUM SULPHATE NiK, (SO,), 6H,O IN WATER.

| <b>t •</b> . |              | NiK <sub>s</sub> (SO <sub>4</sub> ) <sub>2</sub><br>Gms. H <sub>2</sub> O. | <b>t °</b> . | Grams NiK <sub>s</sub> (SO <sub>4</sub> ) <sub>2</sub><br>per 100 Gms. H <sub>2</sub> O. |             |  |
|--------------|--------------|----------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------|-------------|--|
|              | (Tobler.)    | (v. Hauer.)                                                                | • •          | (Tobler.)                                                                                | (v. Hauer.) |  |
| 0            | 5 · <b>3</b> | •••                                                                        | 50           | 30                                                                                       | •••         |  |
| 10           | 8.9          | •••                                                                        | δo           | 35.4                                                                                     | 20 . 47     |  |
| 20           | 13.8 -       | 9.53                                                                       | 70           | 42.0                                                                                     | • • •       |  |
| 30           | 18.6         |                                                                            | 8o           | 46.o                                                                                     | 28.2        |  |
| 40           | 24.0         | 14.03                                                                      |              | *                                                                                        |             |  |

#### (Tobler - Liebig's Ann. 95, 193, '55; v. Hauer - J. pr. Ch. 74, 433, '58.)

#### SOLUBILITY OF NICKEL SULPHATE IN METHYL AND ETHYL ALCOHOLS. (de Bruyn - Z. physik. Ch. 10, 783, '92.)

100 grams abs. ethyl alcohol dissolve 1.3 grams NiSO<sub>4.7</sub>H<sub>2</sub>O at 17°. 100 grams abs. methyl alcohol dissolve 46.0 grams NiSO<sub>4.7</sub>H<sub>2</sub>O at 17°, and 24.7 grams at 4°.

100 grams abs. methyl alcohol dissolve 0.5 gram NiSO, at 18°.

100 grams abs. methyl alcohol dissolve 31.6 grams NiSO4.6H2O at 17°. 100 grams 93.5% methyl alcohol dissolve 10.1 grams NiSO<sub>4</sub>.7H<sub>2</sub>O at 4°, and 7.8 grams NiSO<sub>4</sub>.6H<sub>2</sub>O at 18°. 100 grams 50.0% methyl alcohol dissolve 2.0 grams NiSO<sub>4</sub>.7H<sub>2</sub>O at 4°, and 1.9 grams NiSO<sub>4</sub>.6H<sub>2</sub>O at 18°.

100 grams sat. solution in glycol contain 9.7 grams NiSO, at room temperature.

(de Coninck - Bull. acad. roy. Belgique 359, '05.)

### NICOTINE C10H14N2.

#### SOLUBILITY IN WATER.

#### (Hudson - Z. physik, Chem. 47, 114, '04.)

Determinations made by Synthetic Method, for which see Note, page 9. Below 60° and above 210° both liquids are miscible in all propor-tions; likewise with percentages of nicotine less than 6.8 and above 82 Below 94° the upper layer is water. Above 94° the upper layer is nicotine. The curve plotted from the following results makes a complete circle.

| Percentage of<br>Nicotine<br>in the Mixture. | Temp. of<br>Appearance<br>of Two Layers.<br>Degrees C. | Temperature<br>of<br>Homogeneity.<br>Degrees C. |
|----------------------------------------------|--------------------------------------------------------|-------------------------------------------------|
| 6.8                                          | 94                                                     | 95                                              |
| 7.8                                          | 89                                                     | 155                                             |
| 10.0                                         | 75                                                     | • • •                                           |
| 14.8                                         | 65                                                     | 200                                             |
| 32.2                                         | 61                                                     | 210                                             |
| 49.0                                         | 64                                                     | 205                                             |
| 66.8                                         | 72                                                     | 190                                             |
| 80.2                                         | 87                                                     | 170                                             |
| 82.0                                         | 129                                                    | 130                                             |

۹

#### NITROGEN N.

| t •. | "Coefficient of Absorption " $\beta$ . |         | a"β.        | " Solubility " B'. | <b>g</b> . |  |
|------|----------------------------------------|---------|-------------|--------------------|------------|--|
| o    | ,<br>0.0235 <b>*</b>                   | 0.0239† | ··· ‡       | 0.0233*            | 0.00239*   |  |
| 5    | 0.0208                                 | 0.0215  | 0.0217      | 0.0206             | 0.00259    |  |
| IO   | 0.0186                                 | 0.019Õ  | 0.0200      | 0.0183             | 0.00230    |  |
| 15   | 0.0168                                 | 0.0179  | 0.0179      | 0.0165             | 0.00208    |  |
| 20   | 0.0154                                 | 0.0164  | 0.0162      | 0.0151             | 0.00180    |  |
| 25   | 0.0143                                 | 0.0150  | 0.0143      | 0.0139             | 0.00174    |  |
| 30   | 0.0134                                 | 0.0138  | •••         | 0.0128             | 0.00161    |  |
| 35   | 0.0125                                 | 0.0127  | •••         | 8110.0             | 0.00148    |  |
| 40   | 8110.0                                 | 8110.0  | • • •       | 0.0110             | 0.00130    |  |
| 50   | 0.0109                                 | 0.0106  | •••         | 0.0006             | 0.00121    |  |
| δo   | 0.0102                                 | 0.0100  | • • •       | 0.0082             | 0.00105    |  |
| 80   | o.0096                                 | • • •   | •••         | 0.0051             | 0.00000    |  |
| 100  | 0.0095                                 | 0.0100  |             | 0.0000             | 0.00000    |  |
|      | • W.                                   |         | † B. and B. | ‡ B.               |            |  |

Solubility in Water.

213

(Winkler - Ber. 24, 3606, '91; Braun - Z. physik. Chem. 33, 732, '00; Bohr and Bock - Wied. Ann. 44, 318, '91.)

For values of  $\beta$ ,  $\beta'$ , and q, see Ethane, page 133.

SOLUBILITY OF NITROGEN IN AQUEOUS SALT SOLUTIONS. (Braun.)

|     | Coeffici           | Coefficient of Absorption of N in Barium Chloride Solutions of: |                   |                   |                   |  |  |  |  |  |
|-----|--------------------|-----------------------------------------------------------------|-------------------|-------------------|-------------------|--|--|--|--|--|
| t°. | 13.83<br>per cent. | 11.92<br>per cent.                                              | 6.90<br>per cent. | 3.87<br>per cent. | 3.33<br>per cent. |  |  |  |  |  |
| 5   | 0.0127             | 0.0137                                                          | 0.0160            | 0.0180            | 0.0183            |  |  |  |  |  |
| 10  | 0.0117             | 0.0125                                                          | 0.0147            | 0.0166            | 0.01(8            |  |  |  |  |  |
| 15  | 0.0104             | 0.0114                                                          | 0.0132            | 0.0148            | 0.0150            |  |  |  |  |  |
| 20  | 0.0002             | 0.0008                                                          | 0.0118            | 0.0132            | 0.0135            |  |  |  |  |  |
| 25  | 0.0078             | 0.0086                                                          | 0.0104            | 0.0114            | 0.0119            |  |  |  |  |  |

#### Coefficient of Absorption of N in Sodium Chloride Solutions of:

| <b>t °</b> . | 11.73<br>per cent. | 8.14<br>per cent. | 6.4<br>per cent. | 2.12<br>per cent. | o.67<br>per cent. |  |  |  |  |
|--------------|--------------------|-------------------|------------------|-------------------|-------------------|--|--|--|--|
| 5            | 0.0102             | 0.0127            | 0.0138           | 0.0179            | 0.0200            |  |  |  |  |
| IO           | 0.0093             | 0.0113            | 0.0126           | 0.0164            | 0.0185            |  |  |  |  |
| τς           | 0.0081             | 0.0101            | 0.0113           | 0.0147            | °0.0164           |  |  |  |  |
| 20           | o.oo66             | 0.0087            | o.cog8           | 0.0131            | 0.0148            |  |  |  |  |
| 25           | 0.0047             | 0.0075            | 0.0083           | 0.0113            | 0.0130            |  |  |  |  |

# SOLUBILITY OF NITROGEN IN ALCOHOL. (Bunsen.)

| t°<br>Vols. N *<br>dissolved by 1 Ve | 0 <sup>0</sup><br>0.1263 |     | 15 <sup>0</sup><br>0.1214 | 20 <sup>0</sup><br>0 . 1 204 |  |
|--------------------------------------|--------------------------|-----|---------------------------|------------------------------|--|
| dissolved by 1 V                     | ol. Alcoho               | ol. |                           |                              |  |

\* At o\* and 760 mm.

•

.

#### MITROGEN

#### Solubility of Nitrogen in Mixtures of Alcohol and Water at 25°.

(Just - Z. physik. Ch. 37, 361, '01.)

Results in terms of the Ostwald solubility expression, see page 105.

| Vol. H <sub>2</sub> O in Mixture. | Vol. Alcohol in Mixture. | Dissolved N (l25). |
|-----------------------------------|--------------------------|--------------------|
| 100                               | 0                        | 0.01634            |
| 80                                | 20                       | 0.01536            |
| 67                                | 33                       | 0.01719            |
| 0                                 | 100 (99.8% Alc           | ohol) 0 . 1432     |

SOLUBILITY OF NITROGEN IN SEVERAL SOLVENTS AT 20° AND 25°. (Just.)

| Solvent.        | 125.    | l <sub>20</sub> . | Solvent.              | l25.    | l30.     |
|-----------------|---------|-------------------|-----------------------|---------|----------|
| Water           | 0.01634 | 0.01705           | Toluene               | 0. 1235 | 0.1186   |
| Aniline         | 0.03074 | 0.02992           | Chloroform            | 0.1348  | 0. 1282  |
| Sulphur Dioxide | 0.05860 | 0.05290           |                       |         | 0. 1 348 |
| Nitro Benzene   | 0.06255 | 0.00082           | Ethyl Alcohol (99.8%) | 0. 1432 | 0.1400   |
| Benzene         | 0.1159  | 0.1114            |                       | 0.1460  | 0. 1 383 |
| Acetic Acid     | 0.1190  | 0. 1172           |                       | 0.1542  | 0.1512   |
| Xylene          | 0. 1217 | 0. 1 185          |                       | 0. 1727 | o. 1678  |
| Amyl Alcohol    | 0. 1225 | 0.1208            | Iso Butyl Acetate     | 0. 1734 | 0. 1701  |

SOLUBILITY OF NITROGEN IN PETROLEUM. COEFFICIENT OF ABSORP-TION AT 10° = 0.135, AT 20° = 0.117. (Gniewasz and Walfisz – Z. physik. Ch. 1, 70, '87)

# Solubility of Nitrogen in Aqueous Propionic Acid and Urea Solutions.

(Braun.)

| t°. | Coefficient of Absorption of N in C2H5COOH Solutions of: |                |                |                |                |  |  |  |
|-----|----------------------------------------------------------|----------------|----------------|----------------|----------------|--|--|--|
| •   | 11.22 per cent.                                          | 9.54 per cent. | 6.07 per cent. | 4.08 per cent. | 3.82 per cent. |  |  |  |
| 5   | 0.0195                                                   | 0.0204         | 0.0208         | 0.0210         | 0.0209         |  |  |  |
| 10  | 0.0178                                                   | 0.0182         | 0.0186         | 0.0192         | 0.0191         |  |  |  |
| 15  | 0.0159                                                   | 0.0163         | 0.0164         | 0.0169         | 0.0167         |  |  |  |
| 20  | 0.0146                                                   | 0.0147         | 0.0148         | 0.0154         | 0.0155         |  |  |  |
| 25  | 0.0130                                                   | 0.0134         | 0.0134         | 0.0137         | 0.0137         |  |  |  |

| ŧ°. | Coefficient of Absorption of N in CO(NH <sub>2</sub> ) <sub>2</sub> Solutions of: |                |                |                |                |                |  |  |
|-----|-----------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|--|--|
| U., | 15.65 per cent.                                                                   | 11.9 per cent. | 9.42 per cent. | 6.90 per cent. | 5.15 per cent. | 2.28 jer cent. |  |  |
| 5   | 0.0175                                                                            | 0.0179         | 0.0190         | 0.0198         | 0.0197         | 0.0199         |  |  |
| 10  | 0.0162                                                                            | 0.0167         | 0.0176         | 0.0183         | 0.0182         | 0.0184         |  |  |
| τ5  | 0.0150                                                                            | 0.0149         | 0.0158         | 0.0165         | 0.0165         | 0.0171         |  |  |
| 20  | 0.0140                                                                            | 0.0139         | 0.0146         | 0.0151         | 0.0151         | 0.0155         |  |  |
| 25  | 0.0130                                                                            | 0.0130         | 0.0133         | 0.0137         | 0.0135         | 0.0139         |  |  |

214

#### NITROUS OXIDE N.O.

#### SOLUBILITY IN WATER.

(Bunsen; Gordon – Z. physik. Ch. 18, 9, '05; Roth – Ibid. 24, 123, '07; Knopp – Ibid. 48, 106, '04 Geffcken – Ibid. 49, 276, '04.)

|     | (      | Coefficient of | Absorption A | 3.           |          |        | olubility in<br>wald Expre |        |
|-----|--------|----------------|--------------|--------------|----------|--------|----------------------------|--------|
| 10. | (B.)   | (G.)           | (R.)         | (K.)         | q        | (R.)   | (K.)                       | (G.)   |
| 5   | 1.0050 | 1.0955         | 1.1403       |              | 0.205    | 1.161  |                            | 1.067  |
| IO  | 0.9196 | 0.9200         | 0.9479       |              | 0.171    | 0.9815 |                            | 0.9101 |
| 15  | 0.7778 | 0.7787         | 0.7896       |              | 0.143    | 0.8315 |                            | 0.7784 |
| 20  | 0.6700 | 0.6700         | 0.6654       | 0.6270       | 0.121    | 0 7131 | 0.6739                     | 0.6756 |
| 25  | 0.5961 | ***            | 0.5752       |              | 0.104    | 0.6281 |                            | 0.5992 |
|     |        |                | * Cal        | culated by G | effcken. |        |                            |        |

Note. — Knopp and also Geffcken call attention to the fact that Roth in making his determinations used a rubber tube between the gas burette and the shaking flask, and give this as an explanation of the high results which he obtained.

SOLUBILITY OF NITROUS OXIDE IN AQUEOUS SULPHURIC ACID. (Lunge - Ber. 14, 2188, '81; see also Geffcken's results.)

| Sp. Gr. of H <sub>2</sub> SO <sub>4</sub> | 1.84 | 1.80 | 1.705 | 1.45 | 1.25 |
|-------------------------------------------|------|------|-------|------|------|
| Vols. N <sub>2</sub> O dissolved          |      |      |       |      |      |
| by 100 vols. H2SO4                        | 75.7 | 66.0 | 39.1  | 41.6 | 33.0 |

100 vols. of KOH solution of 1.12 Sp. Gr. absorb 18.7 vols. N<sub>2</sub>O. 100 vols. of NaOH solution of 1.10 Sp. Gr. absorb 23.1 vols. N<sub>2</sub>O.

#### SOLUBILITY OF NITROUS OXIDE IN AQUEOUS SOLUTIONS OF ACIDS, (Geffcken.)

Results in terms of the Ostwald Solubility Expression (1). See p. 105.

| In Hydr                 | ochlori | ic Acid                 | . In N                   | itric A                    | cid.                    | In Sulp                               | huric A | Acid.                                     |  |
|-------------------------|---------|-------------------------|--------------------------|----------------------------|-------------------------|---------------------------------------|---------|-------------------------------------------|--|
| Gms. HCl<br>per Liter.  |         | Dissolved               | Gms. HNO3<br>per Liter.  | N20 D                      | issolved                | Gms. H <sub>2</sub> SO,<br>per Liter. | N2O D   | issolved                                  |  |
| 18.22<br>36.45<br>72.90 |         | 0.577<br>0.568<br>0.557 | 36.52<br>63.05<br>126.10 | o. 777<br>o. 777<br>o. 775 | 0.597<br>0.602<br>0.611 | 49.04<br>98.08                        | 0.645   | 0.566<br>0.543<br>0.509<br>0.482<br>0.463 |  |

SOLUBILITY OF NITROUS OXIDE IN AQUEOUS SOLUTIONS OF:

(Roth.)

Phosphoric Acid. Oxalic Acid. Coefficient of Abs. in (COOH)<sub>2</sub> Solutions of: Coefficient of Abs. in H<sub>3</sub>PO<sub>4</sub> Solutions of: -0.812%. 3.38%. 4.72%. 8.84%. 9.89%. 13.35%. 3.70%. I.057 I.0365 0.9883 0.9635 0.9171 I.1450 I.1094 5 0.8827 0.8665 0.8296 0.8101 0.7711 0.9526 0.9264 IO 15 20 25

NITROUS OXIDE

Solubility of Nitrous Oxide in Aqueous Solutions of Propionic Acid at 20°.

(Knopp.)

| Gms. C <sub>2</sub> H <sub>5</sub> COOH<br>per liter<br>Coef. of Absorp- | 15.15  | 60.42  | 158.4  | 176.6  | 344.0   |
|--------------------------------------------------------------------------|--------|--------|--------|--------|---------|
| tion of $N_sO$                                                           | 0.6323 | 0.6369 | 0.6504 | 0.6534 | 0. 7219 |

SOLUBILITY OF NITROUS OXIDE IN AQUEOUS SALT SOLUTIONS.

Results by Geffcken in terms of the Ostwald expression (1). See page 105.

| Salt.               | Formula.           | Conc. of Sa | Conc. of Salt per Liter. |       | y of N <sub>2</sub> O. |
|---------------------|--------------------|-------------|--------------------------|-------|------------------------|
| Sut.                | Formula.           | Gram Equiv. | Grams.                   | l18.  | 125.                   |
| Ammonium Chloride   | NH <sub>4</sub> Cl | 0.5         | 26.76                    | 0.730 | 0.557                  |
| Ammonium Chloride   | NH₄Cl              | I.O         | 53.52                    | 0.691 | 0.529                  |
| Caesium Chloride    | CsCl               | 0.5         | 84.17                    | 0.710 | 0.544                  |
| Lithium Chloride    | LiCl               | 0.5         | 21.24                    | 0.697 | 0.535                  |
| Lithium Chloride    | LiCl               | I.0         | 42.48                    | 0.623 | 0.483                  |
| Potassium Bromide   | KBr                | 0.5         | 59·55                    | 0.697 | 0.536                  |
| Potassium Bromide   | KBr                | I.0         | 119.11                   | 0.627 | 0.485                  |
| Potassium Chloride  | KCl                | 0.5         | 37.3                     | 0.686 | 0.527                  |
| Potassium Chloride  | KCl                | I.0         | 74.6                     | 0.616 | 0.475                  |
| Potassium Iodide    | KI                 | 0.5         | 83.06                    | 0.702 | 0.541                  |
| Potassium Iodide    | KI                 | I.0         | 166.12                   | 0.633 | 0.492                  |
| Potassium Hydroxide | KOH                | 0.5         | 28.08                    | o.668 | 0.514                  |
| Potassium Hydroxide | KOH                | 1.0         | 56.16                    | 0.559 | 0.436                  |
| Rubidium Chloride   | RbCl               | 0.5         | δo 47                    | 0.695 | 0.533                  |
| Rubidium Chloride   | RbCl               | I.0         | 120.95                   | 0.625 | 0.483                  |

Results by Knopp, in terms of the coefficient of absorption. See page 105.

| Salt.             | Formula.          | Conc. of Sal | t per Liter. | Coef. of Absorption<br>of N <sub>2</sub> O at 20°. |
|-------------------|-------------------|--------------|--------------|----------------------------------------------------|
| Sut.              | rormula.          | Normality.   | Grams.       | of $N_2O$ at 20°.                                  |
| Potassium Nitrate | KNO3              | о.1061       | 10.74        | 0.6173                                             |
| 46                | "                 | 0.2764       | 27 .94       | 0.6002                                             |
| "                 | "                 | 0.5630       | 56.97        | 0.5713                                             |
| "                 | "                 | 1.1683       | 118.2        | 0.5196                                             |
| Sodium Nitrate    | NaNO <sub>3</sub> | 0.1336       | 11.37        | 0.6089                                             |
| 66                | "                 | 0.3052       | 25.97        | o.5876                                             |
| "                 | "                 | 0.6286       | 53.50        | 0.5465                                             |
| "                 | ""                | I . I 200    | 95.30        | 0.4926                                             |

;

Results by Roth, in terms of the coefficient of absorption.

| Grams NaCl per<br>100 Grams | Coefficient of Absorption of N <sub>2</sub> O at: |                |                  |        |                |
|-----------------------------|---------------------------------------------------|----------------|------------------|--------|----------------|
| Solution.                   | 5°.                                               | 10°.           | 15°.             | 20°.   | 25°.           |
| o.99                        | 1.0609                                            | 0.8812         | 0.7339           | 0.6191 | 0.536 <b>3</b> |
| 1.808<br>1                  | 1.0032                                            | o.8383         | o . <b>70</b> 26 | 0.5962 | 0.5190         |
| 3.886                       | 0.9131                                            | o.7699         | o.6495           | 0.5520 | 0.4475         |
| 5.865                       | o.8428                                            | 0. <b>7090</b> | 0.5976           | 0.5088 | 0.4224         |

#### NITROUS OXIDE

Results by Gordon in terms of coefficient of absorption. See p. 105. Concentration of Salt. Coefficient of Absorption of N2O at: Grams per 100 Grams Solution. Salt. Gram Mols. 100. 5°. 150. · 20° per Liter. Calcium Chloride 0.810 0.697 0.591 5.79 0.547 0.500 65 9.86 0.668 0.586 0.509 0.964 0.435 " 13.99 1.416 0.510 0.441 0.380 0.328 Lithium Chloride 0.986 0.831 0.700 0.594 I.35 0.319 44 3.85 0.928 0.878 0.743 0.629 0.536 \*\* 2.883 11.48 0.606 0.512 0.437 0.382 Lithium Sulphate 0.934 0.792 0.670 0.569 2.37 0.219 11 0.521 0.665 0.557 0.474 0.795 5.46 16 8.56 0.836 0.646 0.555 0.477 0.415 Magnesium Sulphate 5.90 0.521 0.766 0.664 0.561 0.471 7.66 0.687 0.708 0.586 0.488 0.414 11 0.997 10.78 0.569 0.491 0.417 0.346 Potassium Chloride 0.676 0.879 0.751 0.643 0.555 4.90 7.64 I.037 0.799 0.693 0.591 0.494 11 14.58 2.147 0.654 0.574 0.500 0.430 26 22.08 3.414 0.544 0.459 0.390 0.339 Potassium Sulphate 2.62 0.986 0.831 0.701 0.605 0.154 4.78 0.285 0.918 0.763 0.637 0.542 Sodium Chloride 0.800 0.682 0.585 0.509 6.20 I.107 -8.88 1.614 0.713 0.603 0.510 0.434 ... 12.78 2.391 0.634 0.532 0.449 0.386 Sodium Sulphate 5.76 0.808 0.677 0.584 0.495 0.427 66 0.646 0.692 0.574 0.482 0.416 46 0.559 0.486 12.44 0.974 0.417 0.354 Strontium Chloride 0.928 0.788 0.671 0.578 3.31 0.215 66 0.380 0.848 0.709 0.610 0.550 5.73 44 13.24 0.939 0.644 0.547 0.463 0.390

SOLUBILITY OF NITROUS OXIDE IN AQUEOUS SALT SOLUTIONS.

SOLUBILITY OF NITROUS OXIDE IN ALCOHOL AND IN AQUEOUS CHLORAL HYDRATE SOLUTIONS AT 20°.

(Bunsen; Knopp - Z. physik. Ch. 48, 106, '04.)

|     | In Alcohol (B.).                                        | In Aq. Chloral Hydrate (K.).    |                                                                          |                                       |  |
|-----|---------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------|---------------------------------------|--|
| t°. | Vols. N2O<br>(1t o° and 760 mm.)<br>per 1 Vol. Alcohol. | Normality<br>of<br>C2HCl3O.H2O. | Gms.<br>C <sub>2</sub> HCl <sub>2</sub> O.H <sub>2</sub> O<br>per Liter. | Coef. of<br>Abs. of N <sub>2</sub> O. |  |
| 0   | 4.178                                                   | 0.184                           | 30.43                                                                    | 0.618                                 |  |
| 5   | 3.844                                                   | 0.445                           | 73.60                                                                    | 0-613                                 |  |
| IO  | 3.541                                                   | 0.942                           | 155.8                                                                    | 0.596                                 |  |
| 15  | 3.268                                                   | 1.165                           | 192.7                                                                    | 0.589                                 |  |
| 20  | 3.025                                                   | I.474                           | 243.8                                                                    | 0.579                                 |  |
| 24  | 2.853                                                   | 1.911                           | 316.4                                                                    | 0.567                                 |  |

SOLUBILITY OF NITROUS OXIDE IN PETROLEUM. COEFFICIENT OF ABSORPTION AT 10° = 2.49, AT 20° = 2.11. (Gniewasz and Walfisz - Z. physik. Ch. 1, 70, '87.)

#### 217

#### Solubility of Nitrous Oxide in Aqueous Solutions of Glycerine and of Urea.

|     | •             | Coefficient of Absorption of N <sub>2</sub> O in Glycerine Solutions of: |                             |                    |                    |  |  |
|-----|---------------|--------------------------------------------------------------------------|-----------------------------|--------------------|--------------------|--|--|
| . • |               | er cent. 6                                                               | .73 per cent.               | 12.12 per cent.    | 16.24 per cent.    |  |  |
| •   | 5 I.          | 097                                                                      | I .055                      | o.999              | 0.959              |  |  |
| 1   | ο.<br>Ο       | 917                                                                      | o.887                       | 0.841              | 0.810              |  |  |
| 1   | 5 0.          | 767                                                                      | 0.745                       | 0.710              | o.686              |  |  |
| 2   | ю o.          | 647                                                                      | 0.630                       | 0.605              | o.585              |  |  |
| 2   | <b>15 O</b> . | 556                                                                      | 0.542                       | 0.527              | 0.508              |  |  |
| •   | С             | oefficient of Abs                                                        | orption of N <sub>2</sub> C | ) in Urea Solution | is of:             |  |  |
|     | 31 per cent.  | 4.97 per cent.                                                           | 6.37 per cen                | t. 7.30 per cer    | nt. 9.97 per cent. |  |  |
| 5   | 1.104         | 1.096                                                                    | I .088                      | I . IOI            | 1.069              |  |  |
| Č.  | 0.021         | 0 020                                                                    | 0 000                       | 0.021              | 0.001              |  |  |

|    | 3.31 per cent. | 4.97 per cent. | 0.37 per cent. | 7.30 per cent. | 9.97 per cent. |
|----|----------------|----------------|----------------|----------------|----------------|
| 5  | I . IO4        | 1.096          | 1.088          | I.IOI          | 1.069          |
| IO | 0.921          | 0.920          | 0.909          | 0.921          | 0.901          |
| 15 | 0.771          | 0.773          | 0.761          | 0.772          | o.761          |
| 20 | 0.653          | 0.656          | 0.644          | 0.655          | 0.651          |
| 25 | 0.569          | 0.567          | 0.559          | 0.570          | o.569          |

#### NITRIC OXIDE NO.

#### SOLUBILITY IN WATER. (Winkler - Ber. 34, 14'4, '01.)

| <b>t*</b> . | β.     | <b>β</b> ′. | q.              | t°. | β.     | <b>β'</b> . | q.      |  |
|-------------|--------|-------------|-----------------|-----|--------|-------------|---------|--|
|             |        |             | 0.00984         | 40  | 0.0351 | 0.0325      | 0.00440 |  |
| 5           | 0.0646 | 0.0641      | o.oo860         | 50  | 0.0315 | 0.0277      | 0.00376 |  |
|             |        |             | o.00757         | 60  | 0.0295 | 0.0237      | 0.00324 |  |
| 15          | 0.0515 | 0.0506      | o.oo68o         | 70  | 0.0281 | 0.0195      | 0.00267 |  |
| 20          | 0.0471 | o 0460      | o.00618         | 80  | 0.0270 | 0.0144      | 0.00199 |  |
| 25          | 0.0430 | 0.0419      | <b>o</b> .00564 | 90  | 0.0265 | 0.0082      | 0.00114 |  |
| 30          | 0.0400 | o.0384      | 0.00517         | 100 | o.0263 | 0.0000      | 0.00000 |  |
|             |        |             |                 |     |        |             |         |  |

For values of  $\beta$ ,  $\beta'$  and q, see Ethane, page 133.

Solubility of Nitric Oxide in Aqueous Sulphuric Acid Solutions at 18°.

(Lunge - Ber. 18, 1391, '85; Tower - Z. anorg. Ch. 50, 382, '06.)

| Sp. Gr.<br>at 15°.<br>I.84 | Tension of<br>H <sub>2</sub> O Vapor.                       | Solubility Coeffi<br>of NO at 18<br>0.0227                                                                                                             |                                                                                                                                                                                                                               |
|----------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I .82                      | o.1 mm.                                                     | 0.0193                                                                                                                                                 |                                                                                                                                                                                                                               |
| I.733                      | 0.4 "                                                       | 0.0117                                                                                                                                                 |                                                                                                                                                                                                                               |
| <b>1</b> .616              | I.5 "                                                       | 0.0113                                                                                                                                                 |                                                                                                                                                                                                                               |
| I.503                      | 3.1 "                                                       | 0.0118                                                                                                                                                 | (0. <b>0</b> 17, L.                                                                                                                                                                                                           |
| I.399                      | 6.2 "                                                       | 0.0I20                                                                                                                                                 |                                                                                                                                                                                                                               |
|                            | at 15°.<br>1.84<br>1.82<br>1.733<br>1.616<br>1.503<br>1.399 | at 15°.       H <sub>2</sub> O Vapor.         1.84          1.82       0.1 mm.         1.733       0.4         1.616       1.5         1.503       3.1 | at $15^{\circ}$ . $H_2O$ Vapor.of NÓ at $18^{\circ}$ I.84 $O \cdot O227$ I.82 $O \cdot I$ mm. $O \cdot O193$ I.733 $O \cdot 4$ $O \cdot O117$ I.616I.5 $O \cdot O113$ I.5033.1 $O \cdot O18$ I.399 $O \cdot 2$ $O \cdot O120$ |

\* Volume of NO (at 760 mm.) per 1 volume of aqueous H<sub>2</sub>SO<sub>4</sub>.

## SOLUBILITY OF NITRIC OXIDE IN ALCOHOL.

|                    |       | (Dunsei | u.)                      |  |  |
|--------------------|-------|---------|--------------------------|--|--|
| t°<br>Vols. NO*    | 0.316 |         | 10 <sup>0</sup><br>0.286 |  |  |
| absorbed by 1 vol. | Alc.  |         |                          |  |  |

\* At o° and 760 mm.

#### OXALIC ACID (COOH)2.2H2O.

#### SOLUBILITY IN WATER.

(Average curve from results of Alluard; Miczynski — Monatsh. Ch. 7, 258, '86; Henry — Compt. rend. 99, 1157, '84; Lamouroux — *Ibid.* 128, 998, '99; at 25°, Foote and Andrew — Am. Ch. J. 34, 154, '05.)

| \$°. | Grams (COOH)2 per 100 Grams |           | t°. | Grams (COOH)2 per 100 Grams |           |  |
|------|-----------------------------|-----------|-----|-----------------------------|-----------|--|
|      | H2O.                        | Solution. |     | H2O.                        | Solution. |  |
| 0    | 3.45                        | 3.33      | 40  | 21.15                       | 17.46     |  |
| 10   | 5.55                        | 5.26      | 50  | 31.53                       | 23.97     |  |
| 20   | 8.78                        | 8.07      | 60  | 45.55                       | 31.37     |  |
| 25   | 11.36                       | 10.21     | 70  | 63.82                       | 38.95     |  |
| 30   | 13.77                       | 11.91     |     |                             |           |  |

SOLUBILITY OF OXALIC ACID IN ALCOHOLS.

(Timofeiew - Compt. rend. 112, 1137, '91; Bourgoin - Ann. chim. phys. [5] 13, 406, '78'.

| t°. | Grams (COOH)2 per 100 Grams of: |                |                 |  |  |  |
|-----|---------------------------------|----------------|-----------------|--|--|--|
|     | Methyl Alcohol.                 | Ethyl Alcohol. | Propyl Alcohol. |  |  |  |
| - I | 36.26                           | 20.25          | 9.73            |  |  |  |
| +20 | 47.24                           | 26.23          | 15.14           |  |  |  |

SOLUBILITY OF OXALIC ACID IN ABSOLUTE AND IN AQ. ETHER AT 25°. (Bödtker – Z. physik. Ch. 22, 512, '97; Bourgoin.)

100 grams absolute ether dissolve 1.47 grams (COOH)<sub>2</sub>.2H<sub>2</sub>O. 100 grams absolute ether dissolve 23.59 grams (COOH)<sub>2</sub>.

#### In Aqueous Ether Solutions. Gms. Solid Acid Added per 100 cc. Ether Solution. Grams per 100 cc. Ether Solution. H<sub>2</sub>O. (COOH)2.2H2O. (COOH)2. (COOH)2. (1) 5.0 0.0 I.250 0.742 (2) 5.0 0.788 0.0 0.720 5.0 0.418 0.0 I.044 0.360 5.0 2.44 3.388 0.484 5.0 4.82 6.038 7.14 0.558 8.538 5.0 0.632 5.0 9.42 10.996 11.63 0.676 5.0 13.316 0.761 15.684 5.0 13.79 0.816 17.818 18.18 5.0 5.0 22.73 0.816 17.818

(1) Ether saturated with water. (2) Ether containing 0.694 per cent water.

100 grams glycerine dissolve 15 grams oxalic acid at 15.5°.

DISTRIBUTION OF OXALIC ACID BETWEEN WATER AND AMYL ALCOHOL AT 20°.

(Herz and Fischer - Ber. 37, 4748, '04.)

| Millimols 1 | COOH)2 per 10 cc. | Grams (COOH)2 per 100 cc. |                  |  |
|-------------|-------------------|---------------------------|------------------|--|
| Aq. Layer.  | Alcoholic Layer.  | Aq. Layer.                | Alcoholic Layer. |  |
| 0.6866      | 0.1451            | 0.306                     | 0.0653           |  |
| 2.364       | 0.7233            | I.064                     | 0.320            |  |
| 6.699       | 2.550             | 3.015                     | 1.148            |  |
| 10.029      | 4.300             | 4.511                     | 1.934            |  |

OXYGEN

**OXYGEN** O. SOLUBILITY IN WATER.

220

(Winkler - Ber. 24, 3609, '91; Bohr and Bock - Wied. Ann. [2] 44, 318, '91.)

| <b>t*</b> . | Coef. of Abs | orption $\boldsymbol{\beta}$ . | q.      | cc. O per<br>Liter H <sub>2</sub> O.  | t°.    | Coef. of Abs | orption $\beta$ . | q.      |
|-------------|--------------|--------------------------------|---------|---------------------------------------|--------|--------------|-------------------|---------|
| 0           | 0.0480*      | 0.0406                         | 0.00605 | 10.187                                | 40     | 0.0231*      | 0.0233            | 0.00308 |
| 5           | 0.0429       | 0.0439                         | 0.00007 | 8.907                                 | 50     | 0.0200       | 0.0207            | 0.00266 |
| 10          | 0.0380       | 0.0390                         | 0.00537 | 7.873                                 | δo     | 0.0195       | 0.0189            | 0.00227 |
| 15          | 0.0342       | 0.0350                         | 0.00480 | 7.038                                 | 70     | 0.0183       | 0.0178            | 0.00186 |
| 20          | 0.0310       | 0.0317                         | 0.00434 | 6.356                                 | 80     | 0.0176       | 0.0172            | 0.00138 |
| 25          | 0.0283       | 0.0200                         | 0.00393 | 5.776                                 | 90     | 0.0172       | 0.0169            | 0.00079 |
| 30          | 0.0261       | 0.0268                         | 0.00359 | 5.255                                 | 100    | 0.0170       | 0.0168            | 0.00000 |
| -           |              |                                | • W.    | · · · · · · · · · · · · · · · · · · · | B. and | B.           |                   |         |

For values of  $\beta$  and q see Ethane, page 133.

| Solubility                 | OF THE        | OXYGEN OF      | AIR IN         | WATER. |
|----------------------------|---------------|----------------|----------------|--------|
| t°.<br>Solubility <b>*</b> | 5.2°<br>8.856 | 5.65°<br>8.744 | 14.78°<br>7.08 |        |
|                            |               |                |                | • •    |

• cc. Oxygen per 1000 cc. H<sub>2</sub>O saturated with air at 760 mm.

Solubility of Oxygen in Water and in Aqueous Solutions of Acids, Bases and Salts.

(Geffcken - Z. physik. Ch. 49, 269, '04.)

| Aq. Solution of:    | Concentrati  | on per Liter. | Solubility of Oxygen.* |        |  |
|---------------------|--------------|---------------|------------------------|--------|--|
|                     | Gram Equ     | uv. Grams.    | 115°.                  | /26-   |  |
| Water alone         | • • •        | · • •         | 0.0363                 | 0.0308 |  |
| Hydrochloric Acid   | 0.5          | 18.22         | 0.0344                 | 0.0296 |  |
|                     | I.0          | 36.45         | 0.0327                 | 0.0287 |  |
| **                  | 2.0          | 72.00         | 0.0299                 | 0.0267 |  |
| Nitric Acid         | 0.5          | 36.52         | 0.0348                 | 0.0302 |  |
| **                  | I.O          | 63.05         | 0.0336                 | 0.0205 |  |
| 66                  | 2.0          | 126.10        | 0.0315                 | 0.0284 |  |
| Sulphuric Acid      | 0.5          | 24.52         | 0.0338                 | 0.0288 |  |
|                     | I.0          | 49.04         | 0.0319                 | 0.0275 |  |
| "                   | 2.0          | 98.08         | 0.0335                 | 0.0251 |  |
| **                  | 3.0          | 147.12        | 0.0256                 | 0.0220 |  |
| **                  | 4.0          | 106.16        | 0.0233                 | 0.0200 |  |
| "                   | 5.0          | 245.20        | 0.0231                 | 0.0104 |  |
| Potassium Hydroxide |              | 28.08         | 0.0291                 | 0.0252 |  |
|                     | I.0          | 56.16         | 0.0234                 | 0.0206 |  |
| Sodium Hydroxide    | 0.5          | 20.03         | 0.0288                 | 0.0250 |  |
| ~                   | I .0         | 40.0Č         | 0.0231                 | 0.0204 |  |
| **                  | 2.0          | 80.12         | 0.0152                 | 0.0133 |  |
| Potassium Sulphate  | 0.5          | 43 - 59       | 0.0294                 | 0 0253 |  |
| "                   | I.0          | 87.18         | 0.0237                 | 0.0207 |  |
| Sodium Chloride     | 0.5          | 29.25         | 0.0308                 | 0.0262 |  |
| 66                  | I.0          | 58.5          | 0.0260                 | 0.0223 |  |
| **                  | 2.0          | 119.0         | 0.0182                 | 0.0158 |  |
| * In terms of the   | Ostwald Solu |               |                        | 0      |  |

\* In terms of the Ostwald Solubility Expressions. See page 105.

SOLUBILITY OF OXYGEN IN AQ. POTASSIUM CYANIDE SOLUTIONS AT 20°. (Maclaurin – J. Ch. Soc. 63, 737, '93.)

| Gms. KCN per 100 gms. sol.     | I     | 10    | 20    | 30            | 50    |
|--------------------------------|-------|-------|-------|---------------|-------|
| Coefficient of absorption of O | 0.029 | 810.0 | 0.013 | <b>o</b> .008 | 0.003 |

| (Time | sfejew — Z. physik. Cl    | 1. 6, 151, '90; Levi — (  | Gazz. chim. ital. 31,     | II, 513, '01.)  |
|-------|---------------------------|---------------------------|---------------------------|-----------------|
| ŧ°.   | In Ethyl Alcohol of       | 99.7% (T.).               | In Methyl<br>Alcohol (L.) | In Acetone (L.) |
| • •   | β.                        | β.                        |                           | 1-              |
| ο     | 0.2337                    | 0.2297                    | 0.31864                   | o . 2997        |
| 5     | 0.2301                    | 0.2247                    | 0.30506                   | 0.2835          |
| IO    | 0.2266                    | 0.2194                    | 0.29005                   | 0.2667          |
| 15    | 0.2232                    | 0.2137                    | 0.27361                   | 0.2493          |
| 20    | 0.2201                    | 0.2073                    | 0.25574                   | 0.2313          |
| 25    | 0.2177 (24 <sup>0</sup> ) | 0.2017 (24 <sup>0</sup> ) | 0.23642                   | 0.2127          |
| 30    | •••                       | •••                       | 0.21569                   | 0 . 1935        |
| 40    | •••                       | •••                       | 0.16990                   | 0.1533          |
| 50    | •••                       | •••                       | 0.11840                   | 0.1057          |

For values of  $\beta$  and  $\beta'$ , see Ethane, page 133. l = Ostwald Solubility Expression. See page 105. The formulae expressing the solubility of oxygen in methyl alcohol

and in acetone as shown in the above table are as follows:

In Methyl Alcohol  $l = 0.31864 - 0.002572 t - 0.0002866 t^3$ . In Acetone  $l = 0.2997 - 0.00318 t - 0.000012 t^3$ .

SOLUBILITY OF OXYGEN IN AQUEOUS ALCOHOL AT 20° AND 760 MM. (Lubarsch -- Wied. Ann. [2] 37, 525, '89.)

| Wt. per cent<br>Alcohol. | Vol. per cent<br>Absorbed O. | Wt. per cent<br>Alcohol. | Vol. per cent<br>Absorbed O. | Wt. per cent<br>Alcohol. | Vol. per cent<br>Absorbed O. |
|--------------------------|------------------------------|--------------------------|------------------------------|--------------------------|------------------------------|
| 0.00                     | 2.98                         | 23.08                    | 2.52                         | 50.0                     | 3 . 50                       |
| 9.09                     | 2.78                         | 28 . 57                  | 2.49                         | 66.67                    | 4.95                         |
| 16.67                    | 2.63                         | 33.33                    | 2.67                         | 80.0                     | 5.66                         |

#### SOLUBILITY OF OXYGEN IN PETROLEUM. COEFFICIENT OF ABSORP-TION AT $10^\circ = 0.229$ , AT $20^\circ = 0.202$ . (Gniewass and Walfiss - Z. physik. Ch. 1, 70, '87.)

#### OZONE O,

#### SOLUBILITY IN WATER.

| (von M       | ailfert — ( | Compt. re  | nd. 119, 951 | , '94; Carius; | Schöne — | Ber. 6, 1: | <b>124, "</b> 73.) |
|--------------|-------------|------------|--------------|----------------|----------|------------|--------------------|
| <b>t °</b> . | W.          | <b>G</b> . | <b>R</b> .   | <b>t*</b> .    | W.       | G.         | <b>R</b> .         |
| 0            | 30.4        | 61.5       | 0.641        | 27             | 13.0     | 51.4       | 0.270              |

| 0    | 39.4 | 01.5 | 0.041   | 27 | 13.9 | 51.4    | 0.270 |
|------|------|------|---------|----|------|---------|-------|
| 6    | 34.3 | 61.0 | 0.562   | 33 | 7.7  | 39 · 5  | 0.195 |
| 11.8 | 29.9 | 59.6 | 0 - 500 | 40 | 4.2  | · 37 .6 | 0.112 |
|      |      |      | 0.482   | 47 | 2.4  | 31.2    | 0.077 |
| 15.0 | 25.9 | 56.8 | 0.456   | 55 | 0.6  | 19.3    | 0.031 |
| 19.0 | 21.0 | 55.2 | 0.381   | 60 | 0.0  | 12.3    | 0.000 |

W - Milligrams Ozone dissolved per liter water. G - Milligrams Ozone in one liter of the gas phase above the solutions. R - Ratio of the dissolved to undissolved Ozone (W + G).

#### PARAFFINE

#### SOLUBILITY OF OZOKERITE PARAFFINE OF MELTING POINT 64°-65° AND SP. GR. AT 20° - 0.917 IN SEVERAL SOLVENTS AT 20°.

|                                        | ms. Para                      | . Paraffine per 100 |                   | Gms. Parafine per 100 |                 |
|----------------------------------------|-------------------------------|---------------------|-------------------|-----------------------|-----------------|
| Solvent.                               | Gms. cc.<br>Solvent. Solvent. |                     | Solvent.          | Gms.<br>Solvent.      | cc.<br>Solvent. |
| Carbon Bisulphide                      | 12.99                         |                     | Acetone           | 0. 262                | 0.209           |
| Benzine, boiling below 75°             | 11.73                         | 8.48                | Ethyl Acetate     | 0. 238                |                 |
| Turpentine, b.pt. 158°-166°            | 6.00                          | 5.21                | " Alcohol         | 0.219                 | •••             |
| Cumol, com. b.pt. 160°                 | 4.26                          | 3.72                | Amyl Alcohol      | 0. 202                | 0. 164          |
| " frac. 150°-160°                      | 3.99                          | 3.39                | Propionic Acid    | 0. 165                |                 |
| Xylene, com.b.pt. 135°-143°            | 3.95                          | 3.43                | Propyl Alcohol    | 0. 141                |                 |
| " frac. 135°-138°                      | 4.39                          | 3.77                | Methyl Alcohol    | 0.071                 | 0.056           |
| Toluene, com. b. pt. 108°-110°         | ° 3.88                        | 3.34                | Methyl Formate    | 0.060                 | •••             |
| " frac. 108°–109°                      | 3.92                          | 3.41                | Acetic Acid       | o. o6o                | 0.063           |
| Chloroform                             | 2.42                          | 3.61                | " Anhydride       | 0.025                 | • • •           |
| Benzene                                | 1.99                          | 1.75                | Formic Acid       | 0.013                 | 0.015           |
| Ethyl Ether<br>Iso Butyl Alcohol, com. | 1.95<br>0.28                  | 5 0.228             | Ethyl Alcohol 75% | 0.0003                |                 |

#### (Pawlewski and Filemonowicz - Ber. 21, 2973, '88.)

#### PAPAVERINE C20H21NO4.

100 grams pure carbon tetra chloride dissolve 0.203 gram at 17°. (Schindelmeiser – Chem Zig. 25, 129, '01.)

#### PHENANTHRENE C14H10.

#### SOLUBILITY IN ALCOHOL AND IN TOLUENE.\* (Speyers - Am. J. Sci. [4] 14, 295, '02.) In Alcohol. In Toluene. Gms. C<sub>14</sub>H<sub>10</sub> per Sp. Gr. of roo Grams Solutions C<sub>2</sub>H<sub>6</sub>OH. (H<sub>2</sub>O at 4°.) Gms. C<sub>14</sub>H<sub>10</sub> per 100 Grams C<sub>6</sub>H<sub>5</sub>.CH<sub>8</sub> Sp. Gr. of Solutions (H<sub>2</sub>O at 4°.) ŧ°. ο 3.65 0.814 23.0 0.925 3.80 10 0.807 30.0 0.929 4.6 0.801 42.0 20 0.934 50.0 0.799 25 5.5 0.939 6.4 58.0 30 0.797 0.943 8.2 76.0 40 0.795 0.955 50 10.6 0.794 95.0 0.971 60 15.6 0.797 115.0 0.989 0.815 33.0 70 1.007 135.0 80 0.865 (76.4°) 155.0 I.027 . . .

• Calculated from the original results which are given in terms of gram molecules of Phenanthrene per 100 gram molecules of solvent, and for irregular intervals of temperature.

Behrend — Z. physik. Ch. 10, 265, '92, finds 2.77 grams phenanthrene per 100 grams alcohol at 12.3°, and 3.09 grams at 14.8°.

#### SOLUBILITY OF PHENANTHRENE PICRATE IN ABSOLUTE ALCOHOL. (Behrend – Z. physik. Ch. 10, 205, '92.)

| <b>t*</b> . | Gram        | Grams per 100 Grams Saturated Solution. |                |                       |  |  |  |  |
|-------------|-------------|-----------------------------------------|----------------|-----------------------|--|--|--|--|
|             | Picric Acid | +                                       | Phenanthrene - | Phenanthrene Picrate. |  |  |  |  |
| 12.3        | 0.91        |                                         | 0.71           | I.62                  |  |  |  |  |
| 14.3        | I.00        |                                         | 0.78           | 1.78                  |  |  |  |  |
| 17.5        | 1.05        |                                         | 0.82           | 1.87                  |  |  |  |  |

#### SOLUBILITY OF PHENANTHRENE PICRATE IN ALCOHOLIC SOLUTIONS CONTAINING PICRIC ACID AND ALSO PHENANTHRENE. (Bebrend.)

|             | Grams Add    | ed to 62 cc. | Abs. Alcohol. | Gms. pe   | r 100 Gms. Sat. | Solution.     |
|-------------|--------------|--------------|---------------|-----------|-----------------|---------------|
| <b>t°</b> . | P. Picrate + | Picric Ac. + | Phenanthrene. | Picric Ac | - Phenanthrene  | = P. Picrate. |
| 12.3        | I.4          | 0            | 0.5           | o.534     | 1.413           | I.947         |
| 12.3        | I .4         | 0            | 0.9           | o.409     | 2.141           | 2.550         |
| 12.3        | o.8          | 0            | 2.I           | 0.354     | 2.77            | 3.124         |
| 12.3        | o.8          | ο            | 4.0           | 0.139     | 5.626           | 5.765         |
| 17.5        | I.4          | 0.1          | 0             | 1.159     | 0.75            | 1.91          |
| 17.5        | I.4          | 0.2          | 0             | 1.285     | o.68            | I.97          |
| 17.5        | I.4          | I.O          | 0             | 2.45      | 0.37            | 2.82          |
| 17.5        | I.4          | 4.0          | 0             | 6.15      | 0.195           | 6.345         |
| 17.5        | I.4          | 0.0          | 2.2           | 0.423     | 3.276           | 3.699         |

#### PHENOL C.H.OH.

.

#### SOLUBILITY IN WATER.

(Alexejew — Wied. Ann. 28, 305, '86; Schreinemaker — Z. physik. Ch. 33, 79, '00; Rothmund — Ibid 26, 474. '98.)

Determinations were made by the "Synthetic Method," for which see Note, page 9.

| <b>\$°</b> . | Grams Phenol   | Grams Phenol per 100 Grams |  |  |  |  |
|--------------|----------------|----------------------------|--|--|--|--|
| <b>t</b> *.  | Aqueous Layer. | Phenol Layer.              |  |  |  |  |
| IO           | 7.5            | 75.0                       |  |  |  |  |
| 20           | 8.3            | 72 . I                     |  |  |  |  |
| 30           | 8.8            | 69.8                       |  |  |  |  |
| 40           | <b>9</b> .6    | 66.9                       |  |  |  |  |
| 50           | 12.0           | 62.7                       |  |  |  |  |
| 55           | <b>14</b> .I   | <b>59</b> · 5              |  |  |  |  |
| 55<br>60     | 16.7           | 55-4                       |  |  |  |  |
| 65           | 21.9           | 49.2                       |  |  |  |  |
| 68.3 (crit.  | temp.) 33      | •4                         |  |  |  |  |

Vaubel — J. pr. Ch. [2] 52, 73, '95, states that 100 grams sat. aquerus solution contain 6.1 grams phenol at 20°. Sp. Gr. of solution = 1.0057.

SOLUBILITY OF PHENIC ACID (PHENOL, C<sub>4</sub>H<sub>4</sub>OH) IN PARAFFINE AND IN BENZENE. (Schweissinger – Pharm. Z4g. '84-'85.)

| (Schweissinger — Fharm. 24g. 84-85.) |                                                                  |                   |                   |       |  |  |  |  |  |
|--------------------------------------|------------------------------------------------------------------|-------------------|-------------------|-------|--|--|--|--|--|
| <b>6 1</b> .                         | Grams C <sub>6</sub> H <sub>8</sub> OH per 100 Grams Solvent at: |                   |                   |       |  |  |  |  |  |
| Solvent.                             | 16°.                                                             | 21 <sup>0</sup> . | 25 <sup>°</sup> . | 43°.  |  |  |  |  |  |
| Paraffine                            | 1.66                                                             |                   | • • •             | 5.0   |  |  |  |  |  |
| Benzene                              | 2.5                                                              | 8.33              | 10.0              | 100.0 |  |  |  |  |  |

#### SOLUBILITY OF PHENOL IN AQUEOUS ACETONE SOLUTIONS. (Schreinemaher.)

|            | In 4.24 %<br>Acetone. |                  | In 12.2<br>Acetor     |                  |                       | 4.4%<br>etone.    |                       | 59.9%<br>etone.  |
|------------|-----------------------|------------------|-----------------------|------------------|-----------------------|-------------------|-----------------------|------------------|
|            | Grams Phenol per      |                  | Gms. Pher<br>100 Gi   |                  |                       | henol per<br>Gms. |                       | enol per<br>Gms. |
| t°.        | Aq. Acetone<br>Layer. | Phenol<br>Layer. | Aq. Acetone<br>Layer. | Phenol<br>Layer. | Aq. Acetone<br>Layer. | Phenol<br>Layer.  | Aq. Acetone<br>Layer. | Phenol<br>Layer  |
| 20         |                       | • • •            | • • •                 |                  | •••                   | •••               | 26. O                 | 60.5             |
| 30         | 5. O                  | 74.0             | 4.0                   | 71.0             | <b>6</b> . o          | 69.5              | 28.5                  | 57.0             |
| 40         | 5.5                   | 70.0             | •••                   |                  |                       |                   | 32.0                  | 52.0             |
| 50         | 5.7                   | 67.0             | 5.0                   | 67. O            | 8.0                   | 64.0              | 34·5\$                | 49. ¢§           |
| 60         | 6.5                   | 61.0             | •••                   |                  | • • •                 | •••               | 36.5                  | 46. 51           |
| 70         | 9. o                  | 51.0             | 7.5                   | 57.5             | 19. O                 | 57.0              | (49.5°) 4             | 1.5              |
| <b>8</b> o | 14 0                  | 34.0             | 10.5                  | 49.5             | 14.0                  | 52.5              |                       |                  |
|            | (849) 22.             | 5                | 20. 4*                | 30.5*            | 23. of                | 47. ot            |                       |                  |
|            |                       | -                | (90.3°) 25.           | ·• ·             | 26.5\$                | 44.0\$            |                       |                  |
|            |                       |                  |                       |                  | (90.5°) 35            | . 0               |                       |                  |
|            | *90°                  |                  | †85°                  |                  | \$87°-5               | \$45°             | 147°-5                |                  |

The figures in the above table were read from curves plotted from the original results.

#### SOLUBILITY OF PHENOL IN AQUEOUS SOLUTIONS d TARTARIC ACID. (Schreinemaker.)

| In 5.093% Acid. |                    |                  |     | In 19.34% Acid.          |                  |     | In 40.9% Acid.        |                  |  |
|-----------------|--------------------|------------------|-----|--------------------------|------------------|-----|-----------------------|------------------|--|
|                 | Gms. Phenol j      | per 100 Gms.     |     | Gms. Phenol per 100 Gms. |                  |     | Gms.Phenol per 100 Gm |                  |  |
| <b>t*</b> .     | Aq. Acid<br>Layer. | Phenol<br>Layer. | t°. | Aq. Acid<br>Layer        | Phenol<br>Layer. | t°. | Aq. Acid<br>Layer.    | Phenol<br>Layer. |  |
| 30              | 7.5                | 72.5             | 50  | 10.0                     | 77.O             | 70  | 13.0                  | • • •            |  |
| 50              | 10.5               | 65.5             | 60  | 12.5                     | 72.0             | 80  | 16.5                  | 77.0             |  |
| 60              | 14.5               | 58.0             | 70  | 19.O                     | 64.O             | 85  | 20.0                  | 74.0             |  |
| 65              | 19.5               | 53.O             | 75  | 29.0                     | 56. <b>0</b>     | 90  | 26.5                  | 71.0             |  |
| 67.5            | 25.0               | 48.5             | 77  | 47                       | .0               | 95  | 39.0                  | 63.5             |  |
| 69              | 47.                | 5                |     | ۲                        |                  | 97  | 54                    | .0               |  |

#### DISTRIBUTION OF PHENOL BETWEEN:

### AMYL ALCOHOL AND WATER AT 25°.

BENZENE AND WATER AT 20°.

(Herz and Fischer - Ber. 37, 4747, '04.)

(Vaubel - J. pr. Ch. [2] 67, 476, 'c 1.)

|                                           | Aqueous                                      | <u>````</u>                                        | Phenol<br>oo cc.<br>Aqueous<br>Layer.               | Volumes of Solvents<br>used per<br>1 Gm. Phenol                                                        | Gms. Phenol in<br>H2O CoH6<br>Lutter. Layer                            |
|-------------------------------------------|----------------------------------------------|----------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 0.75<br>0.9<br>1.1<br>2.6<br>54.1<br>56.3 | 0.047<br>0.05<br>0.07<br>0.16<br>3.83<br>3.9 | 0.705<br>0.846<br>1.035<br>2.445<br>50.88<br>52.93 | 0.0441<br>0.047<br>0.066<br>0.150<br>3.601<br>3.667 | $50 \text{ cc. H}_{3}O + 50 \text{ cc. C}_{6}H_{6}$<br>" + 100 cc. "<br>" + 150 cc. "<br>" + 200 cc. " | o. 286 o. 714<br>o. 1188 o. 8212<br>o. 0893 o. 9107<br>o. 0893 o. 9107 |

#### DISTRIBUTION OF PHENOL BETWEEN WATER AND BENZENE AND BETWEEN AQUEOUS K<sub>2</sub>SO<sub>4</sub> SOLUTIONS AND BENZENE AT 25°. (Rothmund and Wilsmore - Z. physik. Ch. 40, 623, '02.)

NOTE. — The original results, which are given in terms of gram mols. per liter, were calculated to grams per liter, and plotted on crosssection paper. The following figures were read from the curves obtained.

| Between H <sub>2</sub> O and C <sub>2</sub> H <sub>8</sub> . |                               | tween H <sub>2</sub> O and C <sub>2</sub> H <sub>6</sub> . Effect of K <sub>2</sub> SO <sub>4</sub> upon the Distribution. |                                                  |               |                      |                    |                |
|--------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------|----------------------|--------------------|----------------|
| 1                                                            | Grams CoHoOH<br>per Liter of: |                                                                                                                            | Gms. K <sub>2</sub> SO <sub>4</sub><br>per Liter |               | . CoH5OH<br>iter of: | (2)Gms.<br>per Lit |                |
|                                                              | H <sub>2</sub> O<br>Layer.    | CeHe<br>Layer.                                                                                                             | Aq.<br>Solution.                                 | Aq.<br>Layer. | CeHe<br>Layer.       | Aq.<br>Layer.      | CeHe<br>Layer. |
|                                                              | 5                             | 10                                                                                                                         | 1.36                                             | 17.08         | 59.96                | 9.52               | 26.28          |
|                                                              | IO                            | 28                                                                                                                         | 2.72                                             | 16.92         | 60.63                | 9.50               | 26.38          |
|                                                              | 15                            | 52                                                                                                                         | 5.44                                             | 16.85         | 60.92                | 9.46               | 26.55          |
|                                                              | 20                            | 84                                                                                                                         | 10.89                                            | 16.44         | 62.73                | 9.35               | 27.06          |
|                                                              | 25                            | 128                                                                                                                        | 21.79                                            | 15.89         | 65.19                | 9.09               | 28.27          |
|                                                              | 30                            | 200                                                                                                                        | 43.59                                            | 14.85         | 69.71                | 8.68               | 30.21          |
|                                                              | 35                            | 300                                                                                                                        | 87.18                                            | 12.92         | 78.00                | 7.79               | 34.38          |
|                                                              | 40                            | 410                                                                                                                        |                                                  |               |                      |                    |                |
|                                                              | 45                            | 520                                                                                                                        |                                                  |               |                      |                    |                |
|                                                              | 50                            | 610                                                                                                                        | (1) First series.                                |               | (2) Se               | cond series.       |                |

#### DISTRIBUTION OF PHENOL AT 25° BETWEEN: (Herz and Fischer - Ber. 38, 1143, '05.)

| Water and Toluene.                                                                                      |                            |                   |                            | W                     | ater and                                              | m Xylene.             |                |
|---------------------------------------------------------------------------------------------------------|----------------------------|-------------------|----------------------------|-----------------------|-------------------------------------------------------|-----------------------|----------------|
| Millimols C <sub>6</sub> H <sub>8</sub> OH Grams C <sub>6</sub> H <sub>8</sub><br>per 10 cc. per 100 cc |                            |                   | Millimols C6H5OH           |                       | Grams C <sub>6</sub> H <sub>5</sub> OH<br>per 100 cc. |                       |                |
| CoHoCH3<br>Layer.                                                                                       | H <sub>2</sub> O<br>Layer. | CoHoCH3<br>Layer. | H <sub>2</sub> O<br>Layer. | mCoH4(CH3)2<br>Layer. | H <sub>2</sub> O<br>Layer.                            | mC6H4(CH2)2<br>Layer. | H 20<br>Layer. |
| I.244                                                                                                   | 0.724                      | 1.169             | 0.681                      | 1.610                 | I.07I                                                 | 1.514                 | I.007          |
| 3.047                                                                                                   | 1.469                      | 2.865             | 1.381                      | 4.787                 | 2.726                                                 | 4.501                 | 2.563          |
| 4.667                                                                                                   | 2.200                      | 4.389             | 2.068                      | 12.210                | 5.168                                                 | II.22                 | 4.860          |
| 6.446                                                                                                   | 2.861                      | 6.061             | 2.691                      | 22.718                | 6.994                                                 | 21.36                 | 6.577          |
| 14.960                                                                                                  | 4.750                      | 14.07             | 4.467                      | 34.827                | 8.124                                                 | 32.75                 | 7.640          |
| 17.725                                                                                                  | 5.346                      | 16.69             | 5.027                      | 51.352                | 9.123                                                 | 48.28                 | 8.578          |
| 47.003                                                                                                  | 7.706                      | 44.20             | 7.246                      | 77.703                | 10.050                                                | 73.07                 | 9.450          |
| 53.783                                                                                                  | 8.087                      | 50.58             | 7.604                      |                       |                                                       |                       | -              |
| 90.287                                                                                                  | 9.651                      | 84.89             | 9.074                      |                       |                                                       |                       |                |

#### DISTRIBUTION OF PHENOL BETWEEN WATER AND CARBON TETRA CHLORIDE AT 20°.

(Vaubel - J. pr. Ch. [2] 67, 476, '03.)

| Gms. Phenol Volumes of Solvents. | Grams Phenol in:      |  |
|----------------------------------|-----------------------|--|
| Used. Volumes of Solvents.       | H2O Layer. CCL Layer. |  |
| 1 50 cc. H2O+ 10 cc. C           | Cl. 0.8605 0.1285     |  |
| I " + 20 CC. '                   | · 0.7990 0.1900       |  |
| I " + 30 cc. '                   | · 0.7275 0.2615       |  |
| T 50 CC.                         | ° 0.6435 0.3455       |  |
| I " +100 cc. "                   | " 0.4680 0.5210       |  |
| 1 +150 cc.                       | " 0.3645 0.6245       |  |
| I " +200 cc. "                   | 0.3240 0.6650         |  |

#### PHENOLATE

#### 226

#### PHENOLATE of Phenyl Ammonium.

SOLUBILITY IN WATER. Figures read from Curve. (Alexejew — Wied. Ann. 28, 305, '86.) By Synthetic Method, See page 9.

| <b>t°</b> . | Gms. Phenolate per 100 Gms. |                  | ŧ°.      | Gms. Phenolate per 100 Gms. |                  |  |  |
|-------------|-----------------------------|------------------|----------|-----------------------------|------------------|--|--|
|             | Aq. Layer.                  | Phenolate Layer. |          | Aq. Layer.                  | Phenolate Layer. |  |  |
| IO          | 3                           | 94               | 110      | 9                           | 76               |  |  |
| 30          | 4                           | 93               | 120      | 12                          | 69               |  |  |
| 50          | 5                           | 91               | 130      | 17.5                        | 60               |  |  |
| 70          | 6                           | 87.5             | 140 (cri | t. temp.)                   | 40               |  |  |
| 90          | 7                           | 83               |          |                             |                  |  |  |

#### PHENYL (Di) AMINES C<sub>6</sub>H<sub>4</sub>(NH<sub>2</sub>)<sub>2</sub>.

SOLUBILITY IN WATER AT 20°. (Vaubel – J. pr. Ch. [2] 52, 73, '95.)

| Amine.            | Gms. per 100<br>Gms. Solution. | Sp. Gr. of<br>Solution. |
|-------------------|--------------------------------|-------------------------|
| m Phenyl di Amine | 23.8                           | 1.0317                  |
| <b>p</b> "        | 3.7                            | 1.0038                  |

#### Nitro PHENOLS C.H.OH.NO.

100 grams saturated aqueous solution contain: 0.208 gram ortho, 2.14 grams meta, 1.32 grams para nitro phenol at 20°.

(Vaubel.)

#### Di Nitro PHENOL C<sub>6</sub>H<sub>3</sub>.OH.(NO<sub>2</sub>)<sub>2</sub>.

SOLUBILITY IN ALCOHOLS AT 19.5°. (de Bruyn – Z. physik. Ch. 10, 784, '92.)

100 grams abs. methyl alcohol dissolve 6.3 grams  $C_{0}H_{3}$ .OH.(NO<sub>2</sub>)<sub>3</sub>. 100 grams abs. ethyl alcohol dissolve 3.9 grams  $C_{0}H_{3}$ .OH.(NO<sub>2</sub>)<sub>3</sub>.

Solubility of Mixtures of s Tri Brom Phenol and s Tri Chlor Phenol in Methyl Alcohol at 25°.

(Thiel - Z. physik. Ch. 43, 667, '03; from Wurfel - Dissertation Marburg, '96.)

| Molecular per c | ent C <sub>6</sub> H <sub>2</sub> .OH.Br <sub>3</sub> | n Solu       | bility of    | <b>T</b> -4-1 |  |
|-----------------|-------------------------------------------------------|--------------|--------------|---------------|--|
| In Solid.       | In Solution.                                          | CeH2.OH.Cl2. | CeH2.OH.Br2. | Total.        |  |
| 0               | ο                                                     | 0.204        | 0            | 0 · 204       |  |
| <b>4 · 49</b>   | <b>3</b> · 59                                         | 0.194        | 0.007        | 0 · 20I       |  |
| 10.13           | 7.58                                                  | 0.191        | 0.016        | o · 206       |  |
| 16.28           | 12.15                                                 | O.172        | 0.024        | o.196         |  |
| 62 . 44         | 13.07                                                 | 0.204        | 0.031        | 0.235         |  |
| 69.88           | 15.86                                                 | 0.150        | 0.028        | 0.178         |  |
| 81.76           | 19.01                                                 | 0.096        | 0.023        | 0.118         |  |
| 84.6 <b>6</b>   | 24.05                                                 | 0.069        | 0.022        | 0.091         |  |
| 87.53           | 32.46                                                 | 0.043        | 0.021        | 0.063         |  |
| 93.62           | 47.87                                                 | 0.021        | 0.019        | 0.040         |  |
| 100.0           | 100.0                                                 | 0.0          | 0.019        | 0.019         |  |

#### PHENYL SALICYLATE (Salol) C.H. (OH).COOC.H.1:2.

100 grams H<sub>2</sub>O dissolve 0.043 gram salicylate at 25°. 100 grams alcohol dissolve 20.0 grams at 25°.

(U. S. P.)

#### Di PHENYL C.H.C.H.

100 grams absolute methyl alcohol dissolve 6.57 grams at 19.5°. 100 grams abs. ethyl alcohol dissolve 9.98 grams at 19.5°.

(de Bruyn - Z. physik. Ch. 10, 784, '92.)

#### PHOSPHO MOLYBDIC ACID P.O. 20MOO, 52H2O.

SOLUBILITY IN ETHER. (Parmentier - Compt. rend. 104, 686, '87.) t ° 0° 8.1° 19.3° 27.4° 32.9° Gms. Acid per 100 gms. Ether 80.6 84.7 96.7 103.9 107.9

#### PHOSPHORUS P. (yellow)

#### SOLUBILITY IN BENZENE.

(Christomanos - Z. anorg. Ch. 45, 136, '05.)

| ŧ°.    | Gms. P per<br>100 Gms. C <sub>6</sub> H | Sp. Gr. of<br>6. Solution. | <b>t*</b> . | Gms. P per<br>100 Gms. C <sub>6</sub> He | Sp. Gr. of<br>Solution. | t*. <sub>10</sub> | Gms. P per<br>co Gms. C <sub>6</sub> H <sub>6</sub> |
|--------|-----------------------------------------|----------------------------|-------------|------------------------------------------|-------------------------|-------------------|-----------------------------------------------------|
| 0      | 1.513                                   | •••                        | 23          | <b>3</b> · 399                           | 0.8875                  | 50                | 6.80                                                |
| 5<br>8 | I.99                                    | •••                        | 25          | 3.70                                     | 0.8861                  | 55                | 7.32                                                |
| 8      | 2.31                                    | o.8990                     | 30          | 4.60                                     | •••                     | 60                | 7.90                                                |
| 10     | 2.4                                     | o.8985                     | 35          | 5.17                                     | •••                     | 65                | 8.40                                                |
| 15     | 2.7                                     | 0.894                      | 40          | 5.75                                     |                         | 70                | 8.90                                                |
| 18     | 3.1                                     | 0.892                      | 45          | 6.11                                     | •••                     | 75                | 9.40                                                |
| 20     | 3.2                                     | 0.890                      | -           |                                          |                         | 81                | 10.03                                               |

#### SOLUBILITY OF PHOSPHORUS IN ETHER. (Christomanos.)

| t *.   | Gms. P per<br>100 Gms.<br>(C <sub>3</sub> H <sub>8</sub> ) <sub>2</sub> O. | Sp. Gr. of<br>Solutions. | <b>t *</b> . | Gms. P per<br>100 Gms.<br>(C <sub>2</sub> H <sub>8</sub> ) <sub>2</sub> O. | Sp. Gr. of<br>Solutions. | <b>t *</b> . | Gms. P per<br>100 Gms.<br>(C <sub>2</sub> H <sub>8</sub> ) <sub>2</sub> O. |
|--------|----------------------------------------------------------------------------|--------------------------|--------------|----------------------------------------------------------------------------|--------------------------|--------------|----------------------------------------------------------------------------|
| ο      | 0.434                                                                      | •••                      | 15           | <b>o</b> .go                                                               | 0.723                    | 28           | I.60                                                                       |
| 5<br>8 | 0.62                                                                       | •••                      | 18           | I.OI                                                                       | 0.719                    | 30           | I.75                                                                       |
| 8      | <b>o</b> .79                                                               | 0.732                    | 20           | I .04                                                                      | 0.718                    | 33           | 1 ·80                                                                      |
| 10     | o .85                                                                      | 0.729                    | 23           | I.I2                                                                       | 0.722                    | 35           | 2.00                                                                       |
|        |                                                                            |                          | 25           | I . 39                                                                     | 0.728                    |              |                                                                            |

100 grams CS, dissolve about 1750 grams yellow P at room temperature. (Vogel - Jahresber. Chem. 149, '68.)

100 grams alcohol of 0.799 Sp. Gr. dissolve 0.312 gram P cold and 0.416 gram hot. (Buchner) 228

SOLUBILITY OF YELLOW PHOSPHORUS IN SEVERAL SOLVENTS AT 15°. (Stich - Pharm. Ztg. 48, 343, '03.)

| Solvent.    | Gms. P per 100 Gms. Solution. |
|-------------|-------------------------------|
| Almond Oil  | 1.25                          |
| Oleic Acid  | <u>йо</u> . 1                 |
| Paraffine   | I.45                          |
| Water       | 0.0003                        |
| Acetic Acid | 0.105                         |

### PHTHALIC ACIDS C.H.(COOH)2.

SOLUBILITY IN WATER. (Vaubel - J. pr. Ch. [2] 52, 73, 'os: 50, 30, '00.)

| (vauber – J. pr. C | a. [2] 52, 73, 9 | 5; 59, 30, 99./             |
|--------------------|------------------|-----------------------------|
| Acid.              | t°.              | Gms. per 100 Gms. Solution. |
| o Phthalic Acid    | 14               | 0.54                        |
| Iso Phthalic Acid  | 25               | 0.013                       |
| Tere Phthalic Acid | ••               | almost insoluble            |

SOLUBILITY OF O PHTHALIC ACID IN ALCOHOL AND IN ETHER AT 15°. (Bourgoin — Ann. chim. phys. [5] 13, 406, '78.)

| Solvent.            | Grams C6H4(COOH)2 0 per 100 Grams |          |  |  |  |
|---------------------|-----------------------------------|----------|--|--|--|
| Solvent.            | Solution.                         | Solvent. |  |  |  |
| Absolute Alcohol    | 9.156                             | 11.70    |  |  |  |
| 90 per cent Alcohol | 10.478                            | 10.08    |  |  |  |
| Ether               | 0.679                             | o.684    |  |  |  |

# **PHTHALIC ANHYDRIDE** $C_{o}H_{i} < CO < 0$ .

SOLUBILITY IN WATER. (van der Stadt - Z. physik. Ch. 41, 358, '02.)

All determinations, except first three, made by the Synthetic Method. See page 9.

| t°.   | Grams C <sub>8</sub> H <sub>4</sub> O <sub>3</sub> per 100 Gms. Mol. per cent |           |                                                | ۰. G  | Grams C8H4O3 per 100 Gms. Mol. |              |                                 |
|-------|-------------------------------------------------------------------------------|-----------|------------------------------------------------|-------|--------------------------------|--------------|---------------------------------|
| • .   | Water.                                                                        | Solution. | C <sub>8</sub> H <sub>4</sub> O <sub>3</sub> . | ť.    | Water.                         | Solution.    | per cent<br>C <sub>8</sub> H4O3 |
| 0     | 0.00295                                                                       | 0.00295   | 0.00036                                        | 189.5 | 1076                           | 91.66        | 56.73                           |
| 25    | 0.6194                                                                        | 0.6150    | 0.0754                                         | 188.8 | 1265                           | 92.68        | 60.63                           |
| 50    | 1.630                                                                         | 1.604     | 0.198                                          | 187.1 | 1474                           | 93.65        | 64.22                           |
| 135.9 | 94.3                                                                          | 48.54     | 10.30                                          | 181.8 | 2332                           | 95.88        | 73·95                           |
| 165.4 | 210.0                                                                         | 67.75     | 20.36                                          | 176.2 | 3334                           | 97.07        | 80.23                           |
| 179.4 | 319.3                                                                         | 76.13     | 27.98                                          | 169.4 | 5745                           | 98.28        | 87.49                           |
| 186.2 | 449.6                                                                         | 81.81     | 35.37                                          | 130.9 | 37570                          | <b>99.72</b> | 97. <b>89</b>                   |
| 189.6 | 546. I                                                                        | 84.50     | 39.93                                          | 131.0 | 83010                          | 99.86        | 99. <b>02</b>                   |
| 191.0 | 821.5                                                                         | 89.19     | 50.00                                          | 131.2 | ø                              | 100.00       | 100.00                          |
| 190.4 | 863.4                                                                         | 89.62     | 51.24                                          |       |                                |              |                                 |

On page 362 of the original paper the solubility of C<sub>3</sub>H<sub>4</sub>O<sub>3</sub> at 0° is given as 0.2722 gram per 100 grams of solution.

| t°.    | Gms. C <sub>6</sub> H <sub>6</sub> O <sub>3</sub><br>per 100 Gms.<br>Solution. | Gms. C <sub>8</sub> H <sub>4</sub> O <sub>3</sub><br>t°. per 100 Gms.<br>Solution. |     | <b>t°</b> . | Gms. C <sub>6</sub> H <sub>6</sub> O <sub>8</sub><br>per 100 Gms.<br>Solution. |
|--------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----|-------------|--------------------------------------------------------------------------------|
| -112.5 | 0.013                                                                          | +10                                                                                | 0.3 | 70          | 2.3                                                                            |
| - 93   | 0.013                                                                          | 20                                                                                 | 0.7 | 90          | 3.7                                                                            |
| - 77.5 | 0.016                                                                          | 30                                                                                 | o.8 | 100         | 5.0                                                                            |
| - 40   | 0.03                                                                           | 40                                                                                 | I.2 | 120         | 8.0                                                                            |
| - 20   | o.o6                                                                           | 50                                                                                 | I.3 | 140         | 13.3                                                                           |
| - 10   | 0.IO                                                                           | δo                                                                                 | I.7 | 160         | 20.7                                                                           |
| 0      | 0.20                                                                           |                                                                                    |     | 180         | 30.2                                                                           |

SOLUBILITY OF PHTHALIC ANHYDRIDE IN CARBON BISULPHIDE. (Arctowski - Compt. rend. 121, 123, '95; Etard - Ann. chim. phys. [7] 2, 570, '94.)

**PHYSOSTIGMINE SALIOYLATE**  $C_{6}H_{4}(OH)COOH.C_{16}H_{21}N_{2}O_{3}$  and Physostigmine Sulphate  $H_{2}SO_{4}(C_{16}H_{21}N_{3}O_{2})_{2}$ .

#### Solubility in Water, Alcohol, etc. (U. S. P.)

| Solvent.   | <b>t*</b> . | Gms. per 100 Gms. Solvent. |              |  |
|------------|-------------|----------------------------|--------------|--|
| Solvent.   | •••         | Salicylate.                | Sulphate.    |  |
| Water      | 25          | 1.38                       | very soluble |  |
| Water      | 80          | 6.66                       | "            |  |
| Alcohol    | 25          | 7.87                       | "            |  |
| Alcohol    | 60          | 25.00                      | "            |  |
| Chloroform | 25          | 11.6                       | "            |  |
| Ether      | 25          | 0.57                       | 0.083        |  |

#### PIORIC ACID C.H.OH.(NO.).

.

.

SOLUBILITY IN WATER. (Dolinski — Ber. 38, 1836, '05; Findlay — J. Ch. Soc. 81, 1210, '02.)

|           | Gms. CaHaNaO7 per 100 Grams |         |             | <b>t</b> •. | Gms. CeHaN2O7 per 100 Grams |          |             |
|-----------|-----------------------------|---------|-------------|-------------|-----------------------------|----------|-------------|
| solution. |                             | Water.  |             | Solution.   |                             | Water.   |             |
| 0         | 0.67 (D.)                   | o.68 (D | ) I.O5 (F.) | 60          | 2.77 (D.)                   | 2.81(D.) | 3 . 17 (F.) |
| 10        | .80                         | 0.81    | 1.10        | 70          | 3.35                        | 3 · 47   | 3.89        |
| 20        | I . IO                      | I.II    | I . 22      | 80          | 4.22                        | 4.41     | 4.66        |
| 30        | 1.38                        | I . 40  | 1.55        | 90          | 5 - 44                      | 5.72     | 5 49        |
| 40        | 1.75                        | 1.78    | 1.98        | 100         | 6.75                        | 7 . 24   | 6.33        |
| 50        | 2.15                        | 2 . 19  | 2.53        |             |                             |          |             |

Dolinski does not refer to the previous determinations of Findlay.

#### SOLUBILITY OF PICRIC ACID IN WATER AND IN AQUEOUS SALT SOLUTIONS AT 25°. (Levin – Z. physik. Ch. 55, 520, '06.)

One liter of aqueous solution contains 0.05328 gram mols. = 12.20 grams  $C_0H_3$ .OH(NO<sub>2</sub>)<sub>3</sub> at 25°.

| Gm. Mols. S | alt     | Gram Mols. Picric Acid per Liter in Aq. Solutions of: |                      |                 |         |         |  |  |  |
|-------------|---------|-------------------------------------------------------|----------------------|-----------------|---------|---------|--|--|--|
| per Liter.  | NaCl.   | NaNO3.                                                | Na <sub>2</sub> SO4. | LiCl.           | LizSO4. | NH_CI.  |  |  |  |
| 0.0I        | 0.05524 | 0.05529                                               | 0.05604              | 0.05 <b>480</b> | 0.05661 | 0.05487 |  |  |  |
| U.02        | 0.05559 | 0.05872                                               | 0.05872              | 0.05558         | 0.00053 | 0.05540 |  |  |  |
| 0.05        | 0.05729 | 0.06632                                               | 0.06632              | 0.05703         | 0.06691 | 0.05771 |  |  |  |
| 0.07        | 0.05862 | 0.07093                                               | 0.07093              | 0.05878         | 0.07013 | 0.05865 |  |  |  |
| 0.10        | 0.05902 | 0.07670                                               | 0.07670              | 0.06132         | 0.07437 |         |  |  |  |
| 0.50        | 0.0790  | • • •                                                 | •••                  | • • •           | 0.123   | • • •   |  |  |  |
| I.00        | 0.1180  | •••                                                   | •••                  | •••             | 0.149   | •••     |  |  |  |

| Gm. Mols.                    | Grams Picric Acid per Liter in Aq. Solutions of: |        |         |       |         |        |  |  |
|------------------------------|--------------------------------------------------|--------|---------|-------|---------|--------|--|--|
| Gm. Mols.<br>Salt per Liter. | NaCl.                                            | NaNO3. | Na2SO4. | LiCl. | Li2SO4. | NHLCI. |  |  |
| 0.01                         | 12.66                                            | 12.67  | 12.83   | 12.55 | 12.97   | 12.57  |  |  |
| 0.02                         | 12.74                                            | 13.45  | 13.45   | 12.74 | 13.87   | 12.69  |  |  |
| 0.05                         | 13.12                                            | 15.19  | 15.19   | 13.06 | 15.33   | 13.22  |  |  |
| 0.07                         | 13.43                                            | 16.25  | 16.25   | 13.47 | 16.06   | 13.44  |  |  |
| 0.10                         | 13.52                                            | 17.57  | 17.57   | 14.05 | 17.04   |        |  |  |
| 0.50                         | 18.09                                            |        |         |       | 28.18   |        |  |  |
| I.00                         | 26.98                                            | •••    | •••     | •••   | 34.14   |        |  |  |

Solubility in Aq. Cane Sugar.

Solubility in Aq. Grape Sugar.

| Gm. Mols.<br>Sugar | Picric Ac. per Li | iter Solution. | Sp. Gr.   | Gm. Mols.                 | Picric Acid per Liter Sol. |       |
|--------------------|-------------------|----------------|-----------|---------------------------|----------------------------|-------|
| per Liter.         | Gm. Mols.         | Gms.           | Solution. | Grape Sugar<br>per Liter. | G. Mols.                   | Gms.  |
| 0.10               | 0.05202           | 11.92          | I.0I22    | O.IO                      | 0.0530                     | 12.14 |
| 0.25               | o.o4978           | II-40          | 1.0319    | 0.25                      | 0.0521                     | 11.93 |
| 0.50               | o.0482            | 11.04          | 1.0654    | 0.50                      | 0.0509                     | 11.66 |
| I .00              | 0.0443            | 10.15          | 1.1294    | I .00                     | 0.0474                     | 10.86 |

SOLUBILITY OF PICRIC ACID IN ABSOLUTE ALCOHOL. (Behrend – Z. physik. Ch. 10, 265, '92.)

100 gms. sat. solution contain 5.53 grams  $C_8H_3N_3O_7$  at 12.3°, and 5.92 grams at 14.8°. Sp. Gr. of the latter solution = 0.8255.

#### SOLUBILITY OF PICRIC ACID IN BENZENE. (Findlay.)

| t°.  | Gms.<br>C <sub>6</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub><br>per 100<br>Gms. C <sub>6</sub> H <sub>6</sub> . | Mols.<br>C <sub>6</sub> H <sub>3</sub> N <sub>3</sub> O7<br>per 100<br>Mols. C <sub>6</sub> H <sub>6</sub> . | <b>t°</b> . | Gms.<br>C6H3N3O7<br>per 100<br>Gms.C6H6. | Mols.<br>C6H3N3O7<br>per 100<br>Mols. C6H6. |
|------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------|---------------------------------------------|
| 5    | 3.70                                                                                                                   | I . 26                                                                                                       | 38.4        | 26.15                                    | 8.88                                        |
| 10   | 5 · 37                                                                                                                 | 1.83                                                                                                         | 45          | 33.57                                    | II · 40                                     |
| 15   | 7 . 29                                                                                                                 | 2.48                                                                                                         | 55          | 50.65                                    | 17.21                                       |
| 20   | 9.56                                                                                                                   | 3.25                                                                                                         | 58.7        | 58.42                                    | 19.83                                       |
| 25   | 12.66                                                                                                                  | 4 . 30                                                                                                       | 65          | 71.31                                    | 24 - 20                                     |
| 26.5 | 13.51                                                                                                                  | 4.60                                                                                                         | 75          | 96.7 <b>7</b>                            | 32.9 <b>2</b>                               |
| 35   | 21 . 38                                                                                                                | 7.26                                                                                                         |             |                                          |                                             |

SOLUBILITY OF PICRIC ACID IN ETHER. (Bougault - J. pharm. chim. [6] 18, 116, '03; - Apoth.-Ztg. 21, 74, '06.)

| Solvent.                                     | t°. | Gms. CoHaNaO7 per Liter. |
|----------------------------------------------|-----|--------------------------|
| Ether of Sp. Gr. 0.721                       | 13  | 10.8 (B.)                |
| Ether of Sp. Gr. 0.725 (0.8 pt. H2O per 100) | 13  | 36.8 "                   |
| Ether of Sp. Gr. 0.726 (1.0 pt. H2O per 100) | 13  | 40.0 "                   |
| Ether saturated with H <sub>2</sub> O        | 15  | 51.2                     |
| H <sub>2</sub> O saturated with Ether        | 15  | 13.8                     |

DISTRIBUTION OF PICRIC ACID AT 25° BETWEEN:

| Water and Amyl Alcohol.<br>(Herz and Fischer - Ber. 37, 4747, '04.) |                                                                         | Water and Toluene.<br>(H. and F Ber. 38, 1142, '05.) |                   |               |                   |               |                    |
|---------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------|-------------------|---------------|-------------------|---------------|--------------------|
|                                                                     | s C <sub>6</sub> H <sub>3</sub> N <sub>8</sub> O <sub>7</sub><br>10 cc. | Gms. C.<br>per 10                                    | 6H3N3O7           |               | C6H3N3O7          |               | C6H3N3O7<br>00 cc. |
| Aq.<br>Layer.                                                       | Alcohol<br>Layer.                                                       | Aq.<br>Layer.                                        | Alcohol<br>Layer. | Aq.<br>Layer. | Toluene<br>Layer. | Aq.<br>Layer. | Toluene<br>Layer.  |
| 0.0553                                                              | 0.0930                                                                  | 0.127                                                | 0.213             | 0.075         | 0.126             | 0.172         | 0.289              |
| 0.0920                                                              | 0.1850                                                                  | 0.211                                                | 0.424             | 0.109         | 0.230             | 0.250         | 0.527              |
| 0.1613                                                              | 0.4127                                                                  | 0.369                                                | 0.946             | 0.163         | 0.482             | 0.374         | I.104              |
| 0.1869                                                              | 0.5182                                                                  | 0.428                                                | 1.188             | 0.244         | 1.026             | 0.559         | 2.351              |
| 0.3161                                                              | I.079                                                                   | 0.724                                                | 2.473             | 0.389         | 2.347             | 0.891         | 5.380              |
| 0.4471                                                              | 1.638                                                                   | I.024                                                | 3.753             | 0.496         | 3.747             | 1.137         | 8.586              |
| 0.5624                                                              | 2.189                                                                   | I.288                                                | 5.017             | 0.583         | 5.135             | 1.336         | 11.770             |
| 0.6423                                                              | 2.549                                                                   | 1.472                                                | 5.839             |               |                   |               |                    |

DISTRIBUTION OF PICRIC ACID AT 25° BETWEEN:

| (Herz and Lewy – Z. Electrochem. 11, 820, '05.)                                                                                                                  |                                                                           |                                                                                                                                                                                                             | Water and Chloroform.                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                  |                                                                           |                                                                                                                                                                                                             | (H. and L.)                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Millimols C <sub>6</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Gms. C <sub>6</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub><br>per 10 cc. per 100 cc. |                                                                           |                                                                                                                                                                                                             | Millimols CoH3N3O7<br>per 10 cc.                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gms. C <sub>6</sub> H <sub>2</sub> N <sub>2</sub> O <sub>7</sub><br>per 100 cc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Aq.<br>Layer.                                                                                                                                                    | Bromoform<br>Layer.                                                       | Aq.<br>Layer.                                                                                                                                                                                               | Bromoform<br>Layer.                                                                                                                                                                                                                                                                            | Aq.<br>Layer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chloroform<br>Layer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Aq.<br>Layer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chloroform<br>Layer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.321                                                                                                                                                            | 0.365                                                                     | 0.736                                                                                                                                                                                                       | 0.836                                                                                                                                                                                                                                                                                          | 0.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.401                                                                                                                                                            | 0.515                                                                     | 0.919                                                                                                                                                                                                       | 1.180                                                                                                                                                                                                                                                                                          | 0.329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0-547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.475                                                                                                                                                            | 0.655                                                                     | 1.088                                                                                                                                                                                                       | 1.501                                                                                                                                                                                                                                                                                          | 0.488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.575                                                                                                                                                            | 0.871                                                                     | 1.317                                                                                                                                                                                                       | I.995                                                                                                                                                                                                                                                                                          | 0.561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.674                                                                                                                                                            | 1.14                                                                      | 1.545                                                                                                                                                                                                       | 2.612                                                                                                                                                                                                                                                                                          | 0.588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                  | Herz and 1<br>Millim<br>Aq.<br>Layer.<br>0.321<br>0.401<br>0.475<br>0.575 | Herz and Lewy – Z. Ele<br>Millimols C <sub>6</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub><br>per to cc.<br>Aq. Bromoform<br>Layer. Layer.<br>0.321 0.365<br>0.401 0.515<br>0.475 0.655<br>0.575 0.871 | Agr.         Biomodo CaHaN3O7<br>per to cc.         Gms.           Aq.         Bromoform<br>Layer.         Aq.           0.321         0.365         0.736           0.401         0.515         0.919           0.475         0.655         1.088           0.575         0.871         1.317 | Millimols C <sub>4</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub><br>per 10 cc.         Gms. C <sub>4</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub><br>per 100 cc.           Aq.         Bromoform<br>Layer.         Aq.         Bromoform<br>Layer.         Aq.         Bromoform<br>Layer.           0.321         0.365         0.736         0.836           0.401         0.515         0.919         1.180           0.475         0.655         1.088         1.501           0.575         0.871         1.317         1.995 | Millimols $C_0H_8N_3O_7$ Gms. $C_0H_8N_3O_7$ Millimols $C_0H_8N_3O_7$ Gms. $C_0H_8N_3O_7$ Millimols $C_0H_$ | Herz and Lewy – Z. Electrochem. 11, 830, '05.)       (H.         Millimols C <sub>6</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Gms. C <sub>6</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Millimols C <sub>8</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub> Milli | Herz and Lewy – Z. Electrochem. 11, 830, '05.)(H. and L.)Millimols $C_{6}H_{3}N_{3}O_{7}$<br>per 10 cc.Gms. $C_{6}H_{3}N_{3}O_{7}$<br>per 10 cc.Millimols $C_{6}H_{3}N_{3}O_{7}$<br>per 10 cc.Gms.<br>per<br>per 10 cc.Aq.Bromoform<br>Layer.Aq.Bromoform<br>Layer.Aq.Chloroform<br>Layer.Aq.0.3210.3650.7360.8360.2070.2540.4740.4010.5150.9191.1800.3290.5470.7540.4750.6551.0881.5010.4881.091.1180.5750.8711.3171.9950.5611.411.285 |

**PILOCARPINE HYDROCHLORIDE** C<sub>11</sub>H<sub>16</sub>N<sub>2</sub>O<sub>2</sub>.HCl, Pilocarpine Nitrate C<sub>11</sub>H<sub>16</sub>N<sub>2</sub>O<sub>2</sub>.HNO<sub>3</sub>, and Piperine C<sub>17</sub>H<sub>19</sub>NO<sub>3</sub> in Several Solvents.

| 2.0 | -  | - |   | - |       |
|-----|----|---|---|---|-------|
| r 1 | ст | 5 |   | Р |       |
| ٠.  | •  | 9 | • |   | · / · |

| 1000       |     | Grams           | Grams per 100 Grams Solvent. |            |  |  |
|------------|-----|-----------------|------------------------------|------------|--|--|
| Solvent.   | t°. | C11H16N2O2.HCl. | C11H10N2O2.HNO3.             | C17H19NO3. |  |  |
| Water      | 25  | 333             | 25                           | insoluble  |  |  |
| Alcohol    | 25  | 4.35            | 1.66                         | 6.66       |  |  |
| Alcohol    | 60  | 9.09            | 6.2                          | 22.7       |  |  |
| Chloroform | 25  | 0.18            | ***                          | 58.8       |  |  |
| Ether      | 25  |                 |                              | 2.8        |  |  |

#### PLATINUM ALLOYS

#### 232

| A11            | Approx.                  | Grams Alloy Di | ssolved per 1 | oo Grams H   | NO3 Solution of  |
|----------------|--------------------------|----------------|---------------|--------------|------------------|
| Alloy.         | per cent<br>Pt in Alloy. | 1.398 Sp. Gr.  | 1.298 Sp. Gr  | . 1.190 Sp G | r. 1.298 Sp. Gr. |
| Pt and Silver  | IO                       | 57             | 44            | 69           | 37               |
| "              | 5                        | 69             | 57            | 51           | 35               |
| "              | 2.5                      | 62             | 61            | 69           | ••               |
| "              | I                        | 75             | 70            | 76           | ••               |
| Pt and Copper  | 10                       | 46             | 27            | 11           | 51               |
| "              | 5                        | 36             | · 34          | 14           | 41 .             |
| "              | 2.5                      | 51             | 40            | 30           | •                |
| "              | - J<br>I                 | 52             | 41            | 37           |                  |
| Pt and Lead    | IO                       | 7<br>7         | 9             | 8            |                  |
| "              | 5                        | 8              | 9             | 10           | •••              |
| "              | 3<br>2.5                 | 22             | 17            | 11           | ••               |
| "              | 1+                       | 21             | 18            |              | ••               |
| Pt and Bismuth | -                        |                |               | 23           | • •              |
| "              | _                        | 14             | 19            | 4<br>6       | 3<br>18          |
| "              | 5                        | 21             | 20            | -            | 10               |
| "              | 2.5                      | 25             | 42            | 8            | ••               |
|                | I                        | 49             | 64            | 10           | ••               |
| Pt and Zinc    | IO                       | 10             | II            | 19           | 5                |
|                | 5                        | 16             | I 2           | 6            | II               |
| 66             | 2.5                      | 16             | 24            | 19           | ••               |
| 66             | I                        | 20             | 32            | 37           | •••              |

#### SOLUBILITY OF PLATINUM ALLOYS IN NITRIC ACID. (Winkler – Z. anal. Ch. 13, 369, '74.)

#### PLATINUM BROMIDE PtBr4.

100 grams sat. aqueous solution contain 0.41 gram PtBr4 at 20° (Halberstadt – Ber. 17, 2962, '84.)

#### PLATINIC POTASSIUM BROMIDE K,PtBr.

100 grams sat. aqueous solution contain 2.02 grams K<sub>2</sub>PtBr<sub>6</sub> at 20°. (Halberstadt.)

**PLATINIC DOUBLE OHLORIDES** of Ammonium, Caesium, Potassium, Rubidium and Thallium.

| Solubility | Y IN | WATER. |  |
|------------|------|--------|--|
|            |      |        |  |

| (Crookes - Chem. News 9, 37, 205, '64; Bunsen - Pogg. Ann. 113, 337, '61.) |  |
|----------------------------------------------------------------------------|--|
| Grams per 100 Grams Water.                                                 |  |

| t°. | Grams per 100 Grams water. |           |          |           |                                     |  |  |  |  |
|-----|----------------------------|-----------|----------|-----------|-------------------------------------|--|--|--|--|
| t., | (NH4)2PtCla.               | Cs2PtCls. | K2PtCls. | Rb2PtCls. | Tl <sub>2</sub> PtCl <sub>6</sub> . |  |  |  |  |
| 0   | •••                        | 0.024     | 0.74     | 0.184     | •••                                 |  |  |  |  |
| 10  | 0.666 (15°)                | 0.050     | 0.90     | 0.154     | 0.0064 (15°)                        |  |  |  |  |
| 20  | •••                        | 0.079     | I.I2     | 0.141     | •••                                 |  |  |  |  |
| 25  | •••                        | 0.095     | 1.26     | 0.143     | •••                                 |  |  |  |  |
| 30  | •••                        | 0.110     | 1.41     | 0.145     | •••                                 |  |  |  |  |
| 40  | •••                        | 0.142     | 1.76     | 0.166     |                                     |  |  |  |  |
| 50  | •••                        | 0.177     | 2.17     | 0.203     | • • •                               |  |  |  |  |
| δo  |                            | 0.213     | 2.64     | 0.253     | · • •                               |  |  |  |  |
| 70  | •••                        | 0.251     | 3.19     | 0.329     | •••                                 |  |  |  |  |
| 8o  | •••                        | 0.291     | 3.79     | 0.417     | •••                                 |  |  |  |  |
| 90  | • • •                      | 0.332     | 4 45     | 0.521     | •••                                 |  |  |  |  |
| 100 | 1.25                       | o.377     | 5.18     | 0.634     | 0.050                               |  |  |  |  |
|     |                            |           |          |           |                                     |  |  |  |  |

#### 233 PLATINIC CHLORIDES

SOLUBILITY OF AMMONIUM PLATINIC CHLORIDE AND OF POTASSIUM PLATINIC CHLORIDE IN ALCOHOL AT 15°-20°. (Fresenius; Pellgot – Z. anal. Ch. 36, 322, '97.)

| Solvent Gms. per Liter |         |              |          |                       | Gms. per Liter Solution. |               |  |
|------------------------|---------|--------------|----------|-----------------------|--------------------------|---------------|--|
| 0                      | orvent, | (NH_)2PtCl6. | K2PtCl6. | - Solvent.            | (NH4)2PtCl               | 6. K2PtCl6.   |  |
| 55%                    | Alcohol | 0.150        |          | 95% Alcohol           | 0.0037                   | 0.030         |  |
| 76<br>85               | "       | 0.067        | 0.026    | Abs. "                |                          | 0.0082-0.0023 |  |
| 85                     | "       |              | 0.180    | 80 Vol.% Alcohol + 20 |                          |               |  |
|                        |         |              |          | Vol. % Ether          |                          | 0.027         |  |
| 90                     | **      |              | 0.100    | Abs. Methyl Alcohol   |                          | 0.072         |  |

#### PLATINO AMINES.

SOLUBILITY IN WATER. (Cleve.)

|                              | terered                                 |            |         |       |
|------------------------------|-----------------------------------------|------------|---------|-------|
| Amine.                       | Formula.                                | Gms. per   | 100 Gms | .H.O. |
| Platino Semi Di Amine Chlori | ide $Pt < {(NH_3)_2.Cl \atop C1}$       | 0. 26 at o |         |       |
| Chloro Platin Amine Chloride | Cl <sub>2</sub> Pt < NH <sub>3</sub> Cl | 0.14 "     | 3.0     | "     |
| Chloro Platin Semi Diamine C |                                         | 0.33 "     | 1.54    |       |

#### POTASSIUM ACETATE CH3COOK.

#### SOLUBILITY IN WATER.

100 gms. sat. aq. solution contain 73.65 gms. CH<sub>3</sub>COOK, or 100 gms. H<sub>2</sub>O dissolve 286.3 gms. at 31.25°.

(Köhler - Z. Ver. Zuckerind. 47, 447, '97.)

100 gms. H<sub>2</sub>O dissolve 188 gms. CH<sub>2</sub>COOK at  $5^{\circ}$ , 229 gms. at 13.9°, 492 gms. at  $62^{\circ}$ .

(Osann.)

100 gms. 99 per cent ethyl alcohol dissolve 33.3 gms. CH<sub>3</sub>COOK at  $15^{\circ}$ , and 50.0 gms. at  $80^{\circ}$ .

#### POTASSIUM (Di Hydrogen) ARSENATE KH2AsO4.

100 gms. sat. aq. solution contain 15.9 gms.  $\text{KH}_2\text{AsO}_4$ , or 100 gms.  $\text{H}_3\text{O}$  dissolve 18.86 gms. at 6°. Sp. Gr. of solution = 1.1134. (Field - J. Ch. Soc. 11, 6, '59.)

#### POTASSIUM BENZOATE KC7H8O2.3H2O.

SOLUBILITY IN WATER.

| (Faletta - Gazz, chill, Aat. 30, 14, 07, 00.) |               |             |               |             |  |  |
|-----------------------------------------------|---------------|-------------|---------------|-------------|--|--|
| t°.<br>Gms. KC7HsO2 per 100 Gms.<br>Solution. | 17.5°<br>41.4 | 25°<br>42.4 | 33.3°<br>44.0 | 50°<br>46.6 |  |  |

#### POTASSIUM BORATES 234

.

| SOLUBILITY OF | POTASSIUM       | BORATES 2         | IN WATER           | AT 30°. |
|---------------|-----------------|-------------------|--------------------|---------|
| (Dukelski — 2 | anorg. Chem. 50 | , 42, '06, comple | ete references giv | en.)    |

| Gms. per 100 ( | Gms. Solution. | Gms. per 100      | Gms. Residu                     | e. Solid                                 |
|----------------|----------------|-------------------|---------------------------------|------------------------------------------|
| K.O.           | BaOa.          | K <sub>2</sub> O. | B <sub>2</sub> O <sub>3</sub> . | Phase.                                   |
| 47.50          | •••            |                   | •••                             | KOH_2H2O                                 |
| 46.36          | 0.91           | 46.13             | 9.02                            | K2O.B2O3.23H2O                           |
| 40.51          | I .25          | 41.62             | 9.71                            | 44                                       |
| 36.82          | I.80           | 39.90             | 13.19                           | **                                       |
| 32.74          | 3.5I           | 37.22             | 14.58                           | 44                                       |
| 29.63          | 6.98           | 35.05             | 17.92                           | 44                                       |
| 24.84          | 17.63          | 30.02             | 21.70                           | 64                                       |
| 23.30          | 18.19          | 26.84             | 31.49                           | K2O.2B2O3.4H2O                           |
| 16.21          | 13.10          | 25.12             | 33.18                           | 44                                       |
| 11.78          | 9.82           | 20.57             | 26.43                           | "                                        |
| 9.18           | 8.00           | 22.38             | 31.30                           | "                                        |
| 6.22           | 9.13           | 20.87             | 31.06                           | 44                                       |
| 7 · 73         | 13.37          | 22.2I             | 36.24                           | K2O.2B2O2.4H2O + K2O.5B2O2.8H2O          |
| 7.81           | 13.28          | 17.50             | 34 . 18                         | •                                        |
| 7.7I           | 13.21          | II · 49           | 34.81                           | K2O.5B2O2.8H2O                           |
| 7.63           | 13.28          | 12.51             | 40.52                           | -                                        |
| 3.42           | 7 · 59         | 10.77             | 37 · 35                         | "                                        |
| I.80           | 4.15           | 5.88              | 20.00                           | "                                        |
| 0.51           | 3 . 19         | 18.01             | 40.89                           | **                                       |
| 0.33           | 4 . 58         | 7.72              | 34.21                           | $K_{2}O.5B_{2}O_{3}.8H_{2}O + B(OH)_{3}$ |
| 0.31           | 4.46           | 3.91              | 30.68                           | **                                       |
| • • •          | 3 - 54         | •••               | •••                             | 64                                       |

#### POTASSIUM (Fluo) BORIDE KBF4.

100 gms. H<sub>2</sub>O dissolve 0.44 gm. KBF<sub>4</sub> at 20°, and 6.27 gms. at 100° (Stolba - Chem. techn. Centr. Anz. 7, 459. '89.)

#### POTASSIUM BROMATE KBrO,

#### SOLUBILITY IN WATER.

(Kremers - Pogg. Ann. 97, 5, '56; Rammelsberg - Ibid. 55, 79, '42, Pohl - Sitzber. Akad. Wiss Wien. 6, 595, '51.)

| <b>\$°</b> . | Gms. KBrOs | Gms. KBrO3 per 100 Gms. |     | Gms. KBrO3 per 100 Gms. |           |
|--------------|------------|-------------------------|-----|-------------------------|-----------|
| Wate         | Water.     | Solution.               | t°. | Water.                  | Solution. |
| 0            | 3 · I      | 3.0                     | 40  | 13.2                    | 11 7      |
| 10           | 4.8        | 4.6                     | 50  | 17 5                    | 14 9      |
| 20           | 6.9        | 6.5                     | 60  | 22.7                    | 18.5      |
| 25           | 8.o        | 7 · 4                   | 8o  | 34 0                    | 25 4      |
| 30           | 9.5        | 8.7                     | 100 | 50.0                    | 53-3      |

Sp. Gr. of solution saturated at  $19.5^{\circ} = 1.05$ .

#### 235 POTASSIUM BROMATE

SOLUBILITY OF POTASSIUM BROMATE IN AQUEOUS SOLUTIONS OF SODIUM NITRATE AND OF SODIUM CHLORIDE. (Geffcken – Z. physik, Chem. 49, 296, '04.)

| In Sodium Nitrate. |                                  | In Sodium Chloride.       |                |                      |                           |
|--------------------|----------------------------------|---------------------------|----------------|----------------------|---------------------------|
| Grams p<br>NaNO3.  | er Liter.<br>KBrO <sub>3</sub> . | Mols. KBrO3<br>per Liter. | Grams<br>NaCl. | per Liter.<br>KBrOa. | Mols. KBrO3<br>per Liter. |
| 0.0                | 78.79                            | 0.4715                    | 0.0            | 78.79                | 0.4715                    |
| 42.54              | 96.01                            | 0.5745                    | 29 25          | 82.24                | 0.5220                    |
| 85.09              | 108.6                            | 0.6497                    | 58.50          | 93.87                | 0.5616                    |
| 170.18             | 128.3                            | 0.7680                    | 117.0          | 100.9                | 0.0042                    |
| 255.27             | 150.9                            | 0.9026                    | 175.5          | 104.3                | 0.6244                    |
| 340.36             | 172.3                            | 1.031                     | 234.0          | 106.9                | 0.6400                    |

#### POTASSIUM BROMIDE KBr.

SOLUBILITY IN WATER.

(Average curve from results of Meusser – Z. anorg. Chem. 44, 70, '05; Etard – Compt. rend. 98, 1432, '84; Ann. chim. phys. [7] 2, 526, '94; de Coppet – *Ibid.* [5] 30, 416, '83; Tilden and Shenstone – Phil. Trans. 175, 23, '84.)

| t°.   | Grams KBr per 100 Grams |        | t°. | Grams KBr per 100 Grams |        |
|-------|-------------------------|--------|-----|-------------------------|--------|
|       | Solution.               | Water. | t   | Solution.               | Water. |
| - 6.5 | 20.0                    | 25.0   | 30  | 41.4                    | 70.6   |
| - 8.5 | 26.5                    | 35.7   | 40  | 43.0                    | 75.5   |
| -10.5 | 29.5                    | 41.8   | 50  | 44.5                    | 80.2   |
| -11.5 | 31.2                    | 45.3   | 60  | 46.1                    | 85.5   |
| -10   | 31.8                    | 46.7   | 70  | 47.4                    | 90.0   |
| - 5   | 33.3                    | 50.0   | 80  | 48.7                    | 95.0   |
| 0     | 34.9                    | 53.5   | 90  | 49.8                    | 99.2   |
| 5     | 36.1                    | 56.5   | 100 | 51.0                    | 104.0  |
| IO    | 37.3                    | 59.5   | 110 | 52.3                    | 109.5  |
| 15    | 38.5                    | 62.5   | 140 | 54.7                    | 120.9  |
| 20    | 39.5                    | 65.2   | 181 | 59-3                    | 145.6  |
| 25    | 40.4                    | 67.7   |     | 2 C C C                 |        |

#### SOLUBILITY OF MIXTURES OF POTASSIUM BROMIDE AND AMMONIUM BROMIDE IN WATER AT 25°. (Fock - Z. Kryst. Min. 28, 357, '97.)

| Gr | ams per Li | iter Solution. | Mol. per ce         | nt in Solution. | Sp. Gr. of | Mol. per cent | in Solid Phase |
|----|------------|----------------|---------------------|-----------------|------------|---------------|----------------|
| -  | NH4Br.     | KBr.           | NH <sub>4</sub> Br. | KBr.            | Solutions. | NH4Br.        | KBr.           |
|    | 0.00       | 558.I          | 0.0                 | 100             | I.3756     | 0.00          | 100            |
|    | 6.4        | 554.2          | 1.38                | 98.62           | 1.3745     | 0.26          | 99.74          |
|    | 24.64      | 536.5          | 5.29                | 94.71           | I.3733     | 1.27          | 98.73          |
|    | 51.34      | 516.8          | 10.77               | 89.23           | 1.3721     | 3.02          | 96.98          |
| 3  | 152.9      | 441.2          | 29.63               | 70.37           | 1.3711     | 8.42          | 91.58          |
|    | 262.2      | 347-3          | 47.84               | 52.16           | 1.3715     | 17.20         | 82.80          |
|    | 347.6      | 262.3          | -61.69              | 38.31           | 1.3753     | 27.98         | 72.02          |
|    | 381.4      | 260.3          | 64.03               | 35.97           | 1.3753     | 32.53         | 67.47          |
|    | 417.8      | 232.2          | 68.61               | 31.39           | 1.3766     | 39.45         | 60.55          |
|    | 432.5      | 222.3          | 70.27               | 29.73           | 1.3777     | variable      | variable       |
| 4  | 480.8      | 179.9          | 76.47               | 23.53           | 1.3766     | 98.53         | 1.47           |
|    | 577.3      | 0.0            | 100.0               | 0.0             | 1.3763     | 100.0         | 0.00           |

#### POTASSIUM BROMIDE 236

.

.

#### SOLUBILITY OF POTASSIUM BROMIDE IN AQUEOUS SOLUTIONS OF POTASSIUM HYDROXIDE. (Ditte - Compt. rend. 124, 30, '97.)

| Grams per 1000 Grams H <sub>2</sub> O. |       | Grams per 1000 Grams H <sub>2</sub> O. |         |  |
|----------------------------------------|-------|----------------------------------------|---------|--|
| KOH.                                   | KBr.  | KOH.                                   | KBr.    |  |
| 36.4                                   | 558.4 | 277.6                                  | 248 . 1 |  |
| 113.5                                  | 433.6 | 434 . 7                                | 137.1   |  |
| 177.2                                  | 358.1 | 579.6                                  | 64.8    |  |
| 231.1                                  | 281.2 | 806.9                                  | 33.4    |  |

OLUBILITY OF MIXTURES OF POTASSIUM BROMIDE AND CHLORIDE AND OF MIXTURES OF POTASSIUM BROMIDE AND IODIDE IN WATER. (Etard — Ann. chim. phys. [7] 3. 275, '97.)

| Mixtures of KBr and KCl. | Mixtures of KBr and KI. |
|--------------------------|-------------------------|
|                          |                         |

| <b>t°</b> .             | Grams per 100 | Gms. Solution. | Grams per 100 Grams Solution. |                      |  |
|-------------------------|---------------|----------------|-------------------------------|----------------------|--|
| <b>U</b> <sup>2</sup> . | KBr.          | KCl.           | KBr.                          | <u>KI.</u>           |  |
| - 20                    | 17.5          | 10.5           | 9.2                           | 42.5                 |  |
| 0                       | 21.5          | 10.8           | 9.9                           | <b>45</b> ·3         |  |
| IO                      | 23.2          | <b>II</b> .0   | 10.2                          | <b>4</b> 6. <b>6</b> |  |
| 20                      | 24.8          | II. <b>2</b>   | 10.5                          | 47 · 5               |  |
| . 25                    | 25.5          | 11.3           | 10.7                          | 48.0                 |  |
| 30                      | 26.3          | II.4           | 10.9                          | 48.6                 |  |
| 40                      | <b>28.0</b>   | 11.5           | II.2                          | 49. <b>6</b>         |  |
| 60                      | 30.6          | 11.8           | 11.9                          | 51.3                 |  |
| 80                      | 33 · 4        | 12.1           | 12.6                          | 52.7                 |  |
| 100                     | 35 · 7        | 12.6           | 13.2                          | 53.8                 |  |
| 120                     | 38.0          | 12.9           | 14.0                          | 54.8                 |  |
| 150                     | 40.6          | 13.4           | 14.9                          | 55·5                 |  |

SOLUBILITY OF POTASSIUM BROMIDE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE, AND OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF POTASSIUM BROMIDE, AT 25.2°. (Touren - Compt. rend. 130, 1252, '∞.)

| KBr in Aq. KCl Solutions. |           |               | KCl in Aq. KBr Solutions. |              |          |         |           |
|---------------------------|-----------|---------------|---------------------------|--------------|----------|---------|-----------|
| Mols. p                   | er Liter. | Grams         | per Liter.                | Mols. po     | r Liter. | Grams p | er Liter. |
| KCl.                      | KBr.      | KCl.          | KBr.                      | KBr.         | KCl.     | KBr.    | KCl.      |
| 0.0                       | 4.761     | 0.0           | 567.0                     | 0.0          | 4.18     | 0.00    | 311.8     |
| 0.67                      | 4.22      | 50 . <b>0</b> | 502.5                     | <b>o</b> .49 | 3.85     | 58.4    | 287 . 2   |
| 0.81                      | 4.15      | 60.4          | 494 . 2                   | o.85         | 3.58     | 101 . 3 | 267 . I   |
| I.35                      | 3.70      | 100.7         | 440 . 7                   | 1.31         | 3 . 19   | 156.1   | 238.0     |
| 1.48                      | 3 · 54    | 110.4         | 421.6                     | 1.78         | 2.91     | 211.9   | 217 . I   |
| 1.61                      | 3.42      | 120.0         | 407.2                     | 2.25         | 2 . 58   | 268.o   | 192.4     |
| 1.70                      | 3.34      | 126.8         | 397.7                     | 2.69         | 2.33     | 320.4   | 173.8     |
| 2.46                      | 2.50      | 183.5         | 297.7                     |              |          |         |           |
| <b>3</b> ∙775             | 0.525     | 281.6         | 625.3                     |              |          |         |           |

SOLUBILITY OF POTASSIUM BROMIDE IN AQUEOUS SOLUTIONS OF POTASSIUM NITRATE, AND OF POTASSIUM NITRATE IN AQUEOUS SOLUTIONS OF POTASSIUM BROMIDE, AT 14.5° AND AT 25.2°. (Touren - Compt. rend. 130, 908, '00.)

| KBr in Aqueous KNO, Solutions. |           | KNO     | ), in Aq. | KBr Sol   | lutions.   |               |           |
|--------------------------------|-----------|---------|-----------|-----------|------------|---------------|-----------|
| Mols. p                        | er Liter. | Grams p | er Liter. | Mols. p   | er Liter.  | Grams p       | er Liter. |
| KNO3.                          | KBr.      | KNO3.   | KBr.      | KBr.      | KNO3.      | KBr.          | KNO3.     |
| Results at                     | : 14.2°.  |         |           | Results a | at 14.20°. |               |           |
| 0.0                            | 4.332     | 0.0     | 515.9     | 0.0       | 2.228      | 0.0           | 225.4     |
| 0.362                          | 4.156     | 36.6    | 494 . 9   | o.356     | 2.026      | 42 . 4        | 205.0     |
| 0.706                          | 4.093     | 71.4    | 487.4     | o.784     | 1.835      | 93·4          | 185.7     |
| I.235                          | 3.939     | 124.9   | 469 . 1   | I.092     | 1.730      | 130.0         | 175.0     |
|                                |           |         |           | 1.577     | 1.587      | 187.8         | 160.6     |
| Results a                      | t 25.2°.  |         |           | 2.542     | 1.406      | 302.7         | 142.2     |
| 0.0                            | 4.761     | 0.0     | 566.2     | 3.536     | 1.308      | 42I · I       | 132.3     |
| 0.131                          | 4.72      | 13.3    | 561.0     | Results   | at 25.2°.  |               |           |
| 0.527                          | 4.61      | 53·3    | 549.1     | 0.0       | 3.217      | <b>o</b> .o   | 325.5     |
| 0.721                          | 4.54      | 72.9    | 540.8     | o.38      | 3.026      | <b>45</b> · 3 | 306.2     |
| I.09                           | 4.475     | 110.3   | 533.0     | 0.93      | 2.689      | 110.8         | 272.0     |
| 1.170                          | 4.44      | 118.4   | 528.8     | 1.37      | 2 . 492    | 163.1         | 252.2     |
| I . 504                        | 4.375     | 152.2   | 521.1     | 1.208     | 2 . 216    | 143.8         | 224.3     |
| -                              |           | -       | -         | 2.87      | 1.958      | 341.8         | 198.1     |
|                                |           |         |           | 3.55      | 1.807      | 422.8         | 182.8     |

SOLUBILITY OF POTASSIUM BROMIDE IN ALCOHOLS AT 25°.

(de Bruyn - Z. physik. Chem. 10, 783, '92; Rohland - Z. anorg. Chem. 18, 327, '98.)

| Alcohol.       | Grams KBr Dissolved by 100 Gms. Alcohol at: |                   |  |  |
|----------------|---------------------------------------------|-------------------|--|--|
| лісорог.       | Room Temp. (R.).                            | 25° (de B.).      |  |  |
| Methyl Alcohol | 1.92                                        | 1.51 Abs. Alcohol |  |  |
| Ethyl Alcohol  | 0.28 (Sp. Gr. 0.81)                         | 0.13 "            |  |  |
| Propyl Alcohol | 0.055                                       | •••               |  |  |

#### SOLUBILITY OF POTASSIUM BROMIDE IN AQUBOUS ALCOHOL. (Taylor - J. Physic. Ch. 1, 724, '96-'97.)

|                                     | Results a      | at 30°.  | Results at 40°.<br>Gms. KBr per 100 Gms. |          |  |
|-------------------------------------|----------------|----------|------------------------------------------|----------|--|
| Wt.per cent Alcohol<br>in Solution. | Gms. KBr per   | 100 Gms. |                                          |          |  |
|                                     | Sat. Solution. | Solvent. | Sat. Solution.                           | Sulvent. |  |
| 0                                   | 41.62          | 71.30    | 43.40                                    | 76.65    |  |
| 5                                   | 38.98          | 67 . 25  | 40 . 85                                  | 72.70    |  |
| IO                                  | 36.33          | 63.40    | 38.37                                    | 69.00    |  |
| ·20                                 | 31.09          | 56.40    | 33 - 27                                  | 62.30    |  |
| 30                                  | 25.98          | 50.15    | 28.32                                    | 56.45    |  |
| 40                                  | 21.24          | 44 . 95  | 23.22                                    | 50.46    |  |
| 50                                  | 16.27          | 38.85    | 18.11                                    | 44.25    |  |
| бо                                  | 11.50          | 32.50    | 13.02                                    | 37 . 40  |  |
| 70                                  | 6.90           | 24 . 70  | 7 . 98                                   | 28.90    |  |
| 80                                  | 3.09           | 15.95    | 3.65                                     | 18.95    |  |
| 90                                  | 0.87           | 8.80     | 1.03                                     | 10.45    |  |

100 gm. acetone dissolve 0.023 gm. KBr at 25°.

(Krug and McElroy - J. anal. Chem. 6, 184, '92.)

#### POTASSIUM BROMIDE 238

#### SOLUBILITY OF POTASSIUM BROMIDE AT 25° IN: (Herz and Knoch – Z. anorg. Chem. 45, 262, '05.)

| Aqueous Acetone.                            |                                                                    |                                                                                    |                                                                    |                                                                              | Aqueous Glycerine.                                       |                                                                      |                                  |                                                                    |
|---------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------|
| cc. Aceton<br>per 100 cc.<br>Solvent.       | e Per 100<br>Millimols<br>KBr.                                     | Gms.<br>KBr.                                                                       | olution.<br>Gms.<br>H <sub>2</sub> O.                              | Sp. Gr.<br>Solutions.                                                        | Wt. %<br>Glycerine<br>in Solvent.                        | KBr per 10<br>Millimols.                                             | oo cc. Sol. <sup>.</sup><br>Gms. | Sp. Gr.<br>Solutions                                               |
| 0<br>20<br>30<br>40<br>50<br>60<br>70<br>80 | 481.3<br>366.7<br>310.5<br>259.0<br>202.9<br>144.9<br>95.3<br>46.5 | 57 · 3<br>43 · 67<br>36 · 98<br>30 · 85<br>24 · 16<br>17 · 22<br>11 · 35<br>5 · 54 | 80.6<br>69.5<br>62.97<br>55.60<br>47.60<br>39.15<br>29.78<br>20.10 | 1.3793<br>1.2688<br>1.2118<br>1.1558<br>1.0918<br>1.0275<br>0.9591<br>0.8942 | 0<br>13.28<br>25.98<br>45.36<br>54.23<br>83.84<br>100.00 | 481 .3<br>444 .3<br>404 .0<br>340 .5<br>310 .4<br>219 .25<br>172 .65 |                                  | 1.3793<br>1.3704<br>1.3655<br>1.3594<br>1.3580<br>1.3603<br>1.3691 |
| 90                                          | <b>IO</b> . <b>I</b>                                               | I . 20                                                                             | 10.15                                                              | 0.8340                                                                       |                                                          |                                                                      |                                  |                                                                    |

100 cc. sat. solution of potassium bromide in furfurol (C<sub>4</sub>H<sub>2</sub>O.COH) contain 0.139 gm. KBr at 25°. (Walden - Z. physik. Chem. 55, 713, '66.)

#### POTASSIUM BUTYRATE C.H.COOK.

100 grams water dissolve 296.8 grams  $C_{3}H_{7}COOK$ , or 100 grams sat. solution contain 74.8 grams at  $31.25^{\circ}$ .

100 grams of an aq. solution saturated with sugar and  $C_3H_2COOK$ contain 49.19 grams sugar + 34.78 grams  $C_3H_7COOK$  + 16.03 grams  $H_2O$  at 31.25°. (Köhler – Z. Ver. Zuckerind. 47, 447, '97.)

#### POTASSIUM CARBONATE K,CO,

#### POTASSIUM (Bi) CARBONATE KHCO3.

SOLUBILITY OF EACH IN WATER. (Mulder; Dibbits – J. pr. Chem. [2] 10, 439, '74.)

| t°. | Grams K <sub>2</sub> CO <sub>3</sub> | per 100 Grams | Grams KHCO3 per 100 Grams |        |  |
|-----|--------------------------------------|---------------|---------------------------|--------|--|
|     | Solution.                            | Water.        | Solution.                 | Water. |  |
| 0   | 47 2                                 | 89.4          | 18.3                      | 22.4   |  |
| 10  | 52.2                                 | 109.0         | 21.7                      | 27.7   |  |
| 20  | 52.8                                 | 112.0         | 24.9                      | 33.2   |  |
| 30  | 53·3                                 | 114.0         | 28 . I                    | 39.0   |  |
| 40  | 54.0                                 | 117.0         | 31.2                      | 45 · 3 |  |
| 60  | 56.o                                 | 127.0         | 37.5                      | 60.0   |  |
| 100 | 60.9                                 | 156.0         |                           |        |  |

Köhler (loc. cit.) gives for the solubility of K<sub>2</sub>CO<sub>3</sub> in water, 48.91 grams K<sub>2</sub>CO<sub>3</sub> per 100 grams solution, or 95.9 grams per 100 grams H<sub>2</sub>O at 31.25°. In saturated sugar solution at the same temperature he finds 56.0 grams sugar + 22.24 grams K<sub>2</sub>CO<sub>3</sub> + 21.76 grams H<sub>2</sub>O per 100 grams sat. solution. Engel (Ann. chim. phys. [6] **13**, 366, '88) finds 111.0 grams K<sub>2</sub>CO<sub>3</sub> per 100 grams H<sub>2</sub>O or 52.6 grams per 100 grams sat. solution at o° 5.9 Gr. of solution = 1.542. For potassium bi carbonate he finds 23 grams KHCO<sub>3</sub> per 100 grams H<sub>2</sub>O, or 18.7 grams per 100 grams solution. Sp. Gr. of solution = 1.127.

#### 239 POTASSIUM CARBONATE

|                                      |         |       | (Engel.)   |                             |        |  |
|--------------------------------------|---------|-------|------------|-----------------------------|--------|--|
| Milligram Mols. per 10 cc. Solution. |         |       | Sp. Gr. of | Grams per 100 cc. Solution. |        |  |
|                                      | 1K2CO3. | KHCO3 | Solutions. | K2CO2.                      | KHCO3. |  |
|                                      | 0.0     | 21.15 | 1.133      | 0.0                         | 21.2   |  |
|                                      | 17.14   | 15.28 | 1.182      | 11.8                        | 15.3   |  |
|                                      | 24.10   | 12.65 | 1.203      | 16.7                        | 12.6   |  |
|                                      | 34.50   | 10.25 | 1.241      | 23.8                        | . 10.3 |  |
|                                      | 49.20   | 7.55  | 1.298      | 34.0                        | 7.6    |  |
|                                      | 62.14   | 5.86  | 1.350      | 43.0                        | 5.9    |  |
|                                      | 74.60   | 4.90  | 1.398      | 51.6                        | 4.9    |  |
|                                      | 87.50   | 3.75  | 1.448      | 60.5                        | 3.8    |  |
|                                      | 117.75  | 0.0   | 1.542      | 81.4                        | 0.0    |  |

#### SOLUBILITY OF POTASSIUM BI CARBONATE IN AQUEOUS SOLUTIONS OF POTASSIUM CARBONATE AT 0°.

SOLUBILITY OF POTASSIUM CARBONATE IN AQUEOUS SOLUTIONS OF ETHYL AND PROPYL ALCOHOLS AT 20°.

#### (Linebarger – Am. Ch. J. 14, 180, '92; de Bruyn – Rec. trav. chim. 18, 87, '99.) In Ag. Ethyl Alcohol. In Ag. Propyl Alcohol.

| in ing. is my raconon                                           |                                                                       |                                                                 |                                                                       | in inq. i ropji inconon.                                        |                                                                       |  |
|-----------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------|--|
| Wt. per cent<br>C <sub>2</sub> H <sub>6</sub> OH in<br>Solvent. | Gms. K <sub>2</sub> CO <sub>3</sub><br>per 100 Gms.<br>Sat. Solution. | Wt. per cent<br>C <sub>2</sub> H <sub>5</sub> OH in<br>Solvent. | Gms. K <sub>2</sub> CO <sub>3</sub><br>per 100 Gms.<br>Sat. Solution. | Wt. per cent<br>C <sub>3</sub> H <sub>7</sub> OH in<br>Solvent. | Gms. K <sub>2</sub> CO <sub>3</sub> per<br>100 Gms.<br>Sat. Solution. |  |
| IO                                                              | 24                                                                    | 50                                                              | 2.5                                                                   | 40                                                              | 4.3                                                                   |  |
| 20                                                              | 16                                                                    | 55                                                              | 1.8                                                                   | 45                                                              | 3.0                                                                   |  |
| 30                                                              | IO                                                                    | 60                                                              | I.I                                                                   | 50                                                              | 2.0                                                                   |  |
| 40                                                              | 5.6                                                                   | 65                                                              | 0.8                                                                   | 55                                                              | 1.3                                                                   |  |
| 45                                                              | 4                                                                     | 69                                                              | 0.4                                                                   | 60                                                              | 0.8                                                                   |  |
|                                                                 |                                                                       |                                                                 |                                                                       | 65                                                              | 0.5                                                                   |  |

100 grams glycerine of 1.225 Sp. Gr. dissolve 7.4 grams K<sub>2</sub>CO<sub>3</sub>.

(Vogel - N. Rep. Pharm. 16, 557, '67.)

#### POTASSIUM SODIUM CARBONATE KNaCO3.6H2O.

100 gms. H<sub>2</sub>O dissolve 184 gms. salt at 15°. Sp. Gr. of sol. = 1366. (Stolba - J. pr. Chem. 94, 406, '65.)

### POTASSIUM URANYL CARBONATE 2K2CO3. (UO2)CO3.

100 gms. H<sub>2</sub>O dissolve 7.4 gms. salt at 15°.

(Ebelmen - Liebig's Ann. [3] 5, 189, '52.)

### SOLUBILITY IN WATER.

(Gay-Lussac — Ann. chim. phys. 11, 314, 1816; Pawlewski — Ber. 32, 1040, '90; above 100°, Tilden and Shenstone — Proc. Roy. Soc. 35, 345, '81; see also Blarez — Compt. rend. 112, 1213, '01; Etard — Ann. chim. phys. [7] 2, 526, 94; at 99°, Köhler — Z. anal. Chem. 18, 242, '79.)

| t°. | Gms. KClO3 per 100 Gms. |       | t°.  | Gms. KClO3 per 100 Gms. |           |         |       |
|-----|-------------------------|-------|------|-------------------------|-----------|---------|-------|
|     | Solution.               | Wa    | ter. |                         | Solution. | Wa      | ater. |
| 0   | 3.04                    | 3.14  | 3.3* | 70                      | 22.55     | 29.16   | 32.5* |
| IO  | 4.27                    | 4.45  | 5.0  | 80                      | 26.97     | 36.93   | 39.6  |
| 20  | 6.76                    | 7.22  | 7.1  | 90                      | 31.36     | 46.11   | 47.5  |
| 25  | 7.56                    | 8.17  | 8.6  | 100                     | 35.83     | 55-54   | 56.0  |
| 30  | 8.46                    | 9.26  | IO.I | 120                     | 42.4      | 73.7    | 73.7  |
| 40  | 11.75                   | 13.31 | 14.5 | 136                     | 49.7      | 98.5    | 99.0  |
| 50  | 15.18                   | 17.95 | 19.7 | 190                     | 64.6      | 183.0   | 183.0 |
| 60  | 18.97                   | 23.42 | 26.0 | 330                     | 96.7      | 2930.00 |       |
|     |                         |       |      | Turne                   |           |         |       |

· Gay Lussac.

#### POTASSIUM CHLORATE 240

#### SOLUBILITY OF POTASSIUM CHLORATE IN AQUEOUS SOLUTIONS OF POTASSIUM BROMIDE AT 13°. (Blarez - Compt. rend. 112, 1213, '91.)

(Blatez - Compt. rend. 112, 1213, 91.)

| Gms. per 100 Gms.<br>Solution. |        | Gms. pe<br>Sol | r 100 Gms.<br>ution. | Gms. per 100 Gms.<br>Solution. |                     |  |
|--------------------------------|--------|----------------|----------------------|--------------------------------|---------------------|--|
| KBr.                           | KClOz. | KBr.           | KClO3.               | KBr.                           | KClO <sub>2</sub> . |  |
| 0.20                           | 5.18   | Ι.Ο            | 5.04                 | 6.0                            | 3.46                |  |
| 0.60                           | 5.20   | 2.0            | 4.60                 | 8.0                            | 2.80                |  |
| o.8                            | 5.06   | 3.0            | 4.2                  | 10.0                           | 2.40                |  |
|                                |        | 4.0            | 4.0                  |                                |                     |  |

#### SOLUBILITY OF POTASSIUM CHLORATE IN AQUEOUS SOLUTIONS OF OTHER POTASSIUM SALTS AT 14°-15°. (Blarez.)

| Salt. | Gms. per 100 | Gms. Solution. | Salt.  | Gms. per 100 Gms. Solution. |                     |  |
|-------|--------------|----------------|--------|-----------------------------|---------------------|--|
| Sait. | K Salt.      | KClO3.         | Salt   | K. Salt.                    | KClO <sub>3</sub> . |  |
| KOH   | I.43         | <b>4</b> · 47  | KNO3   | 2.59                        | 4.51                |  |
| KCl   | 1.91         | 4 45           | "      | 5.18                        | 3.88                |  |
| "     | 3.82         | 3.58           | K,SO,  | 2.23                        | 4.71                |  |
| KBr   | 3.05         | 4.49           | "      | 4.46                        | 3.98                |  |
| "     | 6.10         | 3.60           | K2C2O4 | 2.42                        | 4.72                |  |
| KI    | 4.25         | 4 · 59         |        | 4.85                        | 3.93                |  |
| "     | 8.51         | 3.65           |        |                             |                     |  |

#### SOLUBILITY OF POTASSIUM CHLORATE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE AT 20°. (Winteler – Z. Electrochem. 7, 360, '00.)

| Sp. Gr. of<br>Solutions. | Grams | per Liter.            | Sp. Gr. of<br>Solutions. | Grams per Liter. |        |
|--------------------------|-------|-----------------------|--------------------------|------------------|--------|
| Solutions.               | KCl.  | KClO <sub>3</sub> .   |                          | KCl.             | KClO3. |
| 1.050                    | 0     | 71.I                  | I.098                    | 120              | 24.5   |
| 1.050                    | 10    | 58.0                  | 1.108                    | 140              | 22.5   |
| I .050                   | 20    | 49.0                  | 1.119                    | 160              | 21.0   |
| 1.054                    | 40    | <b>3</b> 9 · <b>5</b> | 1.130                    | 180              | 20.0   |
| 1.064                    | 60    | 34.0                  | I · I 40                 | 200              | 20 · O |
| 1.075                    | 8o    | 30.0                  | 1.168                    | 250              | 20.0   |
| 1.086                    | 100   | 27.0                  |                          |                  |        |

#### SOLUBILITY OF POTASSIUM CHLORATE IN AQUEOUS SOLUTIONS OF POTASSIUM NITRATE. (Arrhenius – Z. physik. Chem. 11, 397, '93.)

Results at 19.85°.

Results at 23.87°.

| Mols. pe | r Liter. | Grams I  | er Liter.         | Mols. p | er Liter.         | Grams p | er Liter. |
|----------|----------|----------|-------------------|---------|-------------------|---------|-----------|
| KNO3.    | KClO3.   | KNO3.    | KClO <sub>3</sub> | KNO3.   | KClO <sub>3</sub> | KNO3.   | KClO3.    |
| 0.0      | 0.570    | 0.0      | 6 <b>9</b> .88    | 0.0     | 0.645             | o.o     | 79.09     |
| 0.125    | 0.529    | 12.65    | 64 . 86           | 0.5     | 0.515             | 50.59   | 63.14     |
| 0.25     | 0.492    | 25.29    | 60.33             |         |                   |         |           |
| I.0      | 0.374    | 101 . 19 | 45 . 85           |         |                   |         |           |
| 2.0      | 0.328    | 202.38   | 40.22             |         |                   |         |           |

#### POTASSIUM CHLORATE 241

|   |                                 | In A        | Aqueous                                 | Alcohol.      |              | In                     | Aqueon         | us Aceton                | e.                 |
|---|---------------------------------|-------------|-----------------------------------------|---------------|--------------|------------------------|----------------|--------------------------|--------------------|
| - | Wt.perc<br>Alcohol of<br>Acetor | or Gms. 1   | t 30°,<br>KClO <sub>3</sub> per<br>Gms. | Gms. K0       | Gms.         | At<br>Gms. KC<br>100 G | 1O3 per<br>ms. | At 4<br>Gms. KC<br>100 C | O <sub>3</sub> per |
|   | n Solven                        | t. Solution | . Water.                                | Solution.     | Water.       | Solution.              | Water.         | Solution.                | Water.             |
|   | 0                               | 9.23        | 10.17                                   | 12.23         | 13.93        | 9.23                   | 10.17          | II.23                    | 13.93              |
|   | 5                               | 7.72        | 8.80                                    | 10.48         | 12.33        | 8.32                   | 9.56           | II.IO                    | 13.11              |
|   | IO                              | 6.44        | 7.65                                    | 8.84          | 10.77        | 7.63*                  | 9.09           | 10.28*                   | 12.60              |
|   | 20                              | 4.51        | 5.90                                    | 6.40          | 8.56         | 6.09                   | 8.10           | 8.27                     | 11.26              |
|   | 30                              | 3.21        | 4.74                                    | 4.67          | 7.00         | 4.93                   | 7.40           | 6.69                     | 10.24              |
|   | 40                              | 2.35        | 4.00                                    | 3.41          | 5.88         | 3.90                   | 6.76           | 5.36                     | 9.45               |
|   | 50                              | 1.64        | 3.33                                    | 2.41          | 4.94         | 2.90                   | 5.98           | 4.03                     | 8.40               |
|   | 60                              | I.OI        | 2.53                                    | I.4I          | 3.69         | 2.03                   | 5.17           | 2.86                     | 7.35               |
|   | 70                              | 0.54        | 1.82                                    | 0.78          | 2.63         | 1.24                   | 4.18           | 1.68                     | 5.68               |
|   | 80                              | 0.24        | I.22                                    | 0.34          | I.73         | 0.57                   | 2.88           | 0.79                     | 3.97               |
|   | 90                              | 0.06        | 0.62                                    | 0.12          | I.17         | 0.18                   | 1.82           | 0.24                     | 2.45               |
|   |                                 |             |                                         | * Solvent, ou | oo Wt. per o | cent Acetone.          |                |                          |                    |

#### SOLUBILITY OF POTASSIUM CHLORATE:

.. . .

- -

(Taylor - J. Physic. Chem. 1, 720, '96-'97; see also Gerardin - Ann. chim. phys. [4] 5, 148, '65.)

100 grams glycerine dissolve 3.5 grams KClO<sub>3</sub> at 15.5°. 100 grams sat. solution of KClO<sub>3</sub> in glycol contain 0.9 gram KClO<sub>3</sub>.

(de Coninck - Bul. acad. roy. Belgique, 359, 'o5.)

#### POTASSIUM (Per) CHLORATE KClO,.

SOLUBILITY IN WATER AND IN ALCOHOL.

(Muir - Chem. News, 33, 15, '76; Wenze - Z. angew. Ch. 5, 691, '91.)

|     | In Water.                                                | In Alcohol. (W.)         |                         |                                     |
|-----|----------------------------------------------------------|--------------------------|-------------------------|-------------------------------------|
| t°. | Gms. KClO <sub>4</sub> per<br>100 Gms. H <sub>2</sub> O. | Sp. Gr. of<br>Solutions. | Wt.per cent<br>Alcohol. | Gms. KClO4 per<br>100 Gms. Alcohol. |
| 6   | 0.7                                                      | 1.0005                   | 97.2                    | 0.0156                              |
| 25  | 1.9                                                      | 1.0123                   | 95.8                    | 0.020                               |
| 50  | 6.45                                                     | 1.0181                   | 90.0                    | 0.036                               |
| 100 | 20.0                                                     | 1.0660                   |                         |                                     |

#### POTASSIUM CHLORIDE KCI.

#### SOLUBILITY IN WATER.

(Average curve from the results of Meusser – Z. anorg. Chem. 44, 70, '05; at 31.35°, Köhler – Z. Ver. Zuckerind. 47, 447, '07; Andrae – J. pr. Chem. [2] 29, 456, '84; Gerardin – Ann. chim. phys. [4] 5, 137, '65; de Coppet Ibid. [5] 30, 411, '83; Etard Ibid. [7] 2, 526, '94; Mulder; above 100°, Tilden and Shenstone – Proc. Roy. Soc. (Lond.) 35, 345, '83.)

| += ( | Gms. KCl p | r 100 Gms. | +. G | ms. KCl pe | r 100 Gms. | tº   | Gms. KCl  | per 100 Gms. |
|------|------------|------------|------|------------|------------|------|-----------|--------------|
|      | Solution.  | Water.     |      | Solution.  | Water.     | 1. 7 | Solution. | Water.       |
| -9   | 19.3       | 23.9       | 40   | 28.6       | 40.0       | 147  | 41.5      | 70.8         |
| -4.  | 5 20.6     | 25.9       | 50   | 29.9       | 42.6       | 180  | 43.7      | 77.5         |
| 0    | 21.6       | 27.6       | 60   | 31.3       | 45.5       |      | Solid     | Phase Ice    |
| 5    | 22.7       | 29.3       | 70   | 32.6       | 48.3       | -9   | 19.3      | 23.9         |
| IO   | 23.7       | 31.0       | 80   | 33.8       | 51.1       | -8.  | 17.7      | 21.5         |
| 15   | 24.5       | 32.4       | 90   | 35.1       | 54.0       | -8   | 16.7      | 20.0         |
| 20   | 25.4       | 34.0       | 100  | 36.2       | 56.7       | -7   | 14.9      | 17.5         |
| 25   | 26.2       | 35.5       | 130  | 39.8       | 66.0       | -6   | 13.6      | 15-7         |
| 30   | 27.1       | 37.0       |      |            |            | -5.5 | 12.5      | 14.3         |
| -    | 0.1        |            |      |            |            |      | 2000      |              |

Sp. Gr. of solution sat. at o = °1.150; at 15° = 1.172.

# SOLUBILITY OF MIXTURES OF POTASSIUM CHLORIDE AND AMMONIUM CHLORIDE IN WATER AT 25°. (Fock - Z. Kryst. Min. 28, 353, '97.)

|                             |         | (                  |         | - 333, 97.7              |                     |                                  |  |
|-----------------------------|---------|--------------------|---------|--------------------------|---------------------|----------------------------------|--|
| Grams per Liter<br>Solution |         | Mol. pe<br>in Solu |         | Sp. Gr. of<br>Solutions. |                     | Mol. per cent in<br>Solid Phase. |  |
| NH <sub>4</sub> CI.         | KCl.    | NH4Cl.             | KCl.    | Solutions.               | NH <sub>4</sub> Cl. | KCl.                             |  |
| 0.00                        | 311.3   | 0.00               | 100.0   | 1.1807                   | 0.0                 | 100                              |  |
| 22.81                       | 293.3   | 9.41               | 90.59   | 1.1716                   | I.2I                | 98 <i>.</i> 79                   |  |
| 35.39                       | 278.7   | 15.04              | 84.96   | 1.1678                   | 2 · I I             | 97.89                            |  |
| 89.17                       | 273.2   | 34.26              | 65.74   | 1.1591                   | 6.18                | 93.82                            |  |
| 127.8                       | 234.6   | 46.59              | 53 . 44 | 1.1493                   | 8.90                | 91.10                            |  |
| 147 . 2                     | 204 - 2 | 51.63              | 48.37   | 1.1461                   | 10.53               | 89.47                            |  |
| 197.3                       | 157.7   | 63.56              | 36.44   | 1.1391                   | 17 .86              | 82 . 14                          |  |
| 232.5                       | 116.8   | 73 - 49            | 26.51   | 1.1326                   | <b>60</b> .20       | 39.80                            |  |
| <b>244</b> · 5              | 123.0   | 73.48              | 26.52   | 1.1329                   | 76. <b>88</b>       | 23.12                            |  |
| 261.9                       | 111.0   | 79.10              | 20.90   | 1.1245                   | 97 - 51             | 2 . 49                           |  |
| 259.0                       | 102.2   | 82 . 14            | 17.86   | I.1212                   | 97.79               | 2.21                             |  |
| 278.6                       | 53.16   | 87.96              | 12.04   | 1.1009                   | 98.85               | 1.15                             |  |
| 320.7                       | 31.24   | 93·45              | 6.55    | 1.0912                   | 99.33               | 0.67                             |  |
| 273 . 5                     | 0.00    | I00.00             | 0.00    | 1.0768                   | 100.0               | 0.00                             |  |

SOLUBILITY OF MIXTURES OF POTASSIUM CHLORIDE AND POTASSIUM BROMIDE AT 25°. (Fock.)

| Grams per Liter<br>Solution. |       |          | Milligram Mols.<br>per Liter. |           | t Sp. Gr. of<br>Solutions. | Mol. per cent<br>KCl in |
|------------------------------|-------|----------|-------------------------------|-----------|----------------------------|-------------------------|
| KBr.                         | KCI.  | KBr.     | KCI.                          | Solution. | Solutions.                 | Solid Phase.            |
| 558.1                        | 0.00  | 4686 . 2 | 0.0                           | 0.0       | 1.3756                     | 0.00                    |
| 531.5                        | 23.44 | 4462.7   | 314.2                         | 6.16      | 1.3700                     | 0.00                    |
| 503.6                        | 46.57 | 4228.5   | 624.3                         | 12.86     | 1.3648                     | 8.23                    |
| 454.6                        | 82.62 | 3817.8   | 1108.0                        | 22 . 49   | 1.3544                     | 15.68                   |
| 379.6                        | 136.6 | 3188.1   | 1830.7                        | 36.48     | I.3320                     | 33.66                   |
| 324.8                        | 166.9 | 2727.6   | 2237 . 4                      | 45.06     | 1.3119                     | 63.51                   |
| 218.0                        | 213.9 | 1830.2   | 2868.0                        | 60.30     | 1.2689                     | 82.29                   |
| 140.7                        | 250.9 | 1181.1   | 3363.9                        | 74.01     | 1.2455                     | 88.04                   |
| 47.5                         | 291.7 | 398.8    | 3911.4                        | 85.22     | 1.1977                     | 96.98                   |
| 0.0                          | 311.3 | 0.0      | 4173.1                        | 100.00    | 1.1756                     | 100.00                  |

SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF Hydrochloric Acid at o°. Ū

| Jeannel — Compt. | rend. 103, 381, '80 |              |                 | 6] 13, 377, '88.) |
|------------------|---------------------|--------------|-----------------|-------------------|
| Milligram Mols.  | per 10 cc.          | Grams per 10 | o cc. Solution. | Sp. Gr. of        |
| KCl.             | HCI.                | KCI.         | HCI.            | Solutions.        |
| 34 · 5           | 0.0                 | 25·73        | 0.0             | 1.159             |
| 30 . 41          | 3.9                 | 22.69        | I.42            | 1.152             |
| 27.95            | 6.6                 | 20.84        | 2.4I            | 1.150             |
| 27 . 5           | 7.I                 | 20.51        | 2.59            | 1.147             |
| 23.75            | II.I                | 17.71        | 4.05            | 1.137             |
| 16.0             | 23.0                | 11.93        | 8.39            | I.III             |
| IO. <b>O</b>     | 34.0                | 7.46         | 12.40           | 1.105             |
| 7 · 5            | 41.0                | 5.60         | 14.95           | 1 . 105           |
| 2.0              | 65.5                | I . 49       | 23.88           | I.I2I             |
| 2.4              | 148.8 (sat.)        | 1.52         | 54.26           | ĭ.224             |

100 cc. saturated HCl solution dissolve 1.9 grams KCl at 17°. (Ditte - Compt. rend. 92, 242, '86.)

#### SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS POTASSIUM Hydroxide Solutions.

(Engel - Bull. soc. chim. [3] 6, 16, '91; Winteler - Z. Electrochem. 7, 360, '00.)

| Re                                                   | Results at 20°.<br>(Winteler.)                                                |                                                                            |                                                                         |                                                                 |                                                             |                                                                               |
|------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------|
| Mg. Mols. per<br>ro cc. Solution<br>KCl. KOH.        | Sp. Gr. of<br>Solution.                                                       | Gms. pe<br>Solu<br>KCl.                                                    | tion.<br>KOH.                                                           | Gms. pe<br>Solu<br>KCl.                                         | tion.<br>KOH.                                               | Sp. Gr. of<br>Solution.                                                       |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | I.159<br>I.146<br>I.153<br>I.172<br>I.195<br>I.216<br>I.239<br>I.261<br>I.294 | 26.83<br>23.44<br>21.39<br>17.39<br>13.89<br>10.91<br>8.64<br>6.78<br>4.74 | 0.0<br>1.33<br>2.64<br>5.56<br>8.46<br>11.23<br>13.83<br>16.43<br>19.72 | 29.3<br>21.1<br>14.8<br>10.4<br>6.8<br>4.0<br>2.2<br>1.4<br>1.1 | 1.0<br>20.0<br>30.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0 | 1.185<br>1.210<br>1.245<br>1.295<br>1.345<br>1.397<br>1.450<br>1.500<br>1.550 |

#### SOLUBILITY OF MIXTURES OF POTASSIUM CHLORIDE AND POTASSIUM IODIDE IN WATER. (Etard — Ann. chim. phys. [7] 3. 275, '94.)

| • •         | Grams per 100 | Gms. Solution. | t°. | Grams per 100 Gms. Solution. |       |  |
|-------------|---------------|----------------|-----|------------------------------|-------|--|
| <b>t</b> °. | KCI.          | <u> </u>       |     | KCl.                         | KI.   |  |
| 0           | 3.7           | 50.5           | 100 | 6.2                          | o. 10 |  |
| 20          | 4.2           | 53.0           | 140 | 7 · 3                        | 63.7  |  |
| 40          | 4.7           | 55·3           | 180 | 8.3                          | 65.5  |  |
| 60          | 5.2           | <b>5</b> 7 · 5 | 220 | 9.4                          | 66 3  |  |
| 80          | 5 · 7         | 59.4           | 245 | 10.0                         | 66.5  |  |

#### Solubility of Potassium Chloride in Aqueous Magnesium Chloride Solutions.

(Precht and Wittgen - Ber. 14, 1667, '81.)

| t°. | MgCl <sub>2</sub> . | 15%    | 21.2%<br>MgCl <sub>2</sub> . | MgCl2               | 20% MgCl2.       |
|-----|---------------------|--------|------------------------------|---------------------|------------------|
|     | MgCl <sub>2</sub> . | MaCla. | MgCl <sub>2</sub> .          | MgCl <sub>2</sub> . |                  |
| IO  | 14.3                | 9.9    | 5.3                          | I.9                 | 4.2 KCl+5.7 NaCl |
| 20  | 15.9                | 11.3   | 6.5                          | 2.6                 | 6.0 " +5.9 "     |
| 30  | 17.5                | 12.7   | 7.Č                          | 3.4                 | 6.9 " +6.o "     |
| 40  | 19.0                | 14.2   | 8.8                          | 4.2                 | 7.9 "+6.1 "      |
| 50  | 20.5                | 15.6   | IO.0                         | 5.0                 | 8.9 " +6.3 "     |
| δo  | 21.0                | 17.0   | 11.2                         | 5.8                 | 9.9 " +6.4 "     |
| 80  | 24.5                | 19.5   | 13.6                         | 7.3                 | 10.9 " +6.6 "    |
| 90  | 25.8                | 20.8   | 14.7                         | <b>8</b> .1         | 11.9 "+6.7 "     |
| 100 | 27.I                | 22 · I | 15.9                         | 8.g                 | 13.0 " +6.9 "    |

.

Solubility of Potassium Chloride in Aqueous Solutions of Potassium Nitrate, and of Potassium Nitrate in Aqueous Solutions of Potassium Chloride, at Several Temperatures.

(Touren - Compt. rend. 130, 908, '00; Bodländer - Z. physik. Ch. 7, 360, '01; Nicol - Phil. Mag. (Lond.) 31, 369, '91; Soch - J. Physic. Ch. 2, 46, '98.)

KCl in Aq. KNO, Solutions at:

| 14.5             | ° (T.).          | I                    | 7.5° (B        | .).            | 25.2°          | (T.).          | 20°, e            | tc. (N.).     |
|------------------|------------------|----------------------|----------------|----------------|----------------|----------------|-------------------|---------------|
| Gms. pe<br>Solut | r Liter<br>tion. | Sp. Gr.<br>Solutions | Gms. p         | er Liter.      | Gms. pe        |                | Gms. per u<br>Haj |               |
| KNO3.            | KCI.             | 201010               | KNO3.          | KCI.           | KNO3.          | KCl.           | KNO3.             | KCI.          |
| 0                | 288.3            | 1.173                | 0.0            | 293.9          | 0.0            | 311.8          | 0.00              | 345.2         |
| 20.64            | 284.2            | 1.198                | 65.8           | 275.0          | 13.76          | 306.6          | 56.18             |               |
| 32.18            | 282. I           | 1.210                | 88.3           | 273.4          | 32.18          | 303.6          | 168.54            | 334.39        |
| 62.23            | 276.8            | 1.225                | 124.8          | 265.3          | 91.26          | 293.2          | at 29             |               |
| 82.77<br>115.9   | 273.5<br>270.7   | 1.236<br>1.239       | 148.3<br>152.2 | 259.8<br>259.6 | 122.7<br>141.4 | 287,2<br>284,2 | 225.8             | ,<br>341.3    |
| 119.1            | 268.3            | 1.239                | 154.9          | 259.5          | 182.7          | 276.0          | at 80             | °             |
| 123.4            | 267.2            | 1.241                | 153.3          | 262.4          | •              | •              | 1175.0            | 402. <b>0</b> |

#### KNO<sub>2</sub> in Aq. KCl Solutions at:

| 14.5°.      |                | 25.2         | 2°.           | 20 <sup>0</sup> .   |       |  |
|-------------|----------------|--------------|---------------|---------------------|-------|--|
| Grams per L | iter Solution. | Grams per Li | ter Solution. | Grams per 1000 Gms. |       |  |
| KCI.        | KNO3.          | KCl.         | KNO3.         | KCl.                | KNO3. |  |
| 0.0         | 225.4          | 0.0          | 325.5         | 0.0                 | 311.1 |  |
| 13.58       | 219.8          | 19.39        | 312.3         | 82.9                | 256.8 |  |
| 31.63       | 208.2          | 49.22        | 288.7         | 165.8               | 221.7 |  |
| 65.64       | 185.2          | 100.7        | 254.0         | 248.7               | 202.0 |  |
| 132.6       | 159.5          | 155.2        | 224.4         | 310.8               | 501.6 |  |
| 164.4       | 153.3          | 207.3        | 203.9         | ·                   | ·     |  |
| 196.5       | 144.0          | 226.8        | 196.9         |                     |       |  |
| 236.9       | 137.1          |              |               |                     |       |  |

KNO<sub>2</sub> in Aq. KCl at 20.5° (B.).

KCl in Aq. KNO<sub>3</sub> at 20.5° (B.).

| Gms. per<br>Solu<br>KCl. | tion.<br>KNO <sub>2</sub> . | Sp. Gr. of Solutions. | Gms. per 100 Gms.<br>Solution.<br>KNO3. KCl. |       | Sp. Gr. of<br>Solutions. |
|--------------------------|-----------------------------|-----------------------|----------------------------------------------|-------|--------------------------|
| <b>o</b> .o              | 27.68                       | 1.1625                | 0.0                                          | 29.30 | I . 1730                 |
| 4.72                     | 24.39                       | 1.1700                | 6.58                                         | 27.50 | 1.1980                   |
| 7.74                     | 22.44                       | 1.1765                | 8.88                                         | 27.34 | 1.2100                   |
| 12.23                    | 20.23                       | 1.1895                | 12.48                                        | 26.53 | 1.2250                   |
| 15.15                    | 18.96                       | 1.1983                | 14.83                                        | 25.98 | 1.2360                   |
| 19.61                    | 17.67                       | 1.2150                | 15.22                                        | 25.96 | 1.2390                   |
| 22.17                    | 17.11                       | 1.2265                | 15.49                                        | 25.95 | 1.2388                   |
| 24.96                    | 16 79                       | I · 2400              | 15.33                                        | 26.24 | 1.2410                   |

SOLUBILITY OF MIXTURES OF POTASSIUM CHLORIDE AND POTASSIUM SULPHATE IN WATER.

| t°.  | Gms. per 10<br>H <sub>2</sub> O<br>KCt. + |      | Observer.                     | t°. |      | 100 Gms.<br>20.<br>K2SO4. | Observer.   |
|------|-------------------------------------------|------|-------------------------------|-----|------|---------------------------|-------------|
| IO   | 30.9                                      | I.32 | (Precht and Wittgen.)         | 40  | 38.7 | I.68                      | (P. and W.) |
| 15.8 | 28.0                                      | 2.3  | (Kopp.)                       | 50  | 41.3 | 1.82                      |             |
| 20   | 33.4                                      | I.43 | (P. and W.)                   | 60  | 43.8 | I.94                      |             |
| 25   | 34.76                                     | 2.93 | (Van't Hoff and Meyerhoffer.) | 80  | 49.2 | 2.21                      |             |
| 30   | 36.1                                      | 1.57 | (P. and W.)                   | 100 | 54.5 | 2.53                      | "           |

SOLUBILITY OF MIXTURES OF POTASSIUM CHLORIDE AND SODIUM CHLORIDE IN WATER.

((2) Precht and Wittgen - Ber. 14, 1667. '81; at 25<sup>6</sup> and at 80<sup>6</sup>. (3) Soch - J. Physic. Ch. 2, 46, '98; (2) Etard - Ann. chim. phys. [7] 3, 275, '97.)

| t°. | Grams per 100   |                 | t°. | Grams per 100 Grams H2O, |                |  |
|-----|-----------------|-----------------|-----|--------------------------|----------------|--|
|     | KCL.            | NaCl.           | • • | KCI.                     | NaCl.          |  |
| 0   | II.2(1) II.2(2) | 30.0(1) 30.0(2) | 50  | 22.0(1) 19.0(2)          | 27.7(1)32.3(2) |  |
| IO  | 12.5 12.3       | 29.7 30.5       | 60  | 24.6 20.6                | 27.2 32.8      |  |
| 20  | 14.7 13.8       | 29.2 31.0       | 70  | 27.3 32.5                | 26.8 34.1      |  |
| 25  | 15.8(3)14.5     | 29.0(3) 31.3    | 80  | 30.0(3) 25.2(3)          | 26.4(3)34.0    |  |
| 30  | 17.2 15.4       | 28.7 31.5       | 90  | 32.9 28.4                | 26.I 32.3      |  |
| 40  | 19.5 17.0       | 28.2 31.9       | 100 | 34.7 32.3                | 25.8 30.6      |  |

NOTE. — Page and Keightly, Rudorff and also Nicol, give single determinations which lie nearer the results of Precht and Wittgen than to those of Etard.

SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE, AND OF SODIUM CHLORIDE IN AQUEOUS SOLU-TIONS OF POTASSIUM CHLORIDE, AT 20°.

| (Nicol - Phil. | Mag. | (Lond.) | 31, 36 | o, 'or.) |
|----------------|------|---------|--------|----------|
|----------------|------|---------|--------|----------|

| KCl in Aq. NaCl Solutions. |                | NaCl in Aq. KCl Solutions. |       |  |  |  |
|----------------------------|----------------|----------------------------|-------|--|--|--|
| Grams per                  | 100 Grams H2O. | Grams per 100 Grams HgO.   |       |  |  |  |
| NaCl.                      | KCI.           | KCI.                       | NaCl. |  |  |  |
| 0.0                        | 34.52          | 0.0                        | 35.91 |  |  |  |
| 6.5                        | 29.37          | 4.14                       | 34-39 |  |  |  |
| 13.0                       | 4.71           | 8.29                       | 32.71 |  |  |  |
| 19.5                       | .42            | 12.42                      | 31.30 |  |  |  |

100 gms. 40 per cent by wt. alcohol dissolve 5.87 gms. KCl + 12.25 gms. NaCl at 25°.

100 gms. 40 per cent by wt. alcohol dissolve 5.29 gms.  $KNO_3 + 10.06$  gms. KCl at 25°. (Soch - J. Physic. Ch. 2, 46, '98.)

.

100 gms. abs. ethyl alcohol dissolve 0.034 gm. KCl at 18.5°.
 100 gms. abs. methyl alcohol dissolve 0.5 gm. KCl at 18.5°.
 (de Bruyn - Z. physik. Ch. 10, 783, '92; Rohland - Z. anorg. Ch. 18, 327, '98.)

#### SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS ALCOHOL. (Gerardin – Ann. chim. phys. [4] 5, 140, '65.)

| • | • | Interpolated | from | the | original | results. |
|---|---|--------------|------|-----|----------|----------|
|---|---|--------------|------|-----|----------|----------|

|        | 0.9848                                                                              | 0.9793<br>- 13.0                                      | 0.9726                                               | 0.9573                                               | 0.939<br>= 40                                         | 0.8967<br>= 60                                        | 0.8244<br>Wt. %.                                      |
|--------|-------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| Wt. %. | Wt. %.                                                                              | Wt. %.                                                | Wt. %.                                               | Wt. %.                                               | Wt. %.                                                | Wt. %.                                                | Wt. %.                                                |
| 23.4   | 19.5                                                                                | 15.5                                                  | 11.5                                                 | 7.0                                                  | 4.0                                                   | I.7                                                   | 0.0                                                   |
| 25.0   | 21.0                                                                                | 16.8                                                  | 12.8                                                 | 8.o                                                  | 4.8                                                   | 2.2                                                   | 0.0                                                   |
| 26.4   | 22.5                                                                                | 18.0                                                  | 14.0                                                 | 9.0                                                  | 5.6                                                   | 2.7                                                   | 0.0                                                   |
| 26.8   | 24.0                                                                                | 19.2                                                  | 15.2                                                 | 10.0                                                 | 6.4                                                   | 3.1                                                   | 0.04                                                  |
| 29.I   | 25.3                                                                                | 20.3                                                  | 16.1                                                 | 10.8                                                 | 7.2                                                   | 3.5                                                   | o.o6                                                  |
| 30.4   | <b>26 . 8</b>                                                                       | 21.5                                                  | 17.I                                                 | <b>11</b> .6                                         | 7.9                                                   | 3.9                                                   | 8o.o                                                  |
| 31.7   | 28 · O                                                                              | 22.6                                                  | 18.2                                                 | 12.5                                                 | 8.5                                                   | 4.2                                                   | 0.10                                                  |
| 34.3   | 30.8                                                                                | 24.8                                                  | 20.0                                                 | 14.0                                                 | 9.9                                                   | 4.8                                                   | 0.20                                                  |
| 37.0   | 33.5                                                                                | 27.0                                                  | 21.8                                                 | 15. <b>5</b>                                         | 10.8                                                  | 5.2                                                   | 0.30                                                  |
|        | • • •                                                                               | • • •                                                 | • • •                                                | 16.8                                                 | 11.8                                                  | 5.5                                                   | 0.40                                                  |
|        | 2004<br>5.5<br>23.4<br>25.0<br>26.4<br>26.8<br>29.1<br>30.4<br>31.7<br>34.3<br>37.0 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |

Grams KCl per 100 Gms. Aq. Alcohol of Sp. Gr.:

SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS ALCOHOL AT:

| (Schiff ]                       | I 5 <sup>0</sup> .<br>Liebig's Ar | 11. 118, 365, '61.)      | I4.5 <sup>°</sup> .<br>(Bodlånder — Z. physik. Ch. 7, 316, '91.) |         |                   |         |  |
|---------------------------------|-----------------------------------|--------------------------|------------------------------------------------------------------|---------|-------------------|---------|--|
| Sp. Gr.                         | Wt.<br>per cent                   | G. KCl per<br>100 g. Aq. | Sp. Gr.<br>of Sat.                                               | Grams p | er 100 cc. S      |         |  |
| Alcohol.                        | Alcohol.                          | Alcohol.                 | Solutions.                                                       | C₂H₅OH. | H <sub>2</sub> O. | KCl.    |  |
| o.984                           | 10                                | 19.8                     | I . 1720                                                         |         | 88.10             | 29 . 10 |  |
| 0.972                           | 20                                | 14.7                     | 1.1542                                                           | 2.79    | 85.78             | 26.85   |  |
| 0.958                           | 30                                | 10.7                     | 1.1365                                                           | 4.98    | 84.00             | 24.67   |  |
| 0.940                           | 40                                | 7.7                      | 1 . 1075                                                         | 10.56   | 79.63             | 20.56   |  |
| 0.918                           | 50                                | 5.0                      | 1 . 1085                                                         | 15.57   | 75.24             | 17.24   |  |
| o.896                           | 60                                | <b>2</b> .8              | 1.0545                                                           | 20.66   | 70.52             | 14 - 27 |  |
| o.848                           | <b>8</b> 0                        | o.45                     | 1.0455                                                           | 24.25   | 67 .05            | 13.25   |  |
| Gerardin's results at 15° agree |                                   |                          | 0.9695                                                           | 40 . 42 | 50.18             | 6.35    |  |
| well with the above deter-      |                                   |                          | 0.9315                                                           | 48.73   | 40.60             | 3.82    |  |
| mination                        | s.                                |                          | o.8448                                                           | 68.63   | 15.55             | o . 30  |  |

30° and 40°.

(Bathrick — J. Physic. Chem. 1, 160, '96.)

| Wt.                  | Gms. KCl j<br>Aq. | per 100 Gms.<br>Alcohol. | Wt.<br>per cent | Gms. KCl per 100 Gms.<br>Aq. Alcohol. |         |  |
|----------------------|-------------------|--------------------------|-----------------|---------------------------------------|---------|--|
| per cent<br>Alcohol. | At 30°.           | At 40°.                  | Alcohol.        | At 30°.                               | At 40°. |  |
| 0                    | 38.9              | 41.8                     | 43 · I          | 11.1                                  | 13.1    |  |
| 5.28                 | 33.9              | 35.9                     | 55.9            | 6.8                                   | 8.2     |  |
| 9.43                 | 30.2              | 33.3                     | 65.9            | 3.6                                   | 4.1     |  |
| 16.9                 | 24.9              | 27.6                     | 78 . I          | I.3                                   | 0. I    |  |
| 25.1                 | 19.2              | 21.8                     | 86.2            | 0.4                                   | 0.5     |  |
| 34.1                 | 15.6              | 17.2                     |                 |                                       |         |  |

#### SOLUBILITY OF POTASSIUM CHLORIDE IN AQUBOUS ACETONE SOLUTIONS.

247

| Per cent<br>Acetone<br>in | ne KCl per 100 cc.<br>Solution. |                | At 30°.<br>Gms. per 100 Gms.<br>Solution. |       | At 40°.<br>Gms. per 100 Gms.<br>Solution. |       | At 50°.<br>Gms. per 100 Gms.<br>Solution. |           |
|---------------------------|---------------------------------|----------------|-------------------------------------------|-------|-------------------------------------------|-------|-------------------------------------------|-----------|
| Solvent.                  | Millimols.                      | Grams.         | Acetone.                                  | KCI.  | Acetone.                                  | KCÎ.  | Acetone.                                  | KCl.      |
| 0                         | 410.5                           | 30.62          | ο. ο                                      | 27.27 | 0.0                                       | 28.69 | 0.0                                       | 30.0      |
| 9. I                      | 351.7                           | 26.23          | 6.96                                      | 23.42 | 6.79                                      | 25.33 | •••                                       |           |
| 20                        | 286.6                           | 21.38          | 16.22                                     | 18.90 | 15.75                                     | 21.28 | •••                                       | • • • • • |
| 30                        | 223.7                           | 16. <b>6</b> 9 | 25.45                                     | 15.06 | two la                                    | yers  | 25.67                                     | 14.42     |
| 40                        | 166.5                           | 12.42          | 35.52                                     | 11.31 | "                                         |       | 36.03                                     | 9.93      |
| 50                        | 115.4                           | 8.61           | 45.98                                     | 8.04  | "                                         |       | 46.46                                     | 7.07      |
| δo                        | 71.2                            | 5.31           | 56.91                                     | 5.12  | **                                        |       | 57.37                                     | 4.38      |
| 70                        | 38.5                            | 2.87           | 68.18                                     | 2.60  | "                                         |       | 68.56                                     | 2.22      |
| 80                        | 12.9                            | 0.96           | 78.43                                     | 0.76  | 79.34                                     | o. 58 | 79.25                                     | 0.94      |
| 90                        | 2.0                             | 0.15           | 89.88                                     | 0.13  | 89.84                                     | 0.16  | 81°+sa                                    | t.sol.    |
| 100                       | 0.0                             | 0.0            | 100.0                                     | 0.00  | 100.00                                    | 0.00  |                                           |           |

(Snell - J. Physic. Ch. 2, 484, '98; at 20°, Herz and Knoch - Z. anorg. Ch. 41, 317, '04.)

NOTE. — For the  $20^{\circ}$  results the per cent acetone in the solvent is stated in terms of volume per cent, and the concentration of the second solution is 10 per cent instead of 9.1 which is the concentration of the solvent for the corresponding results at the other temperatures.

#### At the Temperature $40^{\circ}$ and for Concentrations of Acetone between 20 and 80 per cent the Saturated Solution separates into Two Layers having the Following Compositions:

|         | Upper Lay                           | er.       | Lower Layer.                  |                                     |        |  |
|---------|-------------------------------------|-----------|-------------------------------|-------------------------------------|--------|--|
| Grams p | er 100 Grams S                      | Solution. | Grams per 100 Grams Solution. |                                     |        |  |
| Н.О.    | (CH <sub>2</sub> ) <sub>2</sub> CO. | KCI.      | H <sub>2</sub> O.             | (CH <sub>3</sub> ) <sub>2</sub> CO. | KCI.   |  |
| 55.2    | 31.82                               | 12.99     | 28 . 14                       | 69.42                               | 2.44   |  |
| 53.27   | 35.44                               | 11.29     | 30.96                         | 65.97                               | 3.07   |  |
| 51.23   | 48.50                               | 10.27     | 32.64                         | 63.79                               | 3 . 56 |  |
| 50.3+   | 39.88                               | 9·77      | 34.07                         | 62 .01                              | 3.92   |  |
| 48.02   | 43 . 18                             | 8.79      | 37 · 44                       | 57.67                               | 4.89   |  |
| 46.49   | 45.34                               | 8.17      | 38.68                         | 56.17                               | 5.25   |  |
| 58.99   | 25.24                               | 15.77     | 23.66                         | 74.91                               | 1.43   |  |

100 cc. sat. solution of potassium chloride in furfurol (C<sub>4</sub>H<sub>2</sub>O.COH) contain 0.085 gm. KCl at 25°.

(Walden - Z. physik. Ch. 55, 713,'06.)

SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF GLYCERINE AT 25°.

(Herz and Knoch - Z. anorg. Ch. 45, 267, '05.)

Sp. Gr. of Glycerine at  $25^{\circ}/4^{\circ} = 1.2555$ . Impurity about 1.5%.

| Wt. per cent<br>Glycerine in<br>Solvent. | KCl per<br>Solut<br>Millimols.   | ion.<br>Grams. | Sp. Gr. of<br>Solutions.         | Wt. per cent<br>Glycerine in<br>Solvent. | KCl pe<br>Solu<br>Millimols. | tion<br>Grams. | Sp. Gr. of<br>Solutions. |
|------------------------------------------|----------------------------------|----------------|----------------------------------|------------------------------------------|------------------------------|----------------|--------------------------|
| 0<br>13.28<br>25.98<br>45.36             | 424.5<br>383.4<br>339.3<br>271.4 | 28.61<br>25.31 | 1.180<br>1.185<br>1.194<br>1.211 | 83.84                                    | 238.5<br>149.0<br>110.6      | 11.11          | 1.259                    |

100 grams H<sub>2</sub>O dissolve 246.5 grams sugar + 44.8 grams KCl at 31.25°, or 100 grams of the sat. solution contain 62.28 grams sugar + 11.33 grams KCl.

(Köhler -- Z. Ver. Zuckerind. 47, 447, '97.)

#### POTASSIUM CHROMATE K,CrO.

#### POTASSIUM (Di) CHROMATE K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>.

#### SOLUBILITY OF EACH IN WATER.

(Alluard — Compt. rend. 59, 500, '64; Nordenskjold and Lindstrom — Pogg. Ann. 136, 314, '69; Etard — Ann. chim. phys. [7] 2, 527, '94; Kremers — Pogg. Ann. 92, 497, '54; Tilden and Shenstone — Phil. Trans. 23, 1884.)

Potassium Chromate.

Potassium Di Chromate.

| <b>t</b> °. | Grams p | er 100 Gran | ns Water.   | Grams per 10   | oo Grams Water. |
|-------------|---------|-------------|-------------|----------------|-----------------|
| 0           | 58.2*   | 59.3†       | 60.2‡       | 5*             | 5§              |
| 10          | 60.0    | 61.2        | 62.5 *      | 7              | 7               |
| 20          | 61.7    | 63.2        | 64.5        | 12             | I 2             |
| 25          | 62.5    | 64.2        | 64.5        | 16             | 16              |
| 30          | 63.4    | 65.2        | 66.5        | 20             | 20              |
| 40          | 65.2    | 67.0        | 68.6        | 26             | 27              |
| 50          | 66.8    | 69 o        | 70.6        | 34             | 37              |
| 60          | 68.6    | 71.O        | 72.7        | 43             | 47              |
| 70          | 70.4    | 73.0        | 74.8        | 52             | 58              |
| 80          | 72 · I  | 75.O        | 76.9        | 61             | 70              |
| 90          | 73·9    | 77.0        | 79 · O      | 70             | 82              |
| 100         | 75.6    | 79.o        | 82.2        | 8o             | 97              |
| 125         | 79 · O  | • • •       | •••         | 110            | 145             |
| 150         | 83.0    | •••         | •••         | 143            | 205             |
| * Etard     | † Al    | luard.      | ‡ N. and L. | § A., K., T. a | nd S.           |

#### POTASSIUM CHROMATE 240

|        | Composition in 1 |                     | Solid  |                    |
|--------|------------------|---------------------|--------|--------------------|
|        | Per cent KgO.    | The Repercent CrOs. |        | Phase.             |
| 0      | ±47              |                     |        | KOH.2H2O           |
| 0.0    | 47.16            | 12.59               | 47.54  | K2CrO4             |
| 0.1775 | 34.602           | 10.93               | 37-47  |                    |
| 1.351  | 26.602           | 16.482              | 32.532 |                    |
| 5.598  | 20.584           | 37.131              | 39.922 |                    |
| 15.407 | 19.225           | 27.966              | 29.377 |                    |
| 20.67  | 19.17            |                     |        | K2CrO4 + K2Cr2O7   |
| 19.096 | 17.30            | 37.64               | 22.61  | K2Cr2O7            |
| 11.35  | 7.88             |                     |        |                    |
| 17.93  | 3.412            | 25.85               | 7.82   |                    |
| 43.51  | 3.01             | 49.45               | 9.91   |                    |
| 44.46  | 3.245            | 53.94               | 12.40  | K2Cr2O7 + K2Cr3O10 |
| 46.368 | 2.823            | 60.314              | 12.935 | K2Cr3O10           |
| 49.357 | 2.353            | 63.044              | 11.684 | K2Cr3O10 + K2Cr4O1 |
| 53.215 | 1.360            | 62.958              | 8.002  | K2Cr4O13           |
| 62.55  | 0.796            | 67.944              | 6.731  |                    |
| 62.997 | 0.621            | 70.0                | 4.0    | K2Cr4O13 + CrO2    |
| 62.28  | 0.0              |                     |        | CrOa               |

SOLUBILITY OF POTASSIUM CHROMATES IN WATER AT 30°. (Schreinemaker - Z. physik. Ch. 55, 83, 'o6.)

100 gms. sat. solution in glycol C2H4(OH)2.H2O contain 1.7 gms. K,CrO, at 15.4°.

100 gms. sat. solution in glycol C2H4(OH)2.H2O contain 6.0 gms. K,Cr2O, at 14.6°. (de Coninck - Bull. acad. roy. Belgique, 257, 'os.)

### POTASSIUM CITRATE C3H4(OH)(COOK)3.H2O.

SOLUBILITY IN WATER AND IN SATURATED SUGAR SOLUTION AT 31.25°. (Köhler - Z. Ver. Zuckerind. 47, 447. '97.)

100 gms. H<sub>2</sub>O dissolve 169.7 gms. C<sub>6</sub>H<sub>6</sub>O<sub>7</sub>K<sub>3</sub>, or 100 gms. sat. solution contain 61.11 gms.

100 gms.  $H_2O$  dissolve 198.3 gms.  $C_6H_3O_7K_3 + 303.9$  gms. sugar, or 100 gms. sat. solution contain 32.83 gms.  $C_6H_6O_7K_3 + 50.3$  gms. sugar.

#### POTASSIUM CYANATE KCNO.

SOLUBILITY IN ALCOHOLIC MIXTURES. (Erdmann - Ber. 26, 2439, '93.) Grams KCNO per Liter Solvent at b. pt. Solvent. 80 per cent Alcohol + 20 per cent Water 62 80 per cent Alcohol + 20 per cent Methyl Alcohol 76 80 per cent Alcohol + 10 per cent Acetone 82

#### POTASSIUM CYANIDE KCN.

100 gms. H<sub>2</sub>O dissolve 122.2 gms. KCN, or 100 gms. sat. solution contain 55.0 gms. KCN at 103.3°. (Griffiths) 100 gms. abs. ethyl alcohol dissolve 0.87 gm. KCN at 19.5°.

100 gms. abs. methyl alcohol dissolve 4.91 gms. KCN at 19.5°.

(de Bruyn - Z. physik, Ch. 10, 783, '02.)

100 gms. glycerine dissolve 32 gms. KCN at 15.5°.

#### POTASSIUM CYANIDES 250

#### POTASSIUM CHROMOCYANIDE K,Cr(CN).

100 gms. H<sub>2</sub>O dissolve 32.33 gms. K<sub>2</sub>Cr(CN), at 20°. (Moissan – Ann. chim. phys. [6] 4, 136, '85; Christensen – J. pr. Ch. [2] 31, 166,'85.)

#### POTASSIUM CHROMISULPHOCYANIDE K,Cr(SCN).4H2O.

100 gms. H<sub>2</sub>O dissolve 139 gms. salt.

(Karsten - Ann. Suppl. 3, 170.)

#### POTASSIUM CARBONYL FERROCYANIDE K, FeCO(CN), 31/H,O.

100 gms. H<sub>2</sub>O dissolve 148 gms. salt at 16°.

(Müller - Compt. rend. 104, 992, '87.)

#### POTASSIUM FERRICYANIDE K,Fe(CN).

#### POTASSIUM FERROCYANIDE K,Fe(CN),3H,O.

SOLUBILITY OF EACH IN WATER.

(Wallace — J. Ch. Soc. 7, 8°, '85; Etard — Ann. chim. phys. [7] 2, 526, '94; Schiff — Liebig's Ann. 113, 359, '60; Michel and Krafft — Ann. chim. phys. [3] 41, 478, '58; Thomsen.)

NOTE. — The available determinations fall very irregularly when plotted on cross-section paper, and the following figures, which are averages, are therefore hardly more than rough approximations to the true amounts. The figures under  $K_{4}Fe(CN)_{6}$  show the limits between which the correct values probably lie.

|              | Grams per 100 Gms. HgO. |    |    |             | Grams per 100 Gms. H <sub>2</sub> O. |       |         |
|--------------|-------------------------|----|----|-------------|--------------------------------------|-------|---------|
| <b>t *</b> . | KsFe(CN)6. K4Fe(CN)8.   |    |    | <b>t</b> °. | KaFe(CN)6.                           | K4F   | e(CN)6. |
| 0            | 31                      | 13 | `  | 40          | 60                                   | 38    | 70      |
| IO           | 36                      | 20 | 20 | 60          | 66                                   | 52    | 83      |
| 20           | 43                      | 25 | 40 | 80          | •••                                  | 66    | 89      |
| 25           | 46                      | 28 | 48 | 100         | •••                                  | 76    | 91      |
| 30           | 50                      | 32 | 57 | 104.4       | 82.6                                 | • • • | •••     |

#### POTASSIUM FLUORIDE KF.2H,O.

100 gms.  $H_2O$  dissolve 92.3 gms. KF, or 100 gms. sat. solution contain 48 gms. KF at 18°. Sp. Gr. of solution = 1.502. (Mylius and Funk – Ber. 30, 1718, '97.)

SOLUBILITY OF POTASSIUM FLUORIDE IN HYDROFLUORIC ACID AT 21°. (Ditte - Compt. rend. 123, 1282, '06.)

| Gms. per 100 Gms. H <sub>2</sub> O. |             | Gms. per 100 | Gms. H <sub>2</sub> O. | Gms. per 100 Gms. H2O. |         |  |
|-------------------------------------|-------------|--------------|------------------------|------------------------|---------|--|
| HF.                                 | KF.         | HF.          | KF.                    | HF.                    | KF.     |  |
| 0.0                                 | 96.3        | 9.25         | 29.9                   | 20.68                  | 38.4    |  |
| I.2I                                | 72.0        | 11.36        | 29.6                   | 28.60                  | 46.9    |  |
| 1.61                                | <u>бі о</u> | 12.50        | 30.5                   | 41.98                  | 61.8    |  |
| 3.73                                | 40 . 4      | 13.95        | 31.4                   | 53.71                  | 74.8    |  |
| 4.03                                | 32.5        | 15.98        | 33 • 4                 | 74.20                  | 105 · O |  |
| 6.05                                | 30.4        | 17.69        | 35.62                  | 119.20                 | 169.5   |  |

#### POTASSIUM FORMATE

#### POTASSIUM FORMATE HCOOK.

Solid Phase . HCOOK

#### SOLUBILITY OF POTASSIUM FORMATE AND OF THE ACID SALT IN WATER.

251

#### (Groschuff - Ber. 36, 1785, 1903.) Solid Phase : HCOOK, HCOOH

| Sour Phase . HOOOK                            |                                                                                               |                                                                                                                                                                                                                                                                                           | Sond Thase . HCOOK. HCOOK.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                                                       |                                                       |  |  |  |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--|--|--|
| Gms.<br>HCOOK<br>per 100<br>Gms.<br>Solution. | Mols.<br>HCOOK<br>per 100<br>Mols.<br>H <sub>2</sub> O.                                       | G \$*.                                                                                                                                                                                                                                                                                    | ms. HCOOK<br>HCOOH<br>per 100<br>Gms.<br>Solution.                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gms.<br>HCOOK<br>per 100<br>Gms.<br>Solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t°.                                                   | Gms.<br>HCOOK<br>per 100<br>Gms<br>Solution.          | Mols.<br>HCOOH<br>per 1<br>Mol.<br>HCOOK.             |  |  |  |
| 72.8                                          | 57.4                                                                                          | 0                                                                                                                                                                                                                                                                                         | 60.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 39.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                     | 36.3                                                  | 3.21                                                  |  |  |  |
| 76.8                                          | 71.0                                                                                          | 25                                                                                                                                                                                                                                                                                        | 69.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45.I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19.5                                                  | 38.2                                                  | 2.96                                                  |  |  |  |
| 80.7                                          | 89.8                                                                                          | 50                                                                                                                                                                                                                                                                                        | 79.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39.3                                                  | 40.8                                                  | 2.65                                                  |  |  |  |
| 86.8                                          | 141.0                                                                                         | 80                                                                                                                                                                                                                                                                                        | 90.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 58.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                                                    | 44.0                                                  | 2.33                                                  |  |  |  |
| 92.0                                          | 247.0                                                                                         |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70                                                    | 45.9                                                  | 2.16                                                  |  |  |  |
| 96.0                                          | 511                                                                                           |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90                                                    | 52.1                                                  | 1.68                                                  |  |  |  |
| 100.0                                         | 00                                                                                            |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                                                       |                                                       |  |  |  |
|                                               | Gms.<br>HCOOK<br>per 100<br>Gms.<br>Solution.<br>72.8<br>76.8<br>80.7<br>86.8<br>92.0<br>96.0 | Gms.         Mols.           HCOOK         per 100           Gms.         McOoK           Solution.         H20.           72.8         57.4           76.8         71.0           80.7         89.8           86.8         141.0           92.0         247.0           96.0         511 | Gms.         Mols.         G           HCOOK         HCOOK         G           per 100         mols.         fe <sup>o</sup> .           Gms.         Mols.         fe <sup>o</sup> .           Solution.         H2O.         fe <sup>o</sup> .           72.8         57.4         o           76.8         71.0         25           80.7         89.8         50           86.8         141.0         80           92.0         247.0         96.0           96.0         5111 | Gms.         Mols.         Gms. HCOOK         Gms. HCOOK           Per 100<br>Gms.         per 100<br>Mols.         per 100<br>Gms.         ft.000H         t°. per 100<br>Gms.           72.8         57.4         0         60.4         fo.4           76.8         71.0         25         69.8         solution.           80.7         89.8         50         79.2         86.8         141.0         80         90.7           92.0         247.0         96.0         511         51         51         51 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |  |  |  |

Sp. Gr. of sat. sol. at 18° = 1.573.

NOTE. — Since the acid salt is less soluble at ordinary temperatures than the neutral salt, it can be precipitated from the solution of the neutral salt by addition of aqueous formic acid. Proceeding in this way an impure product is obtained, giving solubility values (expressed in HCOOK) as shown in the last three columns above.

#### POTASSIUM FLUOGERMANATE K2GeF.

SOLUBILITY IN WATER.

(Winkler; Kruss and Nilson - Ber. 20, 1696, '87.)

100 gms. H<sub>2</sub>O dissolve 173.98 gms<sub>1</sub>K<sub>2</sub>GeF<sub>6</sub> at 18°, and 34.07 gms. at 100° (W.).

100 gms.  $H_2O$  dissolve 184.61 gms.  $K_2GeF_6$  at 18°, and 38.76 gms. at 100° (K. and N.).

#### POTASSIUM HYDROXIDE KOH.

#### SOLUBILITY IN WATER.

(Pickering - J. Ch. Soc. 63, 908, '93; at 15°, Ferchland - Z. anorg. Ch. 30, 133, '02.)

| t°.    |       | Gms. | Solid<br>Phase.   | t°.  | Gms. J<br>per 10<br>Water. | Solution. | Solid<br>Phase.       |
|--------|-------|------|-------------------|------|----------------------------|-----------|-----------------------|
| -22    | 3.7   | 3.6  | Ice               | 15   | 107                        | 51.7      | KOH.2H2O              |
| - 20.7 | 22.5  | 18.4 |                   | 20   | 112                        | 52.8      |                       |
| -65.2  | 44.5  | 30.8 |                   | 30   | 126                        | 55.76     |                       |
| -36.2  | 36.2  | 26.6 | KOH.4H2O          | 32.5 | 135                        | 57 - 44   | KOH.2H2O +<br>KOH.H2O |
| -32.7  | 77.94 | 43.8 |                   | 50   | 140                        | .58.33    | KOH.H2O               |
| -33    | 80    |      | KOH.4H2O+KOH.2H2O | 100  | 178                        | 64.03     |                       |
| -23.2  | 85    | 45.9 | KOH.2H2O          | 125  | 213                        | 68.06     |                       |
| 0      | 97    | 49.2 |                   | 143  | 311.7                      | 75.73     |                       |
| IO     | 103   | 50.7 |                   |      |                            |           |                       |

Sp. Gr. of sat. solution at 15° = 1.5355.

#### POTASSIUM IODATE KIO,

SOLUBILITY IN WATER.

(Kremers - Pogg. Ann. 97, 5, '56; at 30°, Meerburg - Ch. Weekbl. I, 474, '04.)

252

 $t^{\circ}$   $0^{\circ}$   $20^{\circ}$   $30^{\circ}$   $40^{\circ}$   $60^{\circ}$   $80^{\circ}$   $100^{\circ}$ Gms. KIO<sub>3</sub> per 100 gms. H<sub>2</sub>O 4.73 8.13 11.73 12.8 18.5 24.8 32.2

100 gms. H<sub>2</sub>O dissolve 1.3 gms. potassium hydrogen iodate(KH(IO<sub>3</sub>)<sub>2</sub> at 15°, and 5.4 gms. at 17°. (Serullas – Ann. chim. phys. 22, 118.)

100 gms. H<sub>2</sub>O dissolve 4.0 gms. potassium di hydrogen iodate KH<sub>2</sub>(IO<sub>2</sub>)<sub>2</sub> at 15°. (Meineke - Liebig's Ann. 261, 360, '91.)

#### POTASSIUM IODIDE KI.

#### SOLUBILITY IN WATER.

(Mulder; de Coppet — Ann. chim. phys. [5] 30, 417, '83; Etard — Ibid. [7] 2, 526, '94; Meusser — Z. anorg. Ch. 44, 80, '05; see also Tilden and Shenstone — Phil. Trans. 23, '84; Schreinemaker — Z. physik. Chem. 9, 71, '92.)

|      | Gms. KI p | er 100 Gms.  |             | Gms. KI per 100 Gms. |           |  |
|------|-----------|--------------|-------------|----------------------|-----------|--|
| t°.  | Water.    | Solution.    | <b>t°</b> . | Water.               | Solution. |  |
| - 10 | 115.1     | 53·5         | 80          | 192                  | 65.8      |  |
| - 5  | 119.8     | 54·5         | 90          | 200                  | 66.7      |  |
| — I  | 122.2     | 55.0         | 100         | 208                  | 67 5      |  |
| 0    | 127.5     | 56.0         | 110         | 215                  | 68 3      |  |
| 10   | 136       | 57.6         | 120         | 223                  | 69.ō      |  |
| 20   | 144       | 59.0         |             | Tee Com              | _         |  |
| 25   | 148       | 59 · 7       |             | Ice Curve            | e         |  |
| 30   | 152       | 60. <u>3</u> | - 5         | 25.7                 | 22 5      |  |
| 40   | 160       | 61.5         | - 7         | 42.6                 | 29.9      |  |
| 50   | 168       | 62.7         | - 9.5       | 51.5                 | 34.0      |  |
| 60   | 176       | 63.7         | -11.5       | 64.7                 | 39.3      |  |
| 70   | 184       | 64.8         | - 14        | 75.8                 | 42 7      |  |

SOLUBILITY OF POTASSIUM IODIDE IN ABSOLUTE ALCOHOLS. (de Bruyn - Z. physik. Ch. 10, 783, '92; Rohland - Z anorg. Ch. 18, 327, '98.)

100 gms. methyl alcohol dissolve 16.5 gms. KI at  $20.5^{\circ}$ . 100 gms. ethyl alcohol dissolve 1.75 gms. KI at  $20.5^{\circ}$ . 100 gms. propyl alcohol dissolve 0.46 gm. KI at  $15^{\circ}$ -20° (R.).

SOLUBILITY OF POTASSIUM IODIDE IN: Ethyl Alcohol Aqueous Ethyl Alcohol at 18°.

|             |                                    | _                         |                                | <b>^</b>                            |                           |                                |                                    |
|-------------|------------------------------------|---------------------------|--------------------------------|-------------------------------------|---------------------------|--------------------------------|------------------------------------|
| <b>t°</b> . | Gms. KI per<br>100<br>Gms. Alcohol | Sp. Gr.<br>of<br>Alcohol. | Weight<br>per cent<br>Alcohol. | Gms. KI<br>per 100 Gms.<br>Alcohol. | Sp. Gr.<br>of<br>Alcohol. | Weight<br>per cent<br>Alcohol. | Gms. KI<br>per 100 Gms<br>Alcohol. |
| 8           | 67.4                               | o 9904                    | 5.2                            | 130.5                               | 0.9390                    | 45                             | 66.4                               |
| 13          | 69.2                               | 0.9851                    | 9.8                            | 119.4                               | 0.9088                    | 59                             | 48.2                               |
| 25          | 75.I                               | 0.9726                    | 23.0                           | 100 · I                             | o.8464                    | 86                             | 11.4                               |
| 46          | 84.7                               | 0.9665                    | 29.0                           | 89.9                                | 0.8322                    | 91                             | 6.2                                |
| 55          | 87.5                               | 0.9528                    | 38.0                           | 76.9                                |                           |                                |                                    |
| 62          | 90.2                               |                           |                                | (Gerardii                           | n — Ann. chi              | m. phys. [4                    | ] <b>5,</b> 155, '65.)             |

SOLUBILITY OF POTASSIUM IODIDE IN ACETONE AND IN PYRIDINE. (von Laszcynski - Ber. 27, 2285, '94; at 25°, Krug and McElroy - J. Anal. Ch. 6, 184, '92.)

253

|          | Gms. KI per 100 Gms. Solvent at: |      |      |      |      |       |  |  |  |
|----------|----------------------------------|------|------|------|------|-------|--|--|--|
| Solvent. | -2.5°.                           | 10°. | 220. | 25°. | 56°. | 119°. |  |  |  |
| Acetone  | 3.08                             |      | 2.38 | 2.93 | 1.21 |       |  |  |  |
| Pyridine |                                  | 0.26 |      |      |      | O.II  |  |  |  |

100 gms. glycerine dissolve 40 gms. KI at 15.5°.

### SOLUBILITY OF POTASSIUM IODIDE IN SEVERAL SOLVENTS.

(Walden - Z. physik. Ch. 55, 714, 'o6.)

| Solvent.            | Formula.                                             | t°. | Sp. Gr. of<br>Solution. | Gms. KI       |                |
|---------------------|------------------------------------------------------|-----|-------------------------|---------------|----------------|
| DOLYCOL.            | r ormula.                                            |     |                         | cc. Solution. | Gms. Solution. |
| Water               | H <sub>2</sub> O                                     | 0   | 1.6699                  | 94.05         | 56.32          |
| Water               | H <sub>2</sub> O                                     | 25  | 1.7254                  | 102.70        | 59.54          |
| Methyl Alcohol      | CH <sub>3</sub> OH                                   | 0   | 0.8964                  | 11.61         | 12.95          |
| Methyl Alcohol      | CH <sub>3</sub> OH                                   | 25  | 0.9003                  | 13.5-14.3     | 14.97          |
| Ethyl Alcohol       | C <sub>2</sub> H <sub>5</sub> OH                     | 0   | 0.8085                  | 1.197         | 1.479          |
| Ethyl Alcohol       | C <sub>2</sub> H <sub>5</sub> OH                     | 25  | 0.7908                  | 1.520         | 1.922          |
| Glycol              | (CH <sub>2</sub> OH) <sub>2</sub>                    | 0   | 1.3954                  | 43.28         | 31.03          |
| Glycol              | $(CH_2OH)_2$                                         | 25  | 1.3888                  | 47.23         | 33.01          |
| Acetonitril         | CH <sub>3</sub> CN                                   | 0   | 0.8198                  | 1.852         | 2.259          |
| Acetonitril         | CH <sub>3</sub> CN                                   | 25  | 0.7938                  | 1.57          | 2.003          |
| Propionitril        | C <sub>2</sub> H <sub>5</sub> CN                     | 0   | 0.8005                  | 0.34-0.4      | I 0.0429       |
| Propionitril        | C <sub>2</sub> H <sub>5</sub> CN                     | 25  | 0.7821                  | 0.32-0.3      |                |
| Benzonitril         | C <sub>6</sub> H <sub>8</sub> CN                     | 25  | 1.0076                  | 0.051         | 0.0506         |
| Nitro Methane       | CH <sub>3</sub> NO <sub>2</sub>                      | 0   | 1.1627                  | 0.314-0.      | 366 0.315      |
| Nitro Methane       | CH <sub>3</sub> NO <sub>2</sub>                      | 25  | 1.1367                  | 0.289-0.      | 349 0.307      |
| Nitro Benzene       | C <sub>6</sub> H <sub>5</sub> NO <sub>2</sub>        | 25  |                         | 0.0019        |                |
| Acetone             | $(CH_3)_2CO$                                         | 0   | 0.8227                  | 1.732         | 2.105          |
| Acetone             | (CH <sub>3</sub> ) <sub>2</sub> CO                   | 25  | 0.7968                  | 1.038         | 1.302          |
| Furfurol            | C4H3O.COH                                            | 0   |                         | 15.10         |                |
| Furfurol            | C4H,O.COH                                            | 25  | 1.2014                  | 5.93          | 4.94           |
| Benzaldehyde        | C <sub>6</sub> H <sub>5</sub> COH                    | 25  | 1.0446                  | 0.343         | 0.328          |
| Salicyl aldehyde    | C <sub>6</sub> H <sub>4</sub> .OH.COH                | 0   | 1.1501                  | 1.257         | 1.093          |
| Salicyl aldehyde    | C <sub>6</sub> H <sub>4</sub> .OH.COH                | 25  | 1.1373                  | 0.549         | 0.483          |
| Anis aldehyde       | C <sub>0</sub> H <sub>4</sub> .OCH <sub>3</sub> .COH | 0   | 1.1223                  | 1.520         | 1.355          |
| Anis aldehyde       | C <sub>6</sub> H <sub>4</sub> .OCH <sub>3</sub> .COH | 25  | 1.1180                  | 0.720         | 0.644          |
| Ethyl Acetate       | CH <sub>3</sub> COOC <sub>2</sub> H <sub>5</sub>     | 25  |                         | 0.0013        |                |
| Methyl Cyan Acetate | CH <sub>2</sub> CNCOOCH <sub>3</sub>                 | 0   | 1.1521                  | 3.256         | 2.827          |
| Methyl Cyan Acetate | CH <sub>2</sub> CNCOOCH <sub>3</sub>                 | 25  | 1.1358                  | 2.459         | 2.165          |
| Ethyl Cyan Acetate  | CH2CNCOOC2H5                                         | 25  | 1.0628                  | 0.989         | 0.930          |
|                     |                                                      |     |                         |               |                |

#### POTASSIUM NITRITE 254

#### POTASSIUM NITRITE KNO.

100 gms. H<sub>2</sub>O dissolve about 300 gms. KNO<sub>2</sub> at 15.5°. (Divers – J. Ch. Soc. 75, 86, '99.)

#### POTASSIUM NITRATE KNO,

#### SOLUBILITY IN WATER.

(Mulder; Andrae – J. pr. Ch. [2] 29, 456, '84; Gerardin – Ann. chim. phys. [4] 5, 150, '65; Etard – *Ibid.* [7] 2, 526, '94; Ost – J. pr. Ch. [2] 17, 233, '78; at 31.25°, Köhler – Z. Ver. Zuckerind. 47, 447, '97; Euler – Z. physik. Ch. 49, 315, '94; Tilden and Shenstone – Phil. Trans. 23, '84; Berkeley – Trans. Roy. Soc. 203 A, 213, '94.)

Average Curve.

| <b>t°</b> . | Gms. KNO2 | per 100 Gms. | <b>t°</b> . | Gms. KNO3 per 100 Gms. |           |  |
|-------------|-----------|--------------|-------------|------------------------|-----------|--|
|             | Water.    | Solution.    | • •         | Water.                 | Solution. |  |
| ο           | 13.3      | II . 7       | 70          | 138                    | 58.o      |  |
| IO          | 20.9      | 17.3         | 80          | 169                    | 62.8      |  |
| 20          | 31.6      | 24.0         | 90          | 202                    | 66.9      |  |
| 25          | 37 · 3    | 27.2         | 100         | 246                    | 71.1      |  |
| 30          | 45.8      | 31.4         | 110         | 300                    | 75.0      |  |
| 40          | 63.9      | 39.0         | 120         | 394                    | 79.8      |  |
| 50          | 85.5      | 44.0         | 125         | 493                    | 83.1      |  |
| 60          | 110.0     | 52.0         |             |                        |           |  |

## Solubility of Mixtures of Potassium Nitrate and Barium Nitrate in Water.

(Euler - Z. physik. Ch. 49, 313, '04.)

| t°.  | Sp. Gr. of Sat. Solution. | Grams per 100 Grams H <sub>2</sub> O.                           |  |  |  |  |
|------|---------------------------|-----------------------------------------------------------------|--|--|--|--|
| 17   | I.I20                     | 13.26 KNO <sub>3</sub> + 6.31 Ba(NO <sub>3</sub> ) <sub>2</sub> |  |  |  |  |
| 21.5 | • • •                     | 17.00 " + 7.58 "                                                |  |  |  |  |
| 30   | I . 19I                   | <b>24</b> .04 " + 9.99 "                                        |  |  |  |  |
| 50   | •••                       | 49.34 " + 18.09 "                                               |  |  |  |  |

#### Solubility of Potassium Nitrate in Aqueous Solutions of Nitric Acid at 0°.

#### (Engel - Compt. rend. 104, 913, '87.)

| Sp. Gr. of<br>Solutions. | Equivalents 1 | per 10 cc. Solution. | Grams per 10 | o cc. Solution. |
|--------------------------|---------------|----------------------|--------------|-----------------|
| I .079                   | 12.5 KNO3     | o HNO,               | 12.65 KNO3   | 0.00 HNO        |
| •••                      | 9.9 "         | 5.87 "               | 10.02 "      | 3.71 "          |
| I.093                    | 8.28 "        | 13.2 "               | 8.38 "       | 8.38 "          |
| 1.117                    | 7.4 "         | 21.55 "              | 7.49 "       | 13.58 "         |
| 1.144                    | 7.4 "         | 31.1 "               | 7.49 "       | 19.47 "         |
| I.202                    | 7.6 "         | 48.0 "               | 7.68 "       | 30.04 "         |
| I . 280                  | 10.3 "        | 68.o "               | 10.42 "      | 42.86 "         |
| 1 · 498                  | 28.3 "        | 120.5 "              | 28.64 "      | 75·95 "         |

## SOLUBILITY OF POTASSIUM NITRATES AND OF ACID POTASSIUM NITRATES IN NITRIC ACID.

.

#### (Groschuff - Ber. 37, 1490, '04.)

NOTE. — Determinations made by the so-called thermometric method, *i.e.*, by observing the temperature of the disappearance of the separated, finely divided solid from solutions of known concentration.

| <b>6 °</b> . | Grams per<br>Solu<br>KNO2. | tion.<br>HNO2. | Solid<br>Phase.    | t°.          | Gms. per<br>Solu<br>KNO <sub>2</sub> . |                |                    | olid<br>hase. |
|--------------|----------------------------|----------------|--------------------|--------------|----------------------------------------|----------------|--------------------|---------------|
|              | KNU3.                      | HNO3.          |                    |              | KNO3.                                  | HNO3.          |                    |               |
| - 6          | 24 · 4                     | 75 · 41        | KNO3-2HNO3 (1)     | 22.5         | 47 . 2                                 | 52.93          | KNO3.J             | HNO3          |
| +14          | 32.6                       | 67.42          | " (stabil)         | 23.5         | 47.8                                   | 52.11          | **                 | (stabil)      |
| 17           | 34.8                       | 65.04          | 44                 | 25.5         | 48.6                                   | 51.46          | 44                 |               |
| 19.5         | 37 . 2                     | 62.90          | **                 | 27.0         | 49 · 4                                 | 50.78          | **                 |               |
| 22           | 44 · 5                     | 55.46          | 44                 | <b>29</b> .0 | 50 . I                                 | <b>49</b> · 94 | KNO <sub>2</sub> J | INO3          |
| 21.5         | 47.8                       | 52.11          | KNO3.2HNO3 (?)     | 30.5         | 50.9                                   | 49.15          | **                 | (labil)       |
| 21.5         | 48.6                       | 51.46          | " (labil)          | 21.0         | 49.4                                   | 50.78          | KNO3               | (labil)       |
| 20           | 50.9                       | 49.15          | **                 | 39.0         | 50.9                                   | 49.15          | **                 | (stabil)      |
| - 4          | 37 · 2                     | 62.81          | KNO3.HNO3          | 50           | 51.7                                   | 48.32          | *                  |               |
| - 16.5       | <b>44</b> · 5              | 55.46          | " (labil)          |              |                                        |                |                    |               |
|              | (ካ)                        | Solution in    | HNO <sub>2</sub> . | (*)          | Solution is                            | n KNO3.        |                    |               |

CONDUCT OF ACID POTASSIUM NITRATE TOWARDS WATER.

| Gms. per 100 Gms.<br>t°. Solution. |               | Solid t°. |            | Gms. per 1<br>Solut | Solid<br>Phase |        |        |
|------------------------------------|---------------|-----------|------------|---------------------|----------------|--------|--------|
|                                    | KNO3.         | HNO3.     | r mase.    |                     | KNO3.          | HNO3.  | T man. |
| 22                                 | <b>44</b> · 5 | 55·5      | KNO2.3HNO2 | 50                  | 38.7           | 48.3   | KNO3   |
| 20.5                               | 44 · I        | 55.0      | 44         | 61                  | 36.0           | 44 . 8 | **     |
| 18                                 | 43.8          | 54.5      | 44         | 63                  | 34.5           | 43.0   | **     |
| 12                                 | 43.0          | 53.6      | **         | 60.5                | 30.9           | 39.5   | 44     |
| 6                                  | 42.3          | 52.7      | 44         | 56                  | 27.6           | 34.4   | 66     |
| 0                                  | 41.6          | 51.8      | 66         | 43                  | 20.8           | 25.9   | **     |
| 12                                 | 41.3          | 51.4      | KNO3       | 17                  | 11.7           | 16.6   | 66     |
| 22                                 | 40.9          | 51.0      | •          | -5                  | 5.54           | 6.91   | 84     |
| 40                                 | 39.9          | 49.8      | "          | ·                   | - •            |        |        |

#### SOLUBILITY OF MIXTURES OF POTASSIUM NITRATE AND POTASSIUM CHLORIDE IN WATER.

(Etard — Ann. chim. phys. [7] 3, 283, '94; at 30°, Rüdorff — Ber. 6, 482, '73; Nicol — Phil. Mag. [5] 31, 385, '91.)

| <b>t°</b> . | Gms. per 100 Gms.<br>Solution. |      | <b>5°</b> . | Gms. per 100 Gms.<br>s <sup>o</sup> . Solution. |      | <b>t*</b> . | Gms. per<br>Solu | 100 Gms. |
|-------------|--------------------------------|------|-------------|-------------------------------------------------|------|-------------|------------------|----------|
|             | KNO3.                          |      | -           | KNO3.                                           | KCl. |             | KNO3.            | KCI.     |
|             | 5.0                            |      | 30          | 16.0                                            | 21.2 | 70          | <b>39</b> · 5    | 17.5     |
| 10          | 8.o                            | 20.8 | 40          | 21.0                                            | 21.0 |             | 45.5             |          |
| 20          | 12.6                           | 2I.2 | 50          | 27.0                                            | 20.0 |             | 57 · 5           |          |
| 25          | 14.0                           | 21.3 | 60          | <u>33 · 5</u>                                   | 19.0 | I 20        | 69.0             | 7 · 7    |

#### POTASSIUM NITRATE

.

## SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS SOLUTIONS OF: (Touren - Compt. rend. 131, 259, '00.)

256

| Po                             | tassium  | Carbona   | te.        | Pota     | issium          | Bi Carbo  | nate.    |  |  |
|--------------------------------|----------|-----------|------------|----------|-----------------|-----------|----------|--|--|
|                                | Results  | at 14.5°. |            |          | Results         | at 14.5°. |          |  |  |
| Mols. p                        | er Liter | Gms. per  | r Liter.   | Mols. pe | r Liter.        | Grams pe  | T Liter. |  |  |
| K <sub>2</sub> CO <sub>2</sub> | KNU3.    | KaCOa.    | KNU.       | KHCO3.   | KNO3.           | KHCO3.    |          |  |  |
| 0.0                            | 2 . 228  | 0.0       | 225        | 0.0      | 2.33            | 0.0       | 236      |  |  |
| o.48                           | 1.85     | 66.4      | 188        | 0.39     | 2.17            | 39.0      | 220      |  |  |
| 1.25                           | I.39     | 172.9     | <b>141</b> | 0.76     | 2.03            | 76.0      | 205      |  |  |
| 2.58                           | o.86     | 356.9     | 87         | 1.16     | I.92            | 116       | 194      |  |  |
| <b>3</b> · 94                  | 0.64     | 544 · 9   | 65         | 1.55     | 1.81            | 155       | 183      |  |  |
|                                | Result   | s at 25°. |            |          | Results at 25°. |           |          |  |  |
| 0.0                            | 3.217    | 0.0       | 326        | 0.0      | 3.28            | 0.0       | 332      |  |  |
| 0.59                           | 2.62     | 6. 18     | 265        | o.89     | 2.84            | 89        | 287      |  |  |
| 1.35                           | I.97     | 186.7     | 199        | I.33     | 2.65            | 133       | 268      |  |  |
| 2.10                           | I.46     | 290.5     | 148        | 1.91     | 2 . 45          | 191       | 249      |  |  |
| 2.70                           | 1.14     | 373.6     | 115        |          |                 |           |          |  |  |
| 3.58                           | 0.79     | 495.1     | 80         |          |                 |           |          |  |  |

### SOLUBILITY OF MIXTURES OF POTASSIUM NITRATE AND POTASSIUM SULPHATE IN WATER. (Euler — Z. physik. Ch. 49, 313, '04.)

| \$°. | Sp. Gr. of Sat. Solution. | Grams per 100 Grams Water. |            |  |  |  |
|------|---------------------------|----------------------------|------------|--|--|--|
| 15   | 1.165                     | 24.12 KNO3                 | 5.65 K2SO4 |  |  |  |
| 20   | • • •                     | 30.10 "                    | 5.58 "     |  |  |  |
| 25   | I.210                     | 36.12 "                    | 5.58 "     |  |  |  |

SOLUBILITY OF MIXTURES OF POTASSIUM NITRATE AND SODIUM CHLORIDE IN WATER.

(Etard — Ann. chim. phys. [7] 3, 283, '94; the older determinations of Rüdorff, Karsten, Mulder, etc., agree well with those of Etard.)

| t°. | Gms. per<br>Solu | too Gms. | t°. | Gms. per<br>Solut | 100 Gms.<br>tion. | t°.  |                | 100 Gms.<br>tion. |
|-----|------------------|----------|-----|-------------------|-------------------|------|----------------|-------------------|
|     | KNO3.            | NaCl.    |     | KNO3.             | NaCl.             |      | KNO3.          | NaCl.             |
| 0   | 13               | 24       | 40  | 30.5              | 19                | I 20 | 73             | 8.0               |
| IO  | 16               | 23       | 50  | 36                | 17                | 140  | 77             | 7.0               |
| 20  | 20               | 22       | 60  | 42.5              | 15                | 160  | <b>7</b> 9 · 5 | 6.0               |
| 25  | 23               | 21.5     | 8o  | 55                | 12                | 170  | 80.5           | 5 · 5             |
| 30  | 25               | 20.5     | 100 | 67                | 9.5               |      |                |                   |

SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS SOLUTIONS OF SODIUM NITRATE AND VICE VERSA AT 20°.

(Carnelly and Thomson – J. Ch. Soc. 53, 782, '88; Nicol – Phil. Mag. 31, 360, '91.) KNO<sub>2</sub> in Ag. NaNO, Solutions. NaNO, in Ag. KNO. Solution

| KNO, in Aq. NaNO, Solutions. | NaNO, in Aq. KNO, Solutions. |
|------------------------------|------------------------------|
|------------------------------|------------------------------|

| Grams per 100 | Grams H <sub>2</sub> O. | Grams per 100 Grams H <sub>2</sub> O. |            |  |  |
|---------------|-------------------------|---------------------------------------|------------|--|--|
| NaNO3.        | KNO2                    | KNO3.                                 | NaNO3.     |  |  |
| 0             | 31.6                    | 0                                     | 88         |  |  |
| 10            | 30.5                    | IO                                    | 90         |  |  |
| 20            | 31.0                    | 20                                    | 92         |  |  |
| 40            | 33.0                    | 25                                    | 93         |  |  |
| 60            | 35·5                    | 30                                    | 94         |  |  |
| 8o            | 4I ·O                   | 35                                    | <b>9</b> 6 |  |  |

ł.

Solubility of Mixtures of Potassium Nitrate and Silver Nitrate in Water.

|     | (Et                    | ard - A | nn. cmm. pag | ys. [7] 3, 2031 | 94-1 |             |        |
|-----|------------------------|---------|--------------|-----------------|------|-------------|--------|
|     | Gms. per 100 Gms. Sol. | tº.     | Gms. per 10  | oo Gms. Sol.    |      | Gms. per 10 |        |
| • • | KNO3. AgNO3.           | • •     | KNO3.        | AgNO3.          | • •  | KNO3.       | AgNO3. |
| 0   | 13.5 43.0              | 30      | 26.8         | 49.4            | 80   | 36.2        |        |
| IO  | 19.0 44.7              | 40      | 29.6         | 51.5            | 100  | 38.3        | 55.3   |
| 20  | 23.0 47.0              | 50      | 32.0         | 54.0            | 120  | 40.0        | 55.6   |
| 25  | 25.0 48.0              | 60      | 33.5         | 54.8            | 140  | 41.5        | 55.8   |

Solubility of Mixed Crystals of Potassium Nitrate and Silver Nitrate in Water at 25°.

| (Herz - Inaug. Diss. (Berlin) 'os; Calc. by Fock - Z. 1 |       |             |           | Kryst. Min. 28,                       | 405, '07.)                |
|---------------------------------------------------------|-------|-------------|-----------|---------------------------------------|---------------------------|
| Grams per Liter.                                        |       | Mg. Mols. p | er Liter. | Mol. per cent<br>AgNO <sub>3</sub> in | Mol. per cent<br>AgNO2 in |
| AgNO3.                                                  | KNO3. | AgNO2.      | KNO3.     | Solution.                             | Solid Phase.              |
| 45.9                                                    | 321.8 | •270        | 3180      | 7.83                                  | 0.2896                    |
| 110.7                                                   | 322.6 | 651.3       | 3184      | 16.96                                 | 0.6006                    |
| 176.8                                                   | 333.7 | 1040        | 3298      | 23.97                                 | 0.9040                    |
| 259.6                                                   | 364.0 | 1528        | 3597      | 29.81                                 | 1.054                     |
| 365.6                                                   | 456.4 | 2151        | 4511      | 32.28                                 | 1.604                     |
| 507.9                                                   | 387.2 | 2988        | 3816      | 43.85                                 | 2.439                     |
| 745-9                                                   | 398.6 | 4388        | 3960      | 52.70                                 | 8.294                     |

Solubility of Mixed Crystals of Potassium Nitrate and Thal-Lium Nitrate in Water at 25°. (Fock.)

| Grams p | er Liter. | Mg. Mols | . per Liter. | Mol. per cent<br>TINOa | Sp. Gr.          | Mol. per cent<br>TINOa |
|---------|-----------|----------|--------------|------------------------|------------------|------------------------|
| TINO3.  | KNO3.     | TINO3.   | KNO3.        | in Solution.           | of<br>Solutions. | in Solid Phase.        |
| 0.00    | 351.0     | 0.0      | 3468.2       | 0.00                   | 1.2632           | 0.00                   |
| 2.37    | 329.0     | 8.9      | 3251.5       | 0.43                   | 1.1903           | 0.08                   |
| 6.15    | 332.4     | 23.1     | 3285.1       | 0.70                   | 1.1956           | 0.20                   |
| 17.64   | 333.7     | 66.3     | 3298.1       | I.97                   | I.2050           | 0.57                   |
| 49.74   | 333.3     | 186.9    | 3294.4       | 5.37                   | 1.2196           | 1.78                   |
| 63.60   | 321.0     | 239.0    | 3172.4       | 7.01                   | 1.2436           | 2.19                   |
| 86.18   | 330.5     | 323.8    | 3265.8       | 9.02                   | 1.2617           | 2.77                   |
| 123.8   | 428.3     | 16= 0    | 1000 6       | 0.00                   | T 0070           | \$ 6.00                |
| 123.0   | 420.3     | 465.2    | 4232.6       | 9.90                   | 1.2950           | 27.04                  |
| 101.3   | 245.I     | 380.6    | 2423.3       | 13.58                  | 1.2050           | 93.33                  |
| 116.1   | 0.0       | 463.1    | 0.0          | 100.001                | 1.0964           | 100.00                 |
|         |           |          |              |                        |                  |                        |

SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS ALCOHOL SOLUTIONS. (Gerardin — Ann. chim. phys. [4] 5, 151, '65.) Grams KNO2 per 100 Grams Aqueous Alcohol of Sp. Gr.:

|     |                 | Grai                      | ms KNO3 per              | r 100 Grams               | Aqueous Alc            | ohol of Sp. (        | Gr.:                    |                         |
|-----|-----------------|---------------------------|--------------------------|---------------------------|------------------------|----------------------|-------------------------|-------------------------|
| t°, | 0.9904<br>Wt %. | 0.9843<br>- 9.35<br>Wt.%. | 0.9793<br>=13.6<br>Wt.%. | 0.9726<br>= 19.1<br>Wt.%. | .09571<br>30<br>Wt. %. | 0.939<br>40<br>Wt.%. | 0.8967<br>= 60<br>Wt.%. | 0.8429<br>= 90<br>Wt.%. |
| IO  | 17              | 13                        | IO                       | 7                         | 4.5                    | 3                    | I                       | 0.2                     |
| 18  | 22.5            | 18.5                      | 14.5                     | IO                        | 6.2                    | 4.5                  | I.6                     | 0.3                     |
| 20  | 24              | 20                        | 16                       | II                        | 7.0                    | 5                    | 2                       | 0.3                     |
| 25  | 29              | 24.5                      | 20                       | 13.5                      | 9.0                    | 6.5                  | 2.5                     | 0.4                     |
| 30  | 36              | 30                        | 25                       | 17                        | 11.5                   | 8                    | 3.0                     | 0.5                     |
| 40  | 52              | 43                        | 36                       | 27                        | 16.5                   | II                   | 4                       | 0.6                     |
| 50  | 72              | 61                        | 50                       | 38                        | 23.0                   | 16                   | 6                       | 0.7                     |
| 60  | 93              | 79                        | 69                       | 52                        | 31.0                   | 21                   | 8                       | I.I                     |

#### POTASSIUM NITRATE 258

SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS ALCOHOL AT 18°. (Bodländer – Z. physik. Ch. 7, 316, '91.)

| Sp. Gr. of<br>Solution. | Gms. per                          | 100 cc. Se        | lution. | Sp. Gr. of<br>Solution. | Gms. pe                           | r 100 cc. S       | olution.      |
|-------------------------|-----------------------------------|-------------------|---------|-------------------------|-----------------------------------|-------------------|---------------|
| Solution.               | C <sub>2</sub> H <sub>5</sub> OH. | H <sub>2</sub> O. | KNO3.   | Solution.               | C <sub>2</sub> H <sub>8</sub> OH. | H <sub>2</sub> O. | KNO3.         |
| I . I 480               | •••                               | 89.80             | 25.0    | I.0I20                  | 23.33                             | <b>69</b> .81     | 8.06          |
| 1.1085                  | 3.30                              | 87.44             | 20.11   | 0.9935                  | 28.11                             | 64.74             | 6.50          |
| 1.1010                  | 5.24                              | 86.26             | 18.60   | 0.9585                  | 37 · 53                           | 54.21             | 4.11          |
| 1.0805                  | 8.69                              | 83.18             | 16.18   | 0. <b>94</b> 50         | 42.98                             | 48.15             | <b>3</b> · 37 |
| 1.0755                  | 9.06                              | 83.10             | 15.39   | 0.9050                  | 51.23                             | 27 . 32           | I.95          |
| 1.0655                  | 14.08                             | 77 ·93            | 14.54   | 0.8722                  | 61.65                             | 24.74             | 0.83          |
| I .0490                 | 16.27                             | 76.36             | 12.27   | 0.8375                  | 69.60                             | 13.95             | 0.20          |
| I.0375                  | 19.97                             | 72.93             | 10.85   |                         |                                   |                   |               |

SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS ALCOHOL AND IN AQUEOUS ACETONE. (Bathrick — J. Physic. Ch. I, 160, '96.)

| Ir            | Aqueous Alcoho      | In Aqueous Acetone at 40°. |              |                           |
|---------------|---------------------|----------------------------|--------------|---------------------------|
| Wt. per cent  | Gms. KNO2 per 100 G | ms. Aq. Alcohol.           | Wt. per cent | Gms. KNO3<br>per 100 Gms. |
| Alcohol.      | At 30°.             | At 40°.                    | Acetone.     | Solvent.                  |
| 0             | 45.6                | 64.5                       | 0            | 64.5                      |
| 8.25          | 32.3                | 47 · I                     | 8.5          | 51.3                      |
| 17.0          | 22.4                | <b>3</b> 3 · 3             | 16.8         | 38. <b>9</b>              |
| 25.7          | 15.1                | 24 · I                     | 25.2         | 22.8                      |
| 35.0          | 11.4 (34.4°)        | 16.7                       | 34 · 3       | 24.7                      |
| <b>44</b> · 9 | 7.0                 | 11.6 (44°)                 | 44 · I       | 17.0                      |
| 54 - 3        | 4 · 5               | 7.2 (55°)                  | 53.9         | 11.9                      |
| 65.0          | 2.7                 | 4.4                        | 64.8         | 7.2                       |
| 75.6          | I.3                 | 2.0 (76.3°                 |              | 3.0                       |
| 88.o          | 0.4                 | 0.6 (88.5°                 | ?) 87.6      | 0.7                       |

100 grams H<sub>2</sub>O saturated with sugar and KNO<sub>3</sub> dissolve 224.7 gms. sugar + 41.9 gms. KNO<sub>3</sub>, or 100 gms. of the saturated solution contain 61.36 gms. sugar + 11.45 gms. KNO<sub>3</sub> at 31.25°.

(Köhler - Z. Ver Zuckerind. 47, 447, '97.)

.

### **POTASSIUM OXALATE** $K_2C_2O_{4}.4H_2O$ .

SOLUBILITY OF MIXTURES OF POTASSIUM OXALATE AND OXALIC ACID IN WATER AT 25°. (F

|--|

| Gms. per 100 ( | Gms. Solution. | Mols. per 10                                   | o Mols. H <sub>2</sub> O. | Solid Phase.                                                                 |
|----------------|----------------|------------------------------------------------|---------------------------|------------------------------------------------------------------------------|
| H2C2O4.        | K2C2O4         | H <sub>2</sub> C <sub>2</sub> O <sub>4</sub> . | K2C2O4.                   | Sond Phase.                                                                  |
| IO · 2         | • • •          | 2.274                                          | • • •                     | H <sub>2</sub> C <sub>2</sub> O <sub>4</sub> .2H <sub>2</sub> O              |
| 10.31          | 0.04           | 2.302                                          | 0.005                     | $H_{2}C_{2}O_{4}{2}H_{2}O + H_{3}K(C_{2}O_{4})_{2}{2}H_{2}O$                 |
| 9.26           | 0.13           | 2.046                                          | 0.016                     | Double salt HaK(C2O4)2.2H2O                                                  |
| 3.39           | 0.63           | 0.707                                          | 0.071                     |                                                                              |
| 2.06           | 4 . 26         | 0.440                                          | 0.495                     | $H_{3}K(C_{2}O_{4})$ .2 $H_{2}O + HKC_{2}O_{4}$                              |
| 1.16           | 11.50          | <b>o</b> .266                                  | I . 427                   | Double salt HKC2O4                                                           |
| 0.99           | 16.93          | 0.240                                          | 2.235                     |                                                                              |
| 0.85           | 21.08          | 0.221                                          | 2.928                     | $HKC_{2}O_{4} + H_{2}K_{4}(C_{2}O_{4})_{3} \cdot 2H_{3}O$                    |
| 0.82           | 21.49          | 0.211                                          | 2.998                     | 1                                                                            |
| 0.64           | 23.52          | 0.169                                          | 3.361                     | Double salt H2K4(C2O4)3.2H2O                                                 |
| o · 57         | 24.88          | 0.153                                          | 3.617                     | J                                                                            |
| 0.43           | 27.52          | 0.122                                          | 4.14                      | $H_{2}K_{4}(C_{2}O_{4})_{3} \cdot _{2}H_{2}O + K_{2}C_{3}O_{4} \cdot H_{3}O$ |
| •••            | 27 40          | •••                                            | 4.09                      | K <sub>2</sub> C <sub>2</sub> O <sub>4</sub> .H <sub>2</sub> O               |

#### 259 POTASSIUM OXALATE

Solubility of Potassium Oxalate and Acid Potassium Oxalate in Water.

#### (Alluard; results at o°, Engel - Ann. chim. phys. [6] 13, 362, '88.)

100 gms.  $H_2O$  dissolve 25.24 gms.  $K_2C_2O_4$ , or 100 gms. of sat. solution contain 20.62 gms.  $K_2C_2O_4$  at 0°. Sp. Gr. of solution = 1.161.

| Acid                                                                       | Acid Oxalate in Solutions of Neutral Oxalate at o°. |                          |                                                         |                                                        | Acid Oxalate in Water |                                                                           |  |
|----------------------------------------------------------------------------|-----------------------------------------------------|--------------------------|---------------------------------------------------------|--------------------------------------------------------|-----------------------|---------------------------------------------------------------------------|--|
| n H <sub>2</sub> SO <sub>4</sub> Corre-<br>sponding to K<br>in 10 cc. Sol. | # KOH Corre-<br>sponding to Free<br>Acid in 10 cc.  | Sp. Gr. of<br>Solutions. |                                                         | c. Sol.                                                |                       | ems. KHC <sub>2</sub> O <sub>4</sub><br>per 100 Gms.<br>H <sub>2</sub> O. |  |
| 28.5                                                                       | 0.4                                                 | 1.164                    | K <sub>2</sub> C <sub>2</sub> O <sub>4</sub> .<br>23.53 | H <sub>2</sub> C <sub>2</sub> O <sub>4</sub> .<br>0.18 | 0                     | 2.2                                                                       |  |
| 10.8                                                                       | 0.925                                               |                          | 8.91                                                    | 0.41                                                   | IO                    | 3.1                                                                       |  |
| 6:8                                                                        | 1.075                                               | 1.042                    | 5.61                                                    | 0.48                                                   | 20                    | 5.2                                                                       |  |
| 4.78                                                                       | 1.25                                                | 1.031                    | 3.94                                                    | 0.56                                                   | 40                    | 10.5                                                                      |  |
| 3.83                                                                       | 1.45                                                | 1.025                    | 3.16                                                    | 0.65                                                   | 60                    | 20.5                                                                      |  |
| 3.35                                                                       | I.53                                                | I.022                    | 2.76                                                    | 0.68                                                   | 80                    | 34.7                                                                      |  |
| 2.6 (1)                                                                    | 1.85                                                | 1.018                    | 2.15                                                    | 0.83                                                   | 100                   | 51.5                                                                      |  |
| 2.0 (2)                                                                    | 2.25                                                | 1.007                    | 1.65                                                    | I.00                                                   |                       |                                                                           |  |
| 0.45(3)                                                                    | 1.25                                                | 1.004                    | 0.37                                                    | 0.56                                                   |                       |                                                                           |  |

(1) Sat. with acid potassium oxalate. (2) Sat. with both acid oxalate and tetroxalate. (3) Sat. with tetroxalate.

#### POTASSIUM PERMANGANATE KMnO.

#### SOLUBILITY IN WATER.

(Baxter, Boylston, and Hubbard - J. Am. Ch. Soc. 28, 1343, '06; Patterson - Ibid. 28, 1735, '06.)

| t°.  | Grams KMnO4 per 100 : |                        |                   | t°.  | Grams KMnO4 per 100 : |                        |
|------|-----------------------|------------------------|-------------------|------|-----------------------|------------------------|
|      | Gms. Solution.        | Gms. H <sub>2</sub> O. | cc. Solution (P). |      | Gms. Solution.        | Gms. H <sub>2</sub> O. |
| 0    | 2.75                  | 2.83                   | 2.84              | 34.8 | 9.64                  | 10.67                  |
| 9.8  | 4.13                  | 4.31                   |                   | 40   | 11.16                 | 12.56                  |
| 15.0 |                       |                        | 5.22              | 45   | 12.73                 | 14.58                  |
| 19.8 | 5.96                  | 6.34                   |                   | 50   | 14.45                 | 16.89                  |
| 24.8 | 7.06                  | 7.59                   |                   | 55   | 16.20                 | 19.33                  |
| 29.8 | 8.28                  | 9.03                   | 8.69              | 65   | 20.02                 | 25.03                  |

Sp. Gr. of saturated solution at  $15^\circ = 1.035$ .

#### SOLUBILITY OF POTASSIUM PERMANGANATE IN:

Water. Aqueous Acetone Solutions at 13°. (Voerman - Chem. Centrb. 77, I. 125, '06.) (Herz and Knoch - Z. anorg. Ch. 41, 317 '04.) Gms. KMnO4 per Solid cc. Acetone per 100 cc. Solvent. Millimols. Grams. tº. 100 Gms Solution. Water. Phase. 148.5 - 0.18 0.58 0.58 Ice 0 4.70 0.99 I.01 I.98 2.02 - 0.27 IO 162.2 5.13 20 177.3 - 0.48 .... 5.61 3.00 Ice+KMnO, 30 208.2 - 0.58 2.91 6.59 +10.0 4.01 4.22 KMnO. 40 257.4 8.14 4.95 5.20 " 7.00 7.53 " 10.40 11.61 " 289.7 15 50 9.16 60 316.8 25 10.02 70 328.0 10.38 40 ... 14.35 16.75 80 312.5 9.89 50 227.0 7.18 90 100 67.0 2.14

#### POTASSIUM PERMAN- 260 GANATE

Solubility of Mixed Crystals of Potassium Permanganate and Potassium Perchlorate at 7°.

(Muthmann and Kuntze - Z. Kryst. Min. 23, 368, '94; recalculated by Fock - Ibid. 28, 402, '97.)

| Milligram M         | ols. per Liter.     | Grams pe | r Liter. | Mol. per cent<br>KMnO <sub>4</sub> in |
|---------------------|---------------------|----------|----------|---------------------------------------|
| KMnO <sub>4</sub> . | KClO <sub>2</sub> . | KMnO4.   | KClO4.   | Crystals of Solid<br>Phase.           |
| 0.0                 | 63.91               | 0.00     | 8.86     | 0.00                                  |
| 29.37               | 54.48               | 4.65     | 7.55     | 2.84                                  |
| 67.73               | 42.75               | 10.71    | 5.93     | 9.78                                  |
| 79 · <b>0</b> 4     | 39.59               | 12.50    | 5.49     | 10.81                                 |
| 99.81               | 38.63               | 15.79    | 5.36     | 15.96                                 |
| 122.24              | 34 · 39             | 19.34    | 4.77     | 23.56                                 |
| 119.21              | 38.91               | 18.84    | 5.39     | 24.28                                 |
| 128.08              | 33.77               | 20.26    | 4.68     | 26.40                                 |
| 144 . 46            | 33.14               | 22.86    | 4 · 59   | 34 - 32                               |
| 167 .81             | 29.53               | 26.55    | 4.09     | 44 . 42                               |
| 183.09              | 25.19               | 28.97    | 3 · 49   | 67 . 33                               |
| 197 .82             | 20.16               | 31.30    | 2.80     | 77 · 95                               |
| 233 · 75            | 28 . 26             | 36.98    | 3.92     | 94 · 37                               |
| 264 . 27            | 0.00                | 41.81    | 0.00     | 100.00                                |

Solubility of Mixed Crystals of Potassium Permanganate and Rubidium Permanganate at 7°.

(Muthmann and Kuntze, calc. by Fock.)

|                            | . Dy POCK.) |                     |                      |                             |
|----------------------------|-------------|---------------------|----------------------|-----------------------------|
| Milligram Mols. per Liter. |             | Grams               | per Liter.           | Mol. per cent<br>KMnO4 in   |
| KMnO4.                     | RbMnO4.     | KMnO <sub>4</sub> . | RbMnO <sub>4</sub> . | Crystals of Solid<br>Phase. |
| 27.04                      | 22.69       | 4 . 28              | 4.64                 | 3.50                        |
| 75.00                      | 22.22       | 11.84               | 4 · 54               | 13.75                       |
| 120.26                     | 31.29       | 19.03               | 6.40                 | 34 - 29                     |
| 188 . <b>30</b>            | 38.98       | 29.80               | 7 · 97               | 71.45                       |
| 198.36                     | 41 . 29     | 31.39               | 8.44                 | 92 . 50                     |
| 205.76                     | 42 . 50     | 32.56               | 8.69                 | 99 · 47                     |
| 225.12                     | 26.00       | 35.61               | 5.32                 | 99.32                       |
| 264 . 27                   | 0.00        | 41.81               | 0.00                 | 100.00                      |
|                            |             |                     |                      |                             |

POTASSIUM PHOSPHATE KH<sub>2</sub>PO, (Monobasic).

One liter aqueous solution contains 249.9 grams at 7°.

(Muthmann and Kuntze.)

#### POTASSIUM HYPOPHOSPHATE, etc.

SOLUBILITY IN WATER. (Salzer — Liebig's Ann. 211, 1, 82.)

|           | Salt.                       | Formula.                                                                       | Gms. Salt per<br>Gms. H <sub>2</sub> () | 100   |
|-----------|-----------------------------|--------------------------------------------------------------------------------|-----------------------------------------|-------|
|           |                             |                                                                                | Cold.                                   | Hot.  |
| Potassiur | n Hypophosphate             | K <sub>4</sub> P <sub>2</sub> O <sub>6</sub> .8H <sub>2</sub> O                | 400                                     | · • • |
| "         | Hydrogen Hypophosphate      | K <sub>3</sub> HP <sub>2</sub> O <sub>6</sub> .3H <sub>2</sub> O               | 200                                     |       |
| "         | Di Hydrogen Hypophosphate   | K <sub>2</sub> H <sub>2</sub> P <sub>2</sub> O <sub>6</sub> .3H <sub>2</sub> O | 33                                      | 100   |
| "         | Tri Hydrogen Hypophosphate  | KH,P,O                                                                         | ĞĞ. 6                                   | 200   |
| "         | Penta Hydrogen Hypophosphat | e K,H,(P,O,), 2II,                                                             | 0 40                                    | 125   |
| "         | Hydrogen Phosphite          | KH,PO,                                                                         | 172 (20°)                               |       |
| "         | Hypophosphite               | KH,PO,                                                                         | 200 (25°)                               | 333   |
| "         | Hypophosphite               | KH <sub>2</sub> PO <sub>2</sub> *                                              | 14. 3 (25°)                             |       |
|           |                             |                                                                                |                                         |       |

\* Solvent alcohol.

#### POTASSIUM PHOSPHO-261 MOLYBDATE

### POTASSIUM PHOSPHOMOLYBDATE K,PO,.11MoO,11H,O.

100 gms. H<sub>2</sub>O dissolve 0.007 gms. at 30°. 100 gms. aqueous 10 % HNO<sub>2</sub> dissolve 0.204 gms. at 30°. (Donk - Proc. Assoc. Official Agrl. Chemists - Bull. No. 90, Bureau of Chemistry, U. S. Dept. of Agr., '05.)

#### POTASSIUM SELINATE K.SeO.

SOLUBILITY IN WATER.

- 20°. - 5°. + 5°. 18°. 97°. tº. Gms. K2SeO4 per 100 gms. solution 51.5 51.7 52.0 52.6 54.9 (Etard - Ann. Chim. phys. [7] 2, 550, '94.)

#### POTASSIUM STANNATE K2SnO3.3H2O.

100 gms. H<sub>2</sub>O dissolve 106.6 gms. at 10°, and 110.5 gms. at 20°. Sp. Gr. at  $10^\circ = 1.618$  at  $20^\circ = 1.627$ .

(Ordway - Am. J. Sci. [2] 40, 173, '65.)

#### POTASSIUM SULPHATE K.SO.

#### SOLUBILITY IN WATER.

(Mulder; Andrae – J. pr. Ch. 29, 456, '84; Trevor – Z. physik. Ch. 7, 468, 91; Tilden and Shenstone – Phil. Trans. 31, '84; Berkeley – Trans. Roy. Soc. 203 A, 209, '04; see also Etard – Ann. chim. phys. [7] 2, 549, '04.)

| +0  | Gms. K <sub>2</sub> SO | Solution. |      | Gms. K <sub>2</sub> SO <sub>4</sub><br>Water. | per 100 Gms. | + 0 G | ms. K2SO4 | per 100 Gms.<br>Solution. |
|-----|------------------------|-----------|------|-----------------------------------------------|--------------|-------|-----------|---------------------------|
| • · | Water.                 | Solution. |      | Water.                                        | Solution.    | • •   | Water.    | Solution.                 |
| 0   | 7.35                   | 6.85      | 40   | 14.76                                         | 12.86        | 90    | 22.8      | 18.57                     |
| IO  | 9.22                   | 8.44      | 50   | 16.50                                         | 14.16        | 100   | 24.I      | 19.42                     |
| 20  | II.II                  | 10.00     | 60   | 18.17                                         | 15.38        | 120   | 26.5      | 20.94                     |
| 25  | 12.04                  | 10.75     | - 70 | 19.75                                         | 16.49        | 143   | 28.8      | 22.36                     |
| 30  | 12.97                  | 11.48     | . 80 | 21.4                                          | 17.63        | 170   | 32.9      | 24.76                     |

Sp. Gr. of solution saturated at  $18^\circ = 1.083$ .

SOLUBILITY OF POTASSIUM SULPHATE IN AQUEOUS AMMONIA SOLUTIONS AT 20°.

#### (Girard - Bull. soc. chim. [2] 43, 552, '85.)

0 6.086 15.37 24.69 31.02 Gms. NH, per 100 cc. solution Gms. K2SO4 per 100 cc. solution 10.80 4.10 0.83 0.14 0.04

SOLUBILITY OF MIXED CRYSTALS OF POTASSIUM SULPHATE AND AMMONIUM SULPHATE AT 25°. (F

| ock | -2 | n K | ryst. | Min | , 28, | 375 | 97.) |
|-----|----|-----|-------|-----|-------|-----|------|
|     |    |     |       |     |       |     |      |

| Grams per Liter. |            | Milligram Mols. per Liter.       |            | Mol. per cent<br>KaSO4 in | Sp. Gr.   | Mol. per cent                                     |
|------------------|------------|----------------------------------|------------|---------------------------|-----------|---------------------------------------------------|
| KaSO4.           | (NH4)2SO4. | K <sub>2</sub> SO <sub>4</sub> . | (NH4)2SO4. | Solution.                 | Solution. | K <sub>2</sub> SO <sub>4</sub> in<br>Solid Phase. |
| 127.9            | 0.0        | 734                              | 0.0        | 100                       | 1.086     | 100                                               |
| 135.7            | 115.7      | 778.5                            | 874.6      | 47.I                      | 1.149     | 91.28                                             |
| 84.20            | 281.1      | 483                              | 2126       | 18.5                      | I - 200   | 80.05                                             |
| 59.28            | 355.0      | 340                              | 2685       | 11.13                     | 1.226     | 68.63                                             |
| 40.27            | 482.7      | 231                              | 3650       | 5.98                      | 1.246     | 27.53                                             |
| 0.00             | 542.3      | 0.0                              | 4100       | 0.00                      | 1.245     | 0.00                                              |

Results are also given for 14°, 15°, 16°, 30°, 46°, and 47°.

#### POTASSIUM SULPHATE 262

.

SOLUBILITY OF MIXED CRYSTALS OF POTASSIUM COPPER SULPHATE AND AMMONIUM COPPER SULPHATE IN WATER.

| $CuSO_4$ . K <sub>2</sub> SO <sub>4</sub> . 6H <sub>2</sub> O and CuSO <sub>4</sub> (NH | $I_4$ ) <sub>2</sub> SO <sub>4</sub> .6H <sub>2</sub> O at 13°-14°. |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------|

| Cubo         | 4.1-10.04.0           |              | •==••••   |              |                          | -3 -4 -      | (Fock.)   |
|--------------|-----------------------|--------------|-----------|--------------|--------------------------|--------------|-----------|
| Mols. per 10 | oo Mols. HgO          | Mol. per cer | nt K Salt | Mols. per 10 | o Mols. H <sub>2</sub> O | Mol. per ce  | nt K Salt |
| K. Salt.     | NH <sub>4</sub> Salt. | in Solution. | in Solid. | K Salt.      | NH4 Salt.                | in Solution. | in Solid. |
| 0.00         | 1.035                 | 0.00         | 0.00      | 0.2946       | 0.5096                   | 36.63        | 58.20     |
| 0.0897       | 0.8618                | 5.06         | 10.34     | 0.3339       | 0.3319                   | 50.15        | 75.34     |
| 0.2269       | 0.6490                | 16.76        | 33.05     | 0.4560       | 0.1961                   | 69.93        | 83.86     |
| 0.2570       | 0.5887                | 30.40        | 46.22     | 0.4374       | 0.00                     | 100.00       | 100.00    |

SOLUBILITY OF SOME POTASSIUM DOUBLE SULPHATES IN WATER AT 25°. (Locke – Am. Ch. J. 27, 459, '01.)

| Double Salt. |           |            | Formula.                     | Gms. Anhydrous Salt<br>per 100 Gms. H <sub>2</sub> O. |  |
|--------------|-----------|------------|------------------------------|-------------------------------------------------------|--|
| Potassium    | Cobalt St | ulphate    | K,CO(SO <sub>4</sub> ),.6H,O | 12.88                                                 |  |
| "            | Copper    | <b>~</b> ~ | $K_2Cu(SO_4)_2.6H_2O$        | 11.69                                                 |  |
| "            | Nickel    | "          | K,Ni(SO,),.6H,O              | 6.88                                                  |  |
| "            | Zinc      | "          | $K_2Zn(SO_4)_2.6H_2O$        | 13.19                                                 |  |

#### SOLUBILITY OF POTASSIUM NICKEL SULPHATE AND ALSO OF POTASSIUM ZINC SULPHATE IN WATER AT DIFFERENT TEMPERATURES.

|             | Grams per 10         | o Gms. H <sub>2</sub> O.                                                |     | Grams per 100 Grams H <sub>2</sub> O. |                                                                         |  |
|-------------|----------------------|-------------------------------------------------------------------------|-----|---------------------------------------|-------------------------------------------------------------------------|--|
| <b>t°</b> . | K2Ni(SO4)2<br>.6H2O. | K <sub>2</sub> Zn(SO <sub>4</sub> ) <sub>2</sub><br>.6H <sub>2</sub> O. | t°. | K2Ni(SO4)2<br>.6H2O.                  | K <sub>2</sub> Zn(SO <sub>4</sub> ) <sub>2</sub><br>.6HO <sub>2</sub> . |  |
| ο           | 6                    | 13                                                                      | 40  | 23                                    | 45                                                                      |  |
| 10          | 9                    | 19                                                                      | 50  | 28                                    | 56                                                                      |  |
| 20          | 14                   | 26                                                                      | 60  | 35                                    | 72                                                                      |  |
| 25          | 16                   | 30                                                                      | 70  | 43                                    | 88                                                                      |  |
| 30          | 18                   | 35                                                                      |     |                                       |                                                                         |  |

#### Solubility of the Three Hydrates of Potassium Ferro Sulphate in Water at Different Temperatures.

(Kuster and Thiel - Z. anorg. Ch. 21, 116, '99.)

|        | K2SO4.FeSO4.6H2O.                                     |                                                                               | K2SO4 FeS                                 | 04-4H2O.                                                                      | K2SO4 FeSO4 2H2O.                       |                                                     |
|--------|-------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------|
| t°.    | cc. N/ 10 K MnO <sub>4</sub><br>per 2cc.<br>Solution. | Gms. K <sub>2</sub> SO <sub>4</sub><br>.FeSO <sub>4</sub> per<br>100 cc. Sol. | cc. N/10 K MnO4<br>per 2 cc.<br>Solution. | Gms. K <sub>2</sub> SO <sub>4</sub><br>.FeSO <sub>4</sub> per<br>100 cc. Sol. | cc. N/10 KMnU<br>per 2 cc.<br>Solution. | Gms. K <sub>2</sub> SO<br>FeSO4 per<br>100 cc. Sol. |
| 0.5    | 12.4                                                  | 18.36                                                                         | 15.5                                      | 22.94                                                                         | 15.4                                    | 22.79                                               |
| 17.2   | 17.0                                                  | 25.16                                                                         | 18.1                                      | 26.79                                                                         | 21.6                                    | 31.98                                               |
| 40 · I | 24 .8                                                 | 36.72                                                                         | 21.9                                      | 32.41                                                                         | 27.6                                    | 40.86                                               |
| 60     | 29.0                                                  | 42.93                                                                         | 24 . I                                    | 35.68                                                                         | 28.8                                    | 42.63                                               |
| 8o     | 30.6                                                  | 45 . 29                                                                       | 27 . 3                                    | 40.46                                                                         | 28.6                                    | 42.34                                               |
| 90     | •••                                                   | • • •                                                                         | 2ġ.6                                      | 43.82                                                                         | 28.9                                    | 42.73                                               |
| 95     | •••                                                   | •••                                                                           | 29.8                                      | 44.11                                                                         | 27.7                                    | 4I .OI                                              |

### 263 POTASSIUM SULPHATE

#### Solubility of Potassium Sulphate in Aqueous Solutions of Potassium Chloride, Bromide, and Iodide.

(Blarez - Compt. rend. 112, 939, '91.)

Interpolated from the original results.

.

| Grams Halogen                 | Grams K <sub>S</sub> SO <sub>4</sub> per 100 cc. in Aq.<br>Solutions of: |                |                 |  |  |  |
|-------------------------------|--------------------------------------------------------------------------|----------------|-----------------|--|--|--|
| Salt per 100<br>cc. Solution. | KCl<br>at 12.5°.                                                         | KBr<br>at 14°. | KI<br>at 12.5°. |  |  |  |
| 0                             | 9.9                                                                      | 10.16          | 9.9             |  |  |  |
| 2                             | 8.3                                                                      | 9.I            | 9.2             |  |  |  |
| 4                             | 7.O                                                                      | 8.2            | 8.4             |  |  |  |
| 6                             | 5.7                                                                      | 7 · 4          | 7.7             |  |  |  |
| 8                             | 4.6                                                                      | 6.6            | 7.2             |  |  |  |
| 10                            | 3.5                                                                      | 6.0            | 6.6             |  |  |  |
| 12                            | •••                                                                      | 5.5            | 6.0             |  |  |  |

#### SOLUBILITY OF MIXED CRYSTALS OF POTASSIUM SULPHATE AND POTASSIUM CHROMATE AT 25°. (Fock - Z. Kryst. Min. 28, 379, '97.)

| Milligram 1 | Mols. per Liter. | Grams p | er Liter.    | Mol. per cent                                  | Sp. Gr.<br>of   | Mol. per cent                                                      |
|-------------|------------------|---------|--------------|------------------------------------------------|-----------------|--------------------------------------------------------------------|
| KaSO4.      | KrCrO4.          | K2SO4.  | KrCrO4.      | K <sub>2</sub> SO <sub>4</sub> in<br>Solution. | or<br>Solution. | Mol. per cent<br>K <sub>2</sub> SO <sub>4</sub> in<br>Solid Phase. |
| 618.1       | 0.0              | 107 . 7 | 0.00         | 100.0                                          | I.083           |                                                                    |
| 608.4       | 103              | 106.0   | 20.02        | 85.51                                          | I.092           | 99.65                                                              |
| 341.0       | 691.8            | 59.46   | 134.5        | 33.01                                          | 1.141           | 97.30                                                              |
| 174.8       | 1496 · O         | 30 . 47 | 290.5        | 10.50                                          | I . 23I         | 91 .97                                                             |
| 110.7       | 2523             | 19.30   | 490.5        | 4.21                                           | I.356           | 28 . 43                                                            |
| 100.6       | 2687             | 17.54   | 522.3        | 3.60                                           | I.377           | 2.4I                                                               |
| 0.0         | 2847             | 0.0     | 553.5        | 0.00                                           | I.398           | 0. <b>00</b>                                                       |
| 734.0       | 0.0              | 127.9   | 0.0          | <b>IOO</b> . O                                 | 1.0863          | 100.0                                                              |
| 617.0       | 103.4            | 107 .6  | 20 . I       | 85.65                                          | I.0934          | 99.78                                                              |
| 463         | 452.7            | 80.72   | <b>88</b> .0 | 55.55                                          | I . I 235       | 98.49                                                              |
| 279         | 948 · 2          | 48.64   | 184 . 4      | 22.72                                          | I.I700          | <b>96</b> .07                                                      |
| 153         | 1469             | 26.68   | 285.6        | 9.41                                           | I.2255          | 85.7 <b>7</b>                                                      |
| 296         | 2681             | 51.61   | 521.2        | 21.09                                          | I.3688          | 25.73                                                              |
| 0.0         | 2715             | 0.00    | 527.8        | 0.00                                           | 1.3781          | 0.00                                                               |

#### SOLUBILITY OF POTASSIUM SODIUM SULPHATES IN WATER.

| Double Salt.  | <b>\$*</b> . | Gms. per 100<br>Gms. H <sub>2</sub> O. | Authority.                             |
|---------------|--------------|----------------------------------------|----------------------------------------|
| 3K2SO4.Na2SO4 | 103.5        | 40.8                                   | (Penny - Phil. Mag. [4] 10, 401, '55.) |
| 5K2SO4.Na2SO4 | 4 · 4        | 9.2                                    | (Gladstone - J. Ch. Soc. 6, 11, '54.)  |
| "             | 12.7         | IO . I                                 | *                                      |
| "             | 100.0        | 25.0                                   | •                                      |

.

#### POTASSIUM SULPHATE 264

SOLUBILITY OF POTASSIUM SULPHATE IN AQUEOUS ALCOHOL. (Gerardin — Ann. chim. phys. [4] 5, 147, '65; Schiff — Liebig's Ann. 118, 362, '61.)

|      | lcohol of 0.939<br>=40 Wt. %.                                   |                                | ol of Different<br>ths at 15°.                                   |
|------|-----------------------------------------------------------------|--------------------------------|------------------------------------------------------------------|
| \$*. | Gms. K <sub>2</sub> SO <sub>4</sub><br>per 100 Gms.<br>Alcohol. | Weight<br>per cent<br>Alcohol. | Gms. K <sub>S</sub> SO <sub>6</sub><br>per 100 Gms.<br>Sat. Sol. |
| 40   | 0.16                                                            | IO                             | 3.90                                                             |
| 80   | 0.21                                                            | 20                             | 1.46                                                             |
| бо   | 0.92                                                            | 30                             | o.56                                                             |
|      |                                                                 | 40                             | 0.2I                                                             |

100 gms. glycerine of 1.255 Sp. Gr. dissolve 1.316 gms. K<sub>2</sub>SO<sub>4</sub> at ord. temp. (Vogel - Neues Report, Pharm. 16, 557 '67.)

SOLUBILITY OF POTASSIUM SULPHATE IN AQUEOUS ACETIC ACID AND IN AQUEOUS PHENOL SOLUTIONS AT 25°. (Rothmund and Wilsmore – Z. physik. Ch. 40, 619, '02.)

| In       | Aq. Ac   | etic Acid. |          | In                                | Aq. Phe | enol.            |        |
|----------|----------|------------|----------|-----------------------------------|---------|------------------|--------|
| Mols. pe | r Liter. | Grams pe   | r Liter. | Mols. per Li                      | ter.    | Grams per Liter. |        |
| CH COOH. | KaSO4.   | CH_COOH.   | K,SO4.   | C <sub>6</sub> H <sub>5</sub> OH. | K2SO4.  | C6H5OH.          | K2SO4. |
| 0.0      | 0.6714   | 0.0        | 117.0    | 0.0                               | 0.6714  | 0.0              | 117.0  |
| 0.07     | 0.6619   | 4.2        | 115.4    | 0.032                             | 0.6598  | 3.01             | 115.0  |
| 0.137    | 0.6559   | 8.22       | 114.4    | 0. <b>064</b>                     | 0.6502  | 6.02             | 113.3  |
| 0.328    | 0.6350   | 19.68      | 110.8    | 0.127                             | 0.6310  | 11.94            | 110.0  |
| o · 578  | 0.6097   | 34.68      | 106.3    | 0.236                             | 0.6042  | 22.19            | 105.3  |
| 1.151    | 0.5556   | 69.06      | 96.87    | 0.308                             | 0.5834  | 28.97            | 101.7  |
| 2 . 183  | 0.4743   | 128.58     | 82.70    | 0.409                             | 0.5572  | 38.46            | 97.2   |
|          |          |            |          | 0.464                             | 0.5480  | 43.63            | 95.5   |
|          |          |            |          | o 498 (sat.)                      |         | 46.82            | 93.8   |

100 grams water dissolve 10.4 grams  $K_2SO_4$ + 219.0 grams sugar at 31.25°, or 100 grams sat. solution contain 3.18 grams  $K_2SO_4$ + 66.74 grams sugar. (Köhler – Z. Ver. Zuckerind. 47, 447, '97.)

#### POTASSIUM ACID SULPHATE KHSO,.

| Solubility                                           | IN WA       | TER.            |      |       |
|------------------------------------------------------|-------------|-----------------|------|-------|
| (Kremers — Liebig                                    | s' Ann. 92, | 497, '54.)      |      |       |
| t°                                                   | o°          | 20 <sup>0</sup> | 40°  | 1000  |
| Gms. KHSO <sub>4</sub> per 100 gms. H <sub>2</sub> O | 36.3        | 51.4            | 67.3 | 121.6 |

#### POTASSIUM PERSULPHATE K2S2O2.

100 gms. H<sub>2</sub>O dissolve 1.77 gms.  $K_2S_2O_8$  at 0°.

(Marshall - J. Ch. Soc. 59, 771, '91.)

#### POTASSIUM SODIUM THIOSULPHATE KNaS<sub>2</sub>O<sub>3.2</sub>H<sub>2</sub>O.

#### **POTASSIUM SODIUM HYDROGEN SULPHITE** KNa<sub>2</sub>H(SO<sub>3</sub>)<sub>2</sub>. 4H<sub>2</sub>O.

100 grams  $H_2O$  dissolve 213.7 grams  $KNaS_4O_4.2H_2O$  (a) at 15°. 100 grams  $H_2O$  dissolve 205.3 grams  $KNaS_2O_4.2H_2O$  (b) at 15°. 100 grams  $H_4O$  dissolve 69.0 grams  $KNa_2H(SO_4)_2.4H_4O$  at 15°. (Schwicker – Ber. 22, 1731, '89.)

#### 265 POTASSIUM SULPHO-CYANIDE.

#### POTASSIUM SULPHOCYANIDE KSCN.

100 grams H<sub>2</sub>O dissolve 177.2 grams KSCN at 0°, and 217.0 grams at 20°. (Rûdorff – Ber. 2, 68, '69.)

SOLUBILITY OF POTASSIUM SULPHOCYANIDE IN ACETONE, AMYL Alcohol, etc.

(von Laszcynski - Ber. 27, 2285, '94.)

| I   | n Acetone.                                                       | In A  | myl Alcohol.                          | In  | Ethyl Aceta                                                                     | ate. | In Pyridine.                        |
|-----|------------------------------------------------------------------|-------|---------------------------------------|-----|---------------------------------------------------------------------------------|------|-------------------------------------|
| t°. | Gms. KSCN per<br>100 Gms.<br>(CH <sub>a</sub> ) <sub>2</sub> CO. | t°. ( | Gms. KSCN per<br>100 Gms.<br>CsH110H. | t°. | Gms. KSCN per<br>100 Gms.<br>CH <sub>3</sub> COOC <sub>2</sub> H <sub>5</sub> . | t°.  | Gms. KSCN per<br>100 Gms.<br>C5H5N. |
| 22  | 20.75                                                            | 13    | 0.18                                  | 0   | 0.44                                                                            | 0    | 6.75                                |
| 58  | 20.40                                                            | 65    | 1.34                                  | 14  | 0.40                                                                            | 20   | 6.15                                |
| -   |                                                                  | 100   | 2.14                                  | 79  | 0.20                                                                            | 58   | 4.97                                |
|     |                                                                  | 133.5 | 3.15                                  |     |                                                                                 | 97   | 3.88                                |
|     |                                                                  |       |                                       |     |                                                                                 | 115  | 3.21                                |

#### POTASSIUM (Bi) TARTRATE (Mono) KHC, H.O. Cream of Tartar.

SOLUBILITY OF MONO POTASSIUM TARTRATE IN WATER.

(Alluard — Liebig's Ann. 133, 292, '65; Roelofsen — Am. Ch. J. 16, 466, '94; Blarez — Compt. rend. 112, 434, '91; at 20°, Magnanini — Gazz. chim. ital. 31, II, 542, '91; at 25°, Noyes and Clement — Z. physik. Ch. 13, 413, '94.)

| t°. |          | Gms. KHC4H4O6<br>per 100 Gms. Solution. | _         | t°. |      | Gms. Sol |      |
|-----|----------|-----------------------------------------|-----------|-----|------|----------|------|
| 0   | 0.30(R.) | 0.32 (A.)                               | 0.35 (B.) | 40  | 0.96 | 1.3      | 1.29 |
| 10  | 0.37     | 0.40                                    | 0.42      | 50  | 1.25 | 1.8      | 1.80 |
| 20  | 0.49     | 0.53 (M.)                               | 0.60      | 60  |      | 2.4      |      |
| 25  | 0.58     | 0.654 (N. and C.)                       | 0.74      | 80  |      | 4.4      |      |
| 30  | 0.69     | 0.9 (A.)                                | 0.89      | 100 |      | 6.5      |      |

#### Solubility of Potassium Acid Tartrate (KHC4H4O6) in Normal Solutions of Acids at 20°.

#### (Ostwald; Huecke - J. pr. Ch. [2] 29, 49, '84.)

Purified tartrate was added in excess to normal solutions of the acids, and after shaking clear 1 cc. portions of each solution were withdrawn and titrated with approximately N/10 Ba(OH)<sub>2</sub> solution; 1 cc. normal acid requiring 10.63 cc. of the Ba(OH)<sub>2</sub> solution.

| Acid.                            | Gms.<br>Acid<br>per 100 cc.<br>Solvent. | cc. N/10<br>Ba(OH) <sub>2</sub><br>per 1 cc.<br>Solution. | Gms.<br>KHC4H4O6<br>per 100 cc.<br>Solution. | Acid.                                                | Gms.<br>Acid<br>per 100 cc.<br>Solvent. | cc. N/10<br>Ba(OH) <sub>2</sub> K<br>per 1 cc. 1<br>Solution. | per ico cc |
|----------------------------------|-----------------------------------------|-----------------------------------------------------------|----------------------------------------------|------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------|------------|
| HNO,                             | 6.31                                    | 5.77*                                                     | 10.21                                        | C2HSO3H                                              | II.O                                    | 5.01*                                                         | 8.87       |
| HCI                              | 3.65                                    | 5.32                                                      | 9.42                                         | HO.(CH <sub>2</sub> ) <sub>2</sub> SO <sub>3</sub> H | 12.61                                   | 5.33                                                          | 9.43       |
| HBr                              | 8.10                                    | 5.38                                                      | 9.75                                         | C.H.SO.H                                             | 15.81                                   | 5.25                                                          | 9.29       |
| HI                               | 12.80                                   | 5.43                                                      | 9.61                                         | HCOOH                                                | 4.60                                    | 0.45                                                          | 0.80       |
| H2SO4                            | 4.90                                    | 3.97                                                      | 7.03                                         | CH <sub>3</sub> COOH                                 | 6.00                                    | 0.27                                                          | 0.48       |
| HCH <sub>3</sub> SO <sub>4</sub> | 11.21                                   | 5.58                                                      | 12.44                                        | CH <sub>2</sub> ClCOOH                               | 9.45                                    | I.OI                                                          | 1.79       |
| HC2HSO4                          |                                         | 5.4I                                                      | 9.58                                         | C <sub>2</sub> H <sub>s</sub> COOH                   | 7.40                                    | 0.24                                                          | 0.42       |
| HC3H7SO4                         | 14.01                                   | 5.21                                                      | 9.22                                         | C <sub>a</sub> H <sub>7</sub> COOH                   | 8.81                                    | 0.23                                                          | 0.41       |

• The figures in this column show the amount of the Ba(OH)<sub>2</sub> solution in excess of that which would have been required by the normal acid solution alone in each case, viz., to.63 cc. They, therefore, correspond to the amount of KHC<sub>4</sub>H<sub>2</sub>O<sub>6</sub> dissolved in r cc. of each saturated solution, and when multiplied by 1.77give the grams of KHC<sub>4</sub>H<sub>2</sub>O<sub>6</sub> per 100 cc. solution.

#### POTABSIUM TARTRATE. 266

## Solubility of Mono Potassium Tartrate ( $KHC_4H_4O_4$ ) in Aqueous Solutions of Electrolytes at 25°.

(Noyes and Clement - Z. physik. Ch. 13, 413, '94; Magnanini - Gazz. chim. ital. 31, II, 542, '01.)

| Electro- | Gms. H<br>per I   | iquiv.        | Gms<br>100        |              | Electro-                           | Gm. )<br>per I    | Equiv.<br>.iter | Gram<br>100       |                |
|----------|-------------------|---------------|-------------------|--------------|------------------------------------|-------------------|-----------------|-------------------|----------------|
| lyte.    | Electro-<br>lyte. | KHC4<br>H4O6. | Electro-<br>lyte. | KHC.<br>H.O. | lyte.                              | Electro-<br>lyte. | KHC4<br>H4O6.   | Electro-<br>lyte. | KHC.<br>H.O.   |
| KCl      | 0.025             | 0.0254        | 1.86 I            | 0.4788       | CH <sub>2</sub> COOK               | 0.05              | 0.0410          | 4.91              | 0.7718         |
| "        | 0.05              | 0.0196        | 3.73              | 0.3680       | uĩ.                                | 0.10              | 0.0504          | 9.82              | o-948 <b>6</b> |
| **       | 0.10              | 0.0133        | 7.46              | 0.2500       | "                                  | 0.20              | 0.0634          | 19.63             | 1.1930         |
| **       | 0.20              | 0.0087        | 14.92             | 0.1636       | KHSO4 (20°)                        | 0.01              | 0.0375          | 1.36              | 0.706          |
| KClO,    | 0.025             | 0.0256        | 3.06              | 0.4821       | "                                  | 0.02              | 0.0500          | 2.72              | 0.941          |
| "        | 0.05              | 0.0197        | ŏ.13              | 0.3716       | "                                  | 0.10              | 0.1597          | 13.62             | 3.000          |
| "        | 0.10              | 0.0138        |                   | 0.2601       | KHC:04 (20°                        | 10.01             | 0.0369          | 1.28              | 0.694          |
| "        | 0.20              | 0.0002        | 24.52             | 0.1728       | "                                  | 0.02              | 0.0424          | 2.56              | 0.798          |
| KBr      | 0.05              | 0.0197        | 5.95              | 0.3600       | "                                  | 0.10              | 0.1132          | 12.82             | 2.130          |
| "        | 0.10              | 0.0134        | 11.01             | 0.2517       | HCl                                | 0.013             | 0.0367          | 0.45              | 0.690          |
| "        | 0.20              | 0.0087        | 23.82             | 0.1629       | "                                  | 0.025             | 0.0428          | 0.91              | 0.806          |
| KI       | 0.05              | 0.0196        | 8.30              | 0.3687       | "                                  | 0.050             | 0.0589          | 1.82              | 1.109          |
| "        | 0.10              | 0.01 32       | 16.61             | 0.2492       | NaCl                               | 0.05              | 0.0376          | 2.92              | 0.708          |
| **       | 0.20              | 0.0086        | 33.22             | 0.1619       | "                                  | 0.10              | 0.0397          | 5.85              | 0.748          |
| KNO,     | 0.05              | 0.0195        | 5.06              | 0.3676       | "                                  | 0.20              | 0.0428          | 11.70             | 0.805          |
| "        | 0.10              | 0.0136        | 10.12             | 0.2551       | NaClO <sub>2</sub>                 | 0.05              | 0.0382          | 5.32              | 0.718          |
| "        | 0.20              | 0.0000        | 20.24             | 0.1696       | "                                  | 0.10              | 0.0405          | 10.65             | 0.763          |
| K,SO4    | 0.05              | 0.0208        | 4.36              | 0.3921       | "                                  | 0.20              | 0.0446          | 21.30             | 0.840          |
| -        | 0.10              | 0.0147        | 8.72              | 0.2769       | <ul> <li>Acid potassium</li> </ul> | oxalate.          |                 | •                 |                |
| "        | 0.20              | 0.0100        |                   | 0.1881       |                                    |                   |                 |                   |                |

#### Solubility of Mono Potassium Tartrate in Aqueous Alcohol Solutions.

(Roelofsen — Am. Ch. J. 16, 466, '94; Wenger — Ibid. 14, 624, '92.)

Note. — The original results were plotted on cross-section paper and the following figures read from the curves.

| <b>t°</b> . |           | Milligrams KHC <sub>4</sub> H <sub>4</sub> O <sub>6</sub> per 10 cc. of Aq. Alcohol of: |                 |                 |                 |                 |  |  |  |  |  |  |
|-------------|-----------|-----------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|--|--|--|--|--|--|
| • ·         | per cent. | 20<br>per cent.                                                                         | 30<br>per cent. | 40<br>per cent. | 60<br>per cent. | 80<br>per cent. |  |  |  |  |  |  |
| 0           | 17        | II                                                                                      | 7               | 6               | 6               | 6               |  |  |  |  |  |  |
| 10          | 22        | 14                                                                                      | 8               | 7               | 6               | 6               |  |  |  |  |  |  |
| 20          | 29        | 18                                                                                      | 11              | 8               | 6               | 6               |  |  |  |  |  |  |
| 25          | 34        | 21                                                                                      | 12              | 9.5             | 6.5             | 5 - 5           |  |  |  |  |  |  |
| 30          | 40        | 25                                                                                      | 13              | 11              | 7               | 5.5             |  |  |  |  |  |  |
| 40          | 55        | 36                                                                                      | 19              | 14              | 7 · 5           | 5               |  |  |  |  |  |  |
| 50          | 87        | 55                                                                                      | 29              | 19              | 8               | 5               |  |  |  |  |  |  |

#### POTASSIUM FLUO TITANATE K2TiF.H2O.

#### SOLUBILITY IN WATER.

(Marignac - Ann. chim. phys. [4] 8, 65, '66.)

| t°                                                                 | ° | 3° | 6° | 10 <sup>0</sup> | 14° | 20 <sup>0</sup> |
|--------------------------------------------------------------------|---|----|----|-----------------|-----|-----------------|
| Gms. K <sub>2</sub> TiF <sub>6</sub> per 100 gms. H <sub>2</sub> O |   |    |    |                 |     |                 |

#### 267 POTASSIUM VANADATE

#### POTASSIUM VANADATE K3V5O14.5H2O.

100 grams H<sub>2</sub>O dissolve 19.2 grams at 17.5°.

(Radan - Liebig's Ann. 251, 120, '89.)

#### POTASSIUM ZINC VANADATE KZnV,014.8H2O.

100 grams H<sub>2</sub>O dissolve 0.41 gram of the salt (Radan).

#### PRASEODYMIUM SULPHATE Pr2(SO4)3.

SOLUBILITY IN WATER.

(Muthmann and Rölig - Ber. 31, 1727, '98.)

| t". | Gms. Pr<br>per 100 |        | Solid          | t°. | Gms. Pr<br>per 100 |        | Solid            |
|-----|--------------------|--------|----------------|-----|--------------------|--------|------------------|
|     | Solution.          | Water. | Phase.         |     | Solution.          | Water. | Phase.           |
| 0   | 16.5               | 19.8   | Pr2(SO4)3.8H2O | 75  | 4.0                | 4.2    | Pr2(SO4)3.8H2O   |
| 18  | 12.3               | 14.1   |                | 85  | 1.5                | 1.55   | Pr2(SO4)3.8H2O + |
| 35  | 9.4                | 10.4   |                |     |                    |        | Pr2(SO4)3.5H2O   |
| 55  | 6.6                | 7.I    |                | 95  | I.0                | 10.I   | Pr2(SO4)3.5H2O   |

#### PROPIONIC ALDEHYDE C.H.COH.

100 grams H<sub>2</sub>O dissolve 16 grams aldehyde at 20°.

(Vaubel - J. pr. Ch. 59, 30, '99.)

#### PROPIONITRIL C2H,CN.

SOLUBILITY IN WATER.

Synthetic method used. See Note, page 9.

|     | Wt. per cent  | C2H5CN in:       |          | Wt. per cen    | t C2H5CN in:     |
|-----|---------------|------------------|----------|----------------|------------------|
| t°. | Aq.<br>Layer. | C2H5CN<br>Layer. | t°.      | Aq.<br>Layer.  | C2H5CN<br>Layer. |
| 40  | 10.7          | 92.I             | 95       | 19.6           | 78.0             |
| 50  | 11.6          | 90.5             | 100      | 22.4           | 75.5             |
| 60  | 12.7          | 88.5             | 105      | 26.0           | 72.1             |
| 70  | 13.2          | 86.1             | IIO      | 32.0           | 66.5             |
| 80  | 14.9          | 83.4             | 113.1 (c | rit. temp.) 48 | 3.3              |
| 90  | 17.6          | 80.2             |          |                |                  |

### PROPYL ACETATE, Butyrate and Propionate.

SOLUBILITY OF EACH IN AQUEOUS ALCOHOL MIXTURES. (Bancroft - Phys. Rev. 3, 205, '95, calc. from Pfeiffer.)

|                                 |                  | led to Cause Se   | eparation * in:     |                                 | cc. H <sub>2</sub> O Ad | cc. H2O Added to cause Separation * in: |                     |  |  |
|---------------------------------|------------------|-------------------|---------------------|---------------------------------|-------------------------|-----------------------------------------|---------------------|--|--|
| cc. Alco-<br>hol in<br>Mixture. | P. Ace-<br>tate. | P. Buty-<br>rate. | P. Propio-<br>nate. | cc. Alco-<br>hol in<br>Mixture. | P. Ace-<br>tate.        | P. Buty-<br>rate.                       | P. Propio-<br>nate. |  |  |
| 3                               | 4.50             | 1.19              | 1.58                | 21                              | 58.71                   | 19.68                                   | 27.83               |  |  |
| 36                              | 10.48            | 3.55              | 4.70                | 24                              | 00                      | 23.72                                   | 33.75               |  |  |
| 9                               | 17.80            | 6.13              | 8.35                | 30                              |                         | 32.10                                   | 47.15               |  |  |
| 12                              | 26.00            | 9.05              | 12.54               | 36                              |                         | 41.55                                   | 63.18               |  |  |
| 15                              | 35.63            | 12-31             | 17.15               | 42                              |                         | 51.60                                   | 83.05               |  |  |
| 18                              | 47.50            | 15.90             | 22.27               | 48                              |                         | 62.40                                   | 107.46              |  |  |
|                                 |                  |                   |                     | 54                              |                         | 73 85                                   |                     |  |  |

 cc. H<sub>2</sub>O added to cause the separation of a second phase in mixtures of the given amounts of alcohol and 3 cc. portions of propyl acetate, butyrate and propionate.

#### PROPYL ACETATE

SOLUBILITY OF PROPYL ACETATE, FORMATE, AND PROPIONATE IN WATER.

268

100 cc. H<sub>2</sub>O dissolve 1.7 gms. propyl acetate at 22°. 100 cc. H<sub>2</sub>O dissolve 2.1 gms. propyl formate at 22°. (Traube – Ber. 17, 2304, '84.) 100 cc. H<sub>2</sub>O dissolve 0.6 cc. propyl propionate at 25°. (Bancroft.)

#### **PROPYL OHLOBIDE**, Bromide, etc.

#### SOLUBILITY IN WATER.

(Rex - Z. physik. Ch. 55, 355, '06.)

|                                                             | Grams P. Compound per 100 Gms. H <sub>2</sub> O at: |       |       |       |  |  |
|-------------------------------------------------------------|-----------------------------------------------------|-------|-------|-------|--|--|
| Propyl Compound.                                            | °°.                                                 | 10°.  | 20°.  | 30°.  |  |  |
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> Cl (normal) | o.376                                               | 0.323 | 0.272 | 0.277 |  |  |
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> Br "        | 0.298                                               | 0.263 | 0.245 | 0.247 |  |  |
| CH,CH,CH,I "                                                | 0.114                                               | 0.103 | 0.107 | 0.103 |  |  |
| (CH <sub>3</sub> ) <sub>2</sub> CHCl (iso)                  | 0.440                                               | 0.363 | 0.305 | 0.304 |  |  |
| (CH <sub>3</sub> ) <sub>2</sub> CHBr "                      | 0.418                                               | 0.365 | 0.318 | 0.318 |  |  |
| (CH <sub>3</sub> ) <sub>2</sub> CHI "                       | 0.167                                               | 0.143 | 0.140 | 0.134 |  |  |

#### **PROPYLENE** C<sub>3</sub>H<sub>6</sub>. Solubility in Water.

(Than - Liebig's Ann. 123, 187, '62.)

| t°. | β.     | q.              |
|-----|--------|-----------------|
| 0   | 0.4465 | o. <b>08</b> 34 |
| 5   | 0.3493 | 0.06504         |
| 10  | 0.2796 | 0.0519          |
| 15  | 0.2366 | 0.0437          |
| 20  | 0.2205 | 0.0405          |

For values of  $\beta$  and q, see Ethane, page 133.

#### PYRENE C<sub>16</sub>H<sub>10</sub>

SOLUBILITY IN TOLUENE AND IN ABSOLUTE ALCOHOL.

100 gms. toluene dissolve 16.54 gms. pyrene at 18°. 100 gms. absolute alcohol dissolve 1.37 gms. pyrene at 10° and 3.08 gms. at b. pt.

#### PYROGALLOL C<sub>6</sub>H<sub>3</sub>(OH)<sub>3</sub> 1, 2, 3.

SOLUBILITY IN WATER, ETC. (U. S. P.)

.

100 gms. water dissolve 62.5 gms.  $C_6H_3(OH)_3$  at 25°. 100 gms. alcohol dissolve 100.0 gms.  $C_6H_3(OH)_3$  at 25°. 100 gms. ether dissolve 90.9 gms.  $C_6H_3(OH)_3$  at 25°.

#### QUININE

#### **QUININE** C<sub>20</sub>H<sub>24</sub>N<sub>2</sub>O<sub>2</sub>. (See also Cinchona alkaloids, p. 117.) Solubility of Quinine and of Quinine Salts in Water and Other Solvents.

(U. S. P.)

|                                        | Grams. Quinine Compound per 100 Grams Solvent in: |         |          |         |             |            |
|----------------------------------------|---------------------------------------------------|---------|----------|---------|-------------|------------|
| Compound.                              | V                                                 | Vater.  | Alcohol. | Ether.  | Chloroform. | Glycerine. |
|                                        | At 25°.                                           | At 80°. | At 250.  | At 25°. | At 25.      | At 25°.    |
| C20H24N2O2                             | 0.057                                             | 0.123   | 166.6    | 22.2    | 52.6        | 0.633      |
| C20H24N2O2.3H2O                        | 0.065                                             | 0.129   | 166.6    | 76.9    | 62.5        | 0.472      |
| C20H24N2O2HCl.H2O                      | 5.55                                              | 250.0   | 166.6    | 0.417   | 122.0       | 12.2       |
| C20H24.N2O2.2C6H4(OH),                 | 6.60                                              |         |          |         |             |            |
| COOH.H <sub>2</sub> O                  | 1.30                                              | 2.86    | 9.09     | 0.91    | 2.70        | 6.25       |
| $(C_{20}H_{24}N_2O_2)_2.H_2SO_4.7H_2O$ | 0.139                                             | 2.22    | 1.16     |         | 0.25        | 2.78       |
| C20H24N2O2.H2SO4.7H2O                  | 11.77                                             | 117.7   | 5.55     | 0.056   | 0.109       | 5.55       |
| C20H24N2O2.HBr.H2O                     | 2.5                                               | 33.3    | 149.2    | 6.2     |             | 12.5       |

#### SOLUBILITY OF QUININE IN AQUEOUS SOLUTIONS OF CAUSTIC ALKALIES. (Doumer and Deraux - J. pharm. chim. [6] 1, 50, '95.)

METHOD. — A one per cent solution of quinine sulphate containing a very small amount of HCl was gradually added to 200 cc. portions of the caustic alkali solutions of the various concentrations stated, and the point noted at which a precipitate of the appearance corresponding to that of I cc. of milk in 100 cc. of water, remained undissolved.

In Aq. Ammonia. In Aq. Sodium Hydrate. In Aq. Pot. Hydrate.

| Gms. NH3<br>per 200 cc.<br>Solution. | Gms. Anhydrous<br>Quinine<br>Dissolved. | Gms. NaOH<br>per 200 cc.<br>Solution. | Gms. Anhydrous<br>Quinine<br>Dissolved. | Gms. KOH<br>per 200 cc.<br>Solution. | Gms. Anhydrous<br>Quinine<br>Dissolved. |
|--------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|--------------------------------------|-----------------------------------------|
| 0.52                                 | 0.084                                   | 0.007                                 | 0.092                                   | 0.612                                | 0.088                                   |
| 0.65                                 | 0.084                                   | 0.012                                 | 100.0                                   | 1.512                                | 0.082                                   |
| 4.59                                 | 0.096                                   | 0.740                                 | 0.090                                   | 3.456                                | 0.068                                   |
| 13.08                                | 0-122                                   | 2.160                                 | 0.079                                   | 10.944                               | 0.039                                   |
| 18.88                                | 0.144                                   | 3.188                                 | 0.056                                   | 44.704                               | 0.006                                   |
| 25.19                                | 0.174                                   | 6.172                                 | 0.044                                   |                                      |                                         |
| 35.79                                | 0.184                                   | 8.537                                 | 0.021                                   |                                      |                                         |
|                                      |                                         | 17.074                                | 0.015                                   |                                      |                                         |
|                                      |                                         |                                       |                                         |                                      |                                         |

SOLUBILITY OF QUININE SALTS IN WATER. (Regnault and Willejean -- Chem. Centralb. 18, 252, '87.)

| Salt        | 0          | t°. | Gms. Salt per<br>100 Gms. H <sub>2</sub> O. | Salt.              | tº    | Gms. Salt per |
|-------------|------------|-----|---------------------------------------------|--------------------|-------|---------------|
| Brom Hydra  | te (basic) | 14  | 2.06                                        | Salicylate (basic) | 15    | 0.114         |
| "           | (neutral)  | 12  | 12.33                                       | Sulphate "         | 14    | 0.139         |
| **          | **         | 14  | 13.19                                       | ** **              | 16    | 0.153         |
| **          | **         | 16  | 14.79                                       | " "                | 18    | 0.160         |
| "           | "          | 15  | 14.20                                       | " (neutral)        | 15    | 8.50          |
| Chlor Hydra | te (basic) | 12  | 3.80                                        |                    | 17    | 8.90          |
| "           |            | 14  | 4.14                                        |                    | 18    | 9.62          |
| **          | **         | 15  | 4.25                                        | Valerate (basic)   | 12-16 | 2.59          |
| Lactate     | "          | 15  | 10.03                                       |                    |       |               |
| 44          | 46         | 37  | 16.18                                       |                    |       |               |

## RESORGINOL C.H.(OH), I, 3.

|     |                          |                                                     | Solubili                      | TY IN:                   |                              |                               |  |  |
|-----|--------------------------|-----------------------------------------------------|-------------------------------|--------------------------|------------------------------|-------------------------------|--|--|
|     | (Speyers —               | Water.<br>(Speyers — Am. J. Sci. [4] 14, 294, '02.) |                               |                          | Ethyl Alcohol.<br>(Speyers.) |                               |  |  |
| t°. | Sp. Gr. of<br>Solutions. | Gms.C <sub>6</sub> H <sub>4</sub> (O<br>Water.      | H)2 per 100 Gms.<br>Solution. | Sp. Gr. of<br>Solutions. | Gms. C4H4(O<br>Alcohol.      | H)2 per 100 Gms.<br>Solution. |  |  |
| 0   | I.IOI                    | 60                                                  | 37.5                          | 1.033                    | 210                          | 67.8                          |  |  |
| IO  | 1.118                    | 81                                                  | 44.8                          | 1.036                    | 223                          | 69.0                          |  |  |
| 20  | I.I34                    | 103                                                 | 50.7                          | I.04I                    | 236                          | 70.3                          |  |  |
| 25  | I.142                    | 117                                                 | 53.9                          | I.045                    | 243                          | 70.8                          |  |  |
| 30  | 1.148                    | 131                                                 | 56.7                          | 1.048                    | 250                          | 7I.4                          |  |  |
| 40  | 1.157                    | 101                                                 | 58.9                          | 1.056                    | 266                          | 72.7                          |  |  |
| 50  | 1.165                    | 198                                                 | 66.5                          | 1.065                    | 286                          | 74 · I                        |  |  |
| 60  | I.172                    | 246                                                 | 71.1                          | 1.075                    | 311                          | 75.7                          |  |  |
| 70  | 1.176                    | 320                                                 | 76.2                          | 1.087                    | 341                          | 77.3                          |  |  |
| 8o  | 1.179                    | 487                                                 | 82.9                          | I . IO4                  | 375                          | 78.9                          |  |  |

NOTE. — The original results of Speyers are given in terms of mols. per 100 mols. H<sub>2</sub>O. According to Vaubel, 100 gms. H<sub>2</sub>O dissolve 175.5 gms. C<sub>6</sub>H<sub>4</sub>(OH)<sub>2</sub>, or 100 gms. sat. solution contain 63.7 gms. at 20°. Sp. Gr. of sol. =1.1335. (J. pr. Ch. [2] 52, 73, '95.)

> Solubility of Resorcinol in Benzene. (Rothmund - Z. physik. Ch. 26, 475, '98.)

Synthetic method used. See Note, p. 9.

| <b>t°</b> . | Gms. C <sub>6</sub> H <sub>4</sub> ( | Gms. C <sub>6</sub> H <sub>4</sub> (OH) <sub>2</sub> per 100 Gms. |              | Gms. C <sub>6</sub> H <sub>4</sub> ( | Gms. C <sub>6</sub> H <sub>4</sub> (OH) <sub>2</sub> per 100 Gms. |  |  |
|-------------|--------------------------------------|-------------------------------------------------------------------|--------------|--------------------------------------|-------------------------------------------------------------------|--|--|
| <b>U</b>    | CoHe Layer.                          | CoH4(OH)2 Layer.                                                  | <b>\$°</b> . | CoHe Layer.                          | CoH4(OH)2 Layer                                                   |  |  |
| 60          | 4.8                                  | 79·4                                                              | 90           | 13.0                                 | 71.3                                                              |  |  |
| 70          | 6.6                                  | 77.5                                                              | 100          | 19.5                                 | 65.7                                                              |  |  |
| 8o          | 9.2                                  | 75.0                                                              | 105          | 24.6                                 | 60.7                                                              |  |  |
|             |                                      |                                                                   | 109.3 (      | (crit. temp.)                        | 42.4                                                              |  |  |

#### DISTRIBUTION OF RESORCINOL BETWEEN WATER AND ORGANIC SOLVENTS AT ORDINARY TEMPERATURE. (Vaubel - J. pr. Ch. [2] 67, 478, '03.)

| Gms.               | (                                   | Gms. C <sub>6</sub> H <sub>4</sub> (OH) in: |                           |  |
|--------------------|-------------------------------------|---------------------------------------------|---------------------------|--|
| C6H4(OH)2<br>Used. | Solvents.                           | H2O Layer.                                  | Organic<br>Solvent Layer. |  |
| 1.191              | 60 cc. $H_2O + 30$ cc. Ether        | 0.2014                                      | o.9896                    |  |
| 1.191              | 60 cc. $H_2O + 60$ cc. Ether        | 0.2475                                      | 0.9525                    |  |
| o . 800            | 40 cc. $H_2O +$ 40 cc. Benzene      | o.5873                                      | 0 2127                    |  |
| 0.800              | 40 cc. $H_2O$ + 80 cc. Benzene      | 0.5773                                      | 0.2227                    |  |
| <b>0</b> .500      | 50 cc. $H_2O$ + 50 cc. $CCl_4$      | 0.4885                                      | 0.0115                    |  |
| 0 - 500            | 50 cc. $H_2O + 1\infty$ cc. $CCl_4$ | 0.4880                                      | 0.0120                    |  |
| 0 - 500            | 50 cc. $H_2O + 150$ cc. $CCl_4$     | 0.4880                                      | 0.0120                    |  |

#### **RHODIUM SALTS.** SOLUBILITY IN WATER.

| (Jorgensen — J. pr. Ch. [2] 2    | 7, 433, '83; <b>34,</b> 394, '86; 44, 51,                         | <b>'9</b> 1.) |                                       |
|----------------------------------|-------------------------------------------------------------------|---------------|---------------------------------------|
| Salt.                            | Formula.                                                          | t°.           | Gms. per 100<br>Gms. H <sub>2</sub> O |
| Chloro Purpureo Rhodium Chloride | ClRh(NH <sub>3</sub> ) <sub>5</sub> Cl <sub>2</sub>               | 17            | 0.56                                  |
| Luteo Rhodium Chloride           | Rh(NH <sub>3</sub> ),Cl <sub>3</sub>                              | 8             | 13.3                                  |
| Luteo Rhodium Nitrate            | Rh(NH <sub>3</sub> ) <sub>6</sub> (NO <sub>3</sub> ) <sub>3</sub> | ord. t.       | 2.1                                   |
| Luteo Rhodium Sulphate           | $[Rh(NH_a)_6]_2(SO_4)_3.5H_2O$                                    | 20            | 2.3                                   |

#### RUBIDIUM ALUMS.

#### SOLUBILITY IN WATER. (Locke – Am. Ch. J. 27, 174, '01.)

| Alum.             | P-1              | t°. | Gms. Alum per 100 Gms. H2O. |           |          |  |
|-------------------|------------------|-----|-----------------------------|-----------|----------|--|
| Alum.             | Formula.         | •   | Anhydrous.                  | Hydrated. | G. Mols. |  |
| Rb. Aluminum Alum | RbAl(SO,)2.12H2O | 25  | 1.81                        | 3.15      | 0.0059   |  |
| "                 |                  | 30  | 2.19                        |           | 3.0072   |  |
| **                | "                | 35  | 2.66                        |           | 0.0087   |  |
| **                | **               | 40  | 3.22                        | ***       | 0.0106   |  |
| Rb. Chromium Alum | RbCr(SO4)2.12H2O | 25  | 2.57                        | 4.34      | 0.0079   |  |
| "                 |                  | 30  | 3.17                        |           | 0.0006   |  |
|                   | **               | 35  | 4.11                        |           | 0.0128   |  |
| **                | 14               | 40  | 5.97                        |           | 0.0181   |  |
| Rb. Vanadium Alum | RbV(SO4)2.12H2O  | 25  | 5.79                        | 9.93      | 0.0177   |  |
| Rb. Iron Alum     | RbFe(SO4)2.12H2O | 25  | 9.74                        | 16.98     | 0.0294   |  |
| "                 |                  | 30  | 20.24                       |           | 0.0617   |  |

Biltz and Wilke (Z. anorg. Ch. 48, 299, 'o6) find for the solubility of rubidium iron alum in water, at  $6.6^{\circ}$ , 4.55 gms. per 100 cc. solution; at  $25^{\circ}$ , 29.0 gms.; and at  $40^{\circ}$ , 52.6 gms.

#### RUBIDIUM FLUOBORIDE RbBF.

100 gms. H<sub>2</sub>O dissolve 0.55 gm. RbBF<sub>4</sub> at 20°, and 1.0 gram at 100°. (Godeffroy – Ber. 9, 1337, '76.)

#### RUBIDIUM BROMIDE RbBr.

#### SOLUBILITY IN WATER. (Rimbach - Ber. 38, 1557, 'os.)

| t°.  | Gms. RbBr per 100 Gms. |           | t°.   | Gms. RbBr per 100 Gms. |           |  |
|------|------------------------|-----------|-------|------------------------|-----------|--|
|      | Water.                 | Solution. |       | Water.                 | Solution. |  |
| 0.5  | 89.6                   | 47.26     | 39.7  | 131.85                 | 56.87     |  |
| 5.0  | 98.0                   | 49.50     | 57.5  | 152.47                 | 60.39     |  |
| 16.0 | 104.8                  | 51.17     | 113.5 | 205.21                 | 67.24     |  |

#### RUBIDIUM CARBONATE Rb,CO.

100 gms. absolute alcohol dissolve 0.74 gm. Rb<sub>2</sub>CO<sub>3</sub>.

(Bunsen.)

#### RUBIDIUM CHLORATE RbClOs.

SOLUBILITY IN WATER. (Reissig – Liebig's Ann. 127, 33, '63.)

| t°.                                                    |     | 13.0°. |     |     |
|--------------------------------------------------------|-----|--------|-----|-----|
| Gms. RbClO <sub>3</sub> per 100 grams H <sub>2</sub> O | 2.8 | 3.9    | 4.9 | 5.1 |

#### RUBIDIUM (Per) CHLORATE RbClO.

100 grams H<sub>2</sub>O dissolve 1.08 grams RbClO, at 21.3°.

(Longuimine - Liebig's Ann. 121, 123, '62.)

#### RUBIDIUM CHLORIDE 272

#### **BUBIDIUM CHLORIDE** RbCl.

#### SOLUBILITY IN WATER.

(Rimbach - Ber. 35, 1304, 'oz; Berkeley - Trans. Roy. Soc. (Lond.) 203 A, 207, '04.)

| t°. | Mols. RbCl<br>per Liter. | Gms. RbCl ;<br>Water. | per 100 Gms.<br>Solution. | <b>t °</b> . | Mols. RbCl<br>per Liter. | Gms. RbCl )<br>Water. | per 100 Grms.<br>Solution. |
|-----|--------------------------|-----------------------|---------------------------|--------------|--------------------------|-----------------------|----------------------------|
| ο   | 5.17                     | 77.0                  | <b>43</b> · 5             | 60           | 6.90                     | 115.5                 | 53.6                       |
| 10  | 5.55                     | 84.4                  | 45.8                      | 70           | 7.12                     | 121.4                 | 54.8                       |
| 20  | 5 .88                    | 91.1                  | 47 · 7                    | 80           | 7 · 33                   | 127.2                 | 56.O                       |
| 30  | 6.17                     | 97.6                  | 49 • 4                    | 90           | 7.52                     | 133.1                 | 57 · I                     |
| 40  | 6.43                     | 103 . 5               | 50.9                      | 100          | 7.7I                     | 138.9                 | 58.9                       |
| 50  | 6.67                     | 109.3                 | 52.2                      | 112.9        | 7 • 95                   | 146.6                 | 59 · 5                     |

#### **RUBIDIUM TELLURIUM OHLORIDE** Rb<sub>2</sub>TeCl<sub>e</sub>.

100 gms. Aq. HCl of 1.2 Sp. Gr. dissolve 0.34 gm. Rb, TeCl, at 23°. 100 gms. Aq. HCl of 1.05 Sp. Gr. dissolve 13.09 gms. Rb, TeCl, at 23°. (Wheeler – Am. J. Sci. [3] 45, 267, '93.)

#### **RUBIDIUM THALLIUM CHLORIDE** 3RbClTlCl, 2H2O.

100 gms. H<sub>2</sub>O dissolve 13.3 gms. at 18°, and 62.5 gms. at 100°. (Godeffroy – Zeit. allgem. Öster. Apoth. No. 9, '80.)

#### **RUBIDIUM OHROMATE** (Mono) Rb<sub>2</sub>CrO<sub>4</sub>.

SOLUBILITY IN WATER.

(Schreinemaker and Filippo - Chem. Centralb. 77, I, 1321, '06.)

| <b>t°</b> . | Gms. RbCrO <sub>6</sub><br>per 100<br>Gms. Solution. | <b>t °</b> . | Gms. RbCrO <sub>6</sub><br>per 100<br>Gms. Solution. | <b>t °</b> . | Gms. RbCrO <sub>4</sub><br>per 100<br>Gms. Solution. |
|-------------|------------------------------------------------------|--------------|------------------------------------------------------|--------------|------------------------------------------------------|
| - 7         | 36.65                                                | 50           | <b>47</b> · <b>44</b>                                | - 2.40       | 15.58                                                |
| 0           | 38.27                                                | 60.4         | 48.90                                                | <u> </u>     | 20.03                                                |
| 10          | 40.23                                                | Solid 1      | Phase, Ice                                           | -4.14        | 24 . 28                                              |
| 20          | 42.42                                                | -o.6         | 6.95                                                 | - 5.55       | 30 . 15                                              |
| 30          | 44 · I I                                             | — I . I      | 7.22                                                 | -6.71        | 34.31                                                |
| 40          | 46.13                                                | — I · 57     | 9.87                                                 | about – 7    | 36.65                                                |

#### RUBIDIUM (Di) OHROMATE Rb<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>.

100 grams saturated aqueous solution contain 9.47 grams Rb<sub>2</sub>Cr<sub>2</sub>O, at 30°.

(Schreinemaker and Filippo.)

#### RUBIDIUM HYDROXIDE RbOH.

100 grams sat. aqueous solution contain 63.39 grams RbOH at 30°. (Schreinemaker and Filippo.)

#### **RUBIDIUM IODATE** RbIO<sub>3</sub>.

100 grams H<sub>2</sub>O dissolve 2.1 grams RbIO, at 23°.

. (Wheeler - Am. J. Sci. [3] 44, 123, '92.)

#### RUBIDIUM IODIDE RbI.

100 grams H<sub>2</sub>O dissolve 137.5 grams RbI at 6.9°, and 152.0 grams at 17.4°. (Reissig – Liebig's Ann. 127, 33. '63.)

SOLUBILITY OF RUBIDIUM IODIDE IN ORGANIC SOLVENTS. (Walden - Z. physik. Ch. 55, 713, 718, 'o6.)

273

| Solvent.     | Formula.                        | Grams RbI per 100 cc. Solution. |              |  |  |
|--------------|---------------------------------|---------------------------------|--------------|--|--|
| Acetonitril  | CH <sub>3</sub> CN              | 1.478 at 0°                     | 1.350 at 25° |  |  |
| Propionitril | C2H5CN                          | 0.274 "                         | 0.305 "      |  |  |
| Nitromethane | CH <sub>3</sub> NO <sub>2</sub> | 0.567 "                         | 0.518 "      |  |  |
| Acetone      | (CH <sub>3</sub> ),CO           | 0.960 "                         | 0.674 "      |  |  |
| Furfurol     | C4H3O.COH                       |                                 | 4.930 "      |  |  |

#### RUBIDIUM BROM IODIDE RbBr.I.

100 gms. sat. aq. solution contain about 44.0 gms. RbBr.I, and the Sp. Gr. of the solution is 3.84. (Wells and Wheeler - Am. J. Sci. [3] 43. 475, '92.)

RUBIDIUM NITRATE RbNO, SOLUBILITY IN WATER. (Berkeley - Trans. Roy. Soc. (Lond.) 203 A, 207, '04.)

| t°. | Mols.<br>RbNOa | Grams RbNO3 per 100 Gms. |           | t°.   | Mols.<br>RbNOs | Gms. RbNOa per 100 Gms |           |
|-----|----------------|--------------------------|-----------|-------|----------------|------------------------|-----------|
|     | Per Liter.     | Water.                   | Solution. | • •   | Per Liter.     | Water                  | Solution. |
| 0   | 1.27           | 19.5                     | 16.3      | 60    | 7.99           | 200                    | 66.7      |
| IO  | 2.04           | 33.0                     | 24.8      | 70    | 9:02           | 251                    | 71.5      |
| 20  | 3.10           | 53-3                     | 34.6      | 80    | 9.93           | 309                    | 75.6      |
| 30  | 4.34           | 81.3                     | 44.8      | 90    | 10.77          | 375                    | 78.9      |
| 40  | 5.68           | 116.7                    | 53.9      | 100 . | 11.54          | 452                    | 81.9      |
| 50  | 6.88           | 155.6                    | 60.9      | 118.3 | 12.76          | 617                    | 86.I      |

#### RUBIDIUM PERMANGANATE RbMnO.

One liter of aqueous solution contains 6.03 grams RbMnO4 at 7°. (Muthmann and Kuntze – Z. Kryst. Min. 23, 377, '94.) 100 cc. sat. aq. solution contain 0.46 gm. RbMnO4 at 2°, 1.06 gms. at 19° and 4.68 gms. at 60°. (Patterson - J. Am. Ch. Soc. 28, 1735, '06.)

#### RUBIDIUM SELENATE Rb.SeO.

100 grams H<sub>2</sub>O dissolve 158.9 grams Rb<sub>2</sub>SeO, at 12°.

(Tutton - J. Ch. Soc. 71, 850, '07.) RUBIDIUM FLUO SILICATE Rb,SiF.

100 gms. H<sub>2</sub>O dissolve 0.16 gm. Rb<sub>2</sub>SiF<sub>6</sub> at 0°, and 1.36 gms. at 100°. (Stolba - J. pr. Ch. 101, 1, '67.)

### RUBIDIUM SILICO TUNGSTATE Rb,SiW12O43.

- ables also falls and has Backalan . The

100 gms. H2O dissolve 0.65 gm. Rb,SiW12O42 at 20°, and 5.1 gms. at 100°. (Godeffroy - Ber. 9, 1363, '76.)

D ... C ... /T

RUBIDIUM SULPHATE Rb,SO4. SOLUBILITY IN WATER.

| £°. | Mols.<br>RbsSO4 |        |           | t°.   | Mols.<br>RbsSO4 | Gms. Rb2SO4 per 100 Gms |           |  |
|-----|-----------------|--------|-----------|-------|-----------------|-------------------------|-----------|--|
|     | per Liter.      | Water. | Solution. | • •   | per Liter.      | Water.                  | Solution. |  |
| 0   | 1.27            | 36.4   | 27.3      | 60    | 2.15            | 67.4                    | 40.3      |  |
| 10  | I.46            | 42.6   | 29.9      | 70    | 2.25            | 71.4                    | 41.7      |  |
| 20  | 1.64            | 48.2   | 32.5      | 80    | 2.34            | 75.0                    | 42.9      |  |
| 30  | 1.79            | 53.5   | 34.9      | 90    | 2.42            | 78.7                    | 44.0      |  |
| 40  | 1.92            | 58.5   | 36.9      | 100   | 2.49            | 81.8                    | 45.0      |  |
| 50  | 2.04            | 63.I   | 38.7      | 102.4 | 2.50            | 82.6                    | 45.2      |  |

#### RUBIDIUM SULPHATE 274

.

#### SOLUBILITY OF RUBIDIUM DOUBLE SULPHATES IN WATER AT 25°. (Locke – Am. Ch. J. 27, 459, 'or.)

|                                                                      | Per 100 cc. H2O.     |                                                                      | Per 100 cc. HgO.     |
|----------------------------------------------------------------------|----------------------|----------------------------------------------------------------------|----------------------|
| Formula.                                                             | Gms. Mols.           | Formula.                                                             | Gms. Mols.           |
| Rb,Cd(SO,),.6H,O                                                     | Anh. Salt. Salt.     | Rb,Mn(SO <sub>4</sub> ),.6H,O                                        | Anh. Salt. Salt.     |
|                                                                      | 76.7 0.1615          |                                                                      | 35.7 0.0857          |
| Rb,Co(SO,),.6H,O                                                     | 9.28 0.022           | $Rb_{2}Mg(SO_{4})_{2}.6H_{2}O$                                       | 20.2 0.0521          |
| Rb <sub>2</sub> Cu(SO <sub>4</sub> ) <sub>2</sub> .6H <sub>2</sub> O | 10.28 0.0241         | Rb <sub>2</sub> Ni(SO <sub>4</sub> ) <sub>2</sub> .6H <sub>2</sub> O | 5.98 0.0142          |
| Rb <sub>2</sub> Fe(SO <sub>4</sub> ) <sub>2</sub> .6H <sub>2</sub> O | 2 <b>4.28</b> 0.0579 | Rb <sub>2</sub> Zn(SO <sub>4</sub> ) <sub>2</sub> .6H <sub>2</sub> O | 10.10 0.02 <b>36</b> |

#### **SALICYLIC ACID** C<sub>6</sub>H<sub>4</sub>.OH.COOH 1:2.

#### SOLUBILITY IN WATER. (See also p. 61.)

(Average curve from the closely agreeing determinations of Walker and Wood — J. Ch. Soc. 73, 630, '08; at 26.4°, Philip — *Ibid.* 87, 002, '05; at 25°, Paul — Z, physik. Ch. 14, 111, '04; at 20°, Hoitsema — *Ibid.* 27, 315, '08; Hoffmann and Langbeck — *Ibid.* 51, 400, '05. For determinations not in good agreement with the following, see Alexejew — Ann. Physik. Chem. 28, 305, '86; Bourgion — Ann. chim. phys. [5] 15, 165, '78; Ost. — J. pr. Ch. [2] 17, 232, '78.)

| t°. | Gms.<br>CeH4OHCOOH<br>per<br>Liter Solution. | t°. | Gms.<br>C <sub>6</sub> H <sub>4</sub> OH.COOH<br>per<br>Liter Solution. | t°. | Gms.<br>CeH4OH.COOH<br>per<br>Liter Solution. |
|-----|----------------------------------------------|-----|-------------------------------------------------------------------------|-----|-----------------------------------------------|
| 0   | o.8                                          | 25  | 2.2                                                                     | 60  | 8.2                                           |
| IO  | I.2                                          | 30  | 2.7                                                                     | 70  | 13.2                                          |
| 20  | <b>1</b> .8                                  | 40  | 3.7                                                                     | 80  | 20.5                                          |
|     |                                              | 50  | 5.4                                                                     |     |                                               |

SOLUBILITY OF SALICYLIC ACID (LIQUID) IN WATER. (Alexejew.)

Determinations by Synthetic Method. See Note, page 9. Figures read from curve.

|           | Gms. C <sub>6</sub> H <sub>4</sub> OHCOOH<br>per 100 Gms. |                          |  |  |  |  |  |  |
|-----------|-----------------------------------------------------------|--------------------------|--|--|--|--|--|--|
| t°.       | Aqueous<br>Layer                                          | Salicylic Acid<br>Laver. |  |  |  |  |  |  |
| 60        | 7                                                         | 68                       |  |  |  |  |  |  |
| 70        | 8                                                         | 64                       |  |  |  |  |  |  |
| 70<br>80  | 12                                                        | 58                       |  |  |  |  |  |  |
| 90        | 19                                                        | 49                       |  |  |  |  |  |  |
| 95 (crit. | temp.)                                                    | 32                       |  |  |  |  |  |  |

#### SOLUBILITY OF SALICYLIC ACID IN AQUEOUS SALT SOLUTIONS AT 25° AND AT 35°.

| (Hoffmann and Langbeck Z. physik. Ch. 51, 407, '05.) |                      |                  |                                                         |                                   |  |  |  |  |  |  |
|------------------------------------------------------|----------------------|------------------|---------------------------------------------------------|-----------------------------------|--|--|--|--|--|--|
| Salt.                                                | Normality<br>of Salt | Gms.<br>Salt per | CaHaOHCOOH<br>dissolved at 25°.                         | CeH4.OH.COOH<br>dissolved at 35°. |  |  |  |  |  |  |
| 0                                                    | Solution.            | Liter.           | Gms. per 1000 G. Molecula<br>gms. Sat. Sol. percentage. | gms. Sat. Sol. percentage.        |  |  |  |  |  |  |
|                                                      | 0.0                  | 0.0              | 2.206 2.8851                                            | 3.197                             |  |  |  |  |  |  |
| KCl                                                  | 0.020                | I.49             | 2.24 2.9216.1                                           | 0 3.23 4.2206.10                  |  |  |  |  |  |  |
| "                                                    | 0.100                | 7.46             | 2.25 2.9377                                             | " 3.23 4.2203 "                   |  |  |  |  |  |  |
| "                                                    | 0.492                | 36.73            | 2.02 2.6321                                             | " 3.01 3.9268 "                   |  |  |  |  |  |  |
| "                                                    | I 004                | 74.92            | 1.89 2.4759                                             | " 2.68 3.5003 "                   |  |  |  |  |  |  |
| KNO <sub>3</sub>                                     | 0.020                | 2.02             | 2.25 3.9351                                             | " 3.25 4.2499 "                   |  |  |  |  |  |  |
| "                                                    | 0 . 100              | IO . I 2         | 2.30 3.0103                                             | " 3.32 4.3334 "                   |  |  |  |  |  |  |
| "                                                    | 0.504                | 51.10            | 2.38 3.1061                                             | " 3.38 4.4123 "                   |  |  |  |  |  |  |
| "                                                    | I.004                | 101.60           | 2.39 3.1249                                             | " 3.36 4.3848 "                   |  |  |  |  |  |  |
| NaCl                                                 | 0.020                | I . 19           | 2.23 2.9110                                             | " 3.22 4.2062 "                   |  |  |  |  |  |  |
| "                                                    | 0.100                | 5.95             | 2.22 2.9027                                             | " 3.20 4.1806 "                   |  |  |  |  |  |  |
| 64                                                   | 0.497                | 29.50            | 2.00 2.6128                                             | " 2 85 3 7171 "                   |  |  |  |  |  |  |
| "                                                    | o.988                | 58.80            | 1.72 2.2487                                             | " 2.43 3.1596 "                   |  |  |  |  |  |  |
|                                                      |                      |                  |                                                         |                                   |  |  |  |  |  |  |

#### SOLUBILITY OF SALICYLIC ACID IN AQUEOUS SOLUTIONS OF SODIUM FORMATE, ACETATE, AND BUTYRATE AT 26.4°. (Philip - J. Ch. Soc. 87, 992, '05.)

| 100        | 100     |           |            | Gms. Na<br>Salt | onis officircoon per Litter m. |                       |             |  |
|------------|---------|-----------|------------|-----------------|--------------------------------|-----------------------|-------------|--|
| per Liter. | HCOONa. | CH3COONa. | C3H7COONa. | per Liter.      | HCOONa.                        | CH <sub>3</sub> COONa | . C3H7COONa |  |
| 0          | 1.71    | 1.71      | 1.71       | 0               | 2.36                           | 2.36                  | 2.36        |  |
| I          | 2.35    | 2.47      | 2.50       | I               | 3.7                            | 3.6                   | 3.3         |  |
| 2          | 3.05    | 3.35      | 3.48       | 2               | 5.0                            | 5.2                   | 4.5         |  |
| 3          | 3.7     | 4.2       | 4.35       | 3               | 6.2                            | 6.75                  | 5.65        |  |
| 4          | 4.3     | 5.1       | 5.3        | 4               | 7.2                            | 8.3                   | 6.85        |  |
| 5          | 4.8     | 6.I       | 6.3        | 5               |                                |                       | 8.1         |  |

#### SOLUBILITY OF SALICYLIC ACID IN AQUEOUS SOLUTIONS OF SODIUM SALICYLATE AT 20.1°.

(Hoitsema - Z. physik. Ch. 27, 315, '98.)

| Gram Mols. per Liter.         | Sp. Gr.          | Gram                                      | s per Liter.     | Solid                                 |
|-------------------------------|------------------|-------------------------------------------|------------------|---------------------------------------|
| CoH4OH CoH4OH<br>COOH. COONa. | of<br>Solutions. | C <sub>6</sub> H <sub>4</sub> OH<br>COOH. | CaH4OH<br>COONa. | Phase.                                |
| 0.0132 0.0                    | 1.002            | 1.823                                     | 0.0              | C <sub>6</sub> H <sub>4</sub> OHCOOH  |
| 0.0112 0.017                  | I.003            | 1.55                                      | 2.705            |                                       |
| 0.0124 0.113                  | 1.000            | 1.71                                      | 17.98            |                                       |
| 0.0143 0.226                  | 1.016            | 1.97                                      | 35.96            |                                       |
| 0.0164 0.344                  | 1.024            | 2.26                                      | 54.74            |                                       |
| 0.0203 0.500                  | I.034            | 2.80                                      | 79.56            |                                       |
| 0.062 1.70                    | 1.098            | 8.56                                      | 270.5            |                                       |
| 0.095 2.11                    | 1.137            | 13.11                                     | 335.7 {          | C6H4OHCOOH.C6H4OHCOONa<br>+C6H4OHCOOH |
| 0.001 2.10                    | I.144            | 12.56                                     | 348.4            | C6H4OHCOOH.C6H4OHCOONa                |
| 0.086 3.41                    | 1.215            | 11.88                                     | 542.6            |                                       |
| 0.081 4.23                    | 1.263            | 11.19                                     | 673.0 10         | H4OHCOOH.C6H4OHCOONa<br>+C6H4OHCOONa  |
| 0.048 4.18                    | 1.259            | 6.63                                      | 665.I            | C <sub>6</sub> H <sub>4</sub> OHCOONa |
| 0.021 4.12                    | 1.258            | 2.90                                      | 665.5            |                                       |
| 0.00 4.15                     | 1.257            | 0.0                                       | 660.3            |                                       |
|                               |                  |                                           |                  |                                       |

## Solubility of Salicylic Acid in Alcohols in Ether and in Acetone.

(Timofeiew - Compt. rend. 112, 1137, 'or; at 15°, Bourgoin - Ann. chim. phys. [5] 13, 405, '78; at 17° and 23°, Walker and Wood - J. Ch. Soc. 73, 620, '98.)

| Solvent.                         | Gms. CaH4OHCOOH<br>to. per 100 Gms. |          | Solvent.  | Gms. CoH4OHCOOH<br>t°. per 100 Gms. |            |              |           |
|----------------------------------|-------------------------------------|----------|-----------|-------------------------------------|------------|--------------|-----------|
|                                  |                                     | Solvent. | Solution. |                                     |            | Solvent.     | Solution. |
| CH <sub>3</sub> OH               | -3                                  | 40.67    | 28.91     | $C_nH_7OH(n)$                       | -3         | 26.12        | 20.71     |
| CH <sub>3</sub> OH               | +21                                 | 62.48    | 38.46     | $C_{3}H_{7}OH(n)$                   | +21        | 37.69        | 27.36     |
| C2HOH                            | -3                                  | 36.12    | 26.29     | (CH <sub>a</sub> ) <sub>2</sub> O   | 15         | 50.47        | 33.55     |
| C <sub>2</sub> H <sub>5</sub> OH | +15                                 | 49.63    | 33.17     | (CH <sub>s</sub> ) <sub>2</sub> O   | 17         |              | 23.4*     |
| C <sub>2</sub> H <sub>8</sub> OH | 21                                  | 53.53    | 34.87     | (CH <sub>a</sub> ) <sub>2</sub> CO  | 23         |              | 31 3*     |
| C.H.OH 90%                       | 15                                  | 42.09    | 29.62     | * Per                               | 100 cc. Se | at. Solution | 1.        |

#### SALICYLIC ACID

.

Solubility of Salicylic Acid in Aqueous Solutions of Ethyl Alcohol, Iso Butyl Alcohol, Dextrose, Cane Sugar, and of Levulose at 25° and at 35°.

|                                                | (1100100          | and such sense     | ten n. pajo                                 |                                         | -3.7                              |                                         |
|------------------------------------------------|-------------------|--------------------|---------------------------------------------|-----------------------------------------|-----------------------------------|-----------------------------------------|
| Aq. Solvent.                                   | Conc. of Solvent. |                    | C <sub>e</sub> H <sub>e</sub> OH<br>solve c | COOH dis-<br>at 25°.                    | CeHeOHCOOH dis-<br>solved at 35°. |                                         |
| nų. Sortenii                                   | Normality.        | Gms. per<br>Liter. | Grams<br>molecular<br>percentage.           | Grams<br>per 100 gms.<br>sat. solution. | percentage.                       | Grams<br>per 100 gms.<br>sat. solution. |
| H <sub>2</sub> O                               | 0.0               | 0.0                | 2.8851                                      | 0.2206                                  | 4.1844                            | 0.3197                                  |
| C,H,OH                                         | 0.0249            | 1.146              | 2.8966.1                                    | 0-4 0.222                               | 4.2044.10                         | -4 0.322                                |
| "                                              | 0.0560            | 2.578              | 2.9150                                      | " 0.223                                 | 4. 2348 "                         | 0. 324                                  |
| "                                              | 0.1747            | 8.04               | 2.9901                                      | " 0.229                                 | • • •                             | •••                                     |
| "                                              | 0. 2399           | 11.05              | •••                                         | •••                                     | 4.4341 "                          | 0.339                                   |
| "                                              | 1.03              | 47.4               | 3.5279                                      | " 0.270                                 | 5.2816 "                          | 0.404                                   |
| "                                              | 1.638             | 75.44              | 3.9253                                      | " 0.300                                 |                                   |                                         |
| C <sub>4</sub> H <sub>9</sub> OH (iso)         | 0.020             | 1.496              | 2.909                                       | " 0.223                                 | 4.229 "                           | 0. 324                                  |
| "                                              | 0.051             | 3.74               | 2.955                                       | " 0.220                                 | 4.289 "                           | 0.329                                   |
| "                                              | 0.100             | 7.48               | 3.033                                       | " 0.232                                 | 4.435 "                           | 0.339                                   |
| "                                              | 0. 521            | 38.60              | 3.718                                       | " 0.285                                 | 5.624 "                           | 0.431                                   |
| C <sub>e</sub> H <sub>12</sub> O <sub>e</sub>  | 0.02              | 3.6                | 2.886                                       | " 0.221                                 | 4.184 "                           | 0. 321                                  |
| "                                              | 0.10              | 18.0               | 2.090                                       | " 0.222                                 | 4.202 "                           | 0.322                                   |
| "                                              | 0.50              | 89.6               | 2.954                                       | " 0.226                                 | 4. 263 "                          | 0.326                                   |
| "                                              | 1.00              | 180.0              | 3.015                                       | " 0.231                                 | 4.360 "                           | 0. 334                                  |
| C13H22O11                                      | 0.02              | 6.88               | 2.005                                       | " 0.221                                 | 4.200 "                           | 0. 322                                  |
| "                                              | 0. 10             | 34.97              | 2.904                                       | " 0.227                                 | 4.287 "                           | 0.328                                   |
| "                                              | 0.50              | 172.0              | 3.239                                       | " 0.248                                 | 4.697 "                           | 0.360                                   |
| "                                              | 1.10              | 376.3              | 3.033                                       | " 0.278                                 | 5.236 "                           | 0.401                                   |
| C <sub>6</sub> .H <sub>12</sub> O <sub>6</sub> | 0.02              | 3.6                | 2.888                                       | " 0.221                                 | •••                               | •••                                     |
| "                                              | o. <i>0</i> 6     | 10.8               | 2.895                                       | " 0.221                                 | • • •                             |                                         |
| "                                              | 0.25              | 45.0               | 2.944                                       | "с. 225                                 | •••                               | •••                                     |

#### (Hoffmann and Langbeck - Z. physik. Ch. 51, 400, '05.)

#### SOLUBILITY OF SALICYLIC ACID IN BENZENE.

| (Walker and Wood — J. Ch. Soc. 73, 620, '98.) |                                                                                                 |      |                                                                                                 |                      |                                                                                                 |  |  |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------|--|--|
| <b>t°</b> .                                   | Gms.<br>C <sub>6</sub> H <sub>4</sub> OHCOOH<br>per 100 Gms.<br>C <sub>6</sub> H <sub>6</sub> . | t°.  | Gms.<br>C <sub>6</sub> H <sub>4</sub> OHCOOH<br>per 100 Gms.<br>C <sub>6</sub> H <sub>6</sub> . | t°.                  | Gms.<br>C <sub>6</sub> H <sub>4</sub> OHCOOH<br>per 100 Gms.<br>C <sub>6</sub> H <sub>6</sub> . |  |  |
| 11.7                                          | 0.460                                                                                           | 30.5 | 0.991                                                                                           | <b>49</b> · <b>4</b> | 2.380                                                                                           |  |  |
| 18.2                                          | o.579                                                                                           | 34.6 | 1.261                                                                                           | 64.2                 | 4.40                                                                                            |  |  |
|                                               |                                                                                                 | 36.6 | I .430                                                                                          |                      |                                                                                                 |  |  |

#### SELENIUM Se.

#### SOLUBILITY IN CARBON BISULPHIDE. (Marc -- Z. anorg. Ch. 48, 425, 'o6.)

100 cc. CS, dissolve 0.065 gm. amorphous Se at room temperature. Se which is heated to  $180^{\circ}$  for 6-7 hours is insoluble in CS<sub>2</sub>. Se crystal-lized from the melt at 200° is insoluble in CS<sub>2</sub>. Se heated once quickly to 140° is very slightly soluble in CS<sub>2</sub>. 100 gms. methylene iodide (CH<sub>2</sub>I<sub>2</sub>) dissolve 1.3 gms. Se at 12°.

(Retgers - Z. anorg. Ch. 3, 346, '93.)

.

#### SELENIOUS ACID H,SeO,

# SOLUBILITY IN WATER. (Etard — Ann. chim. phys. [7] 2, 551, '9.

277

| (Etard — Ann. cnim. phys. [7] 2, 551, 94.) |                                                                |              |                                                                |      |                                                                |  |
|--------------------------------------------|----------------------------------------------------------------|--------------|----------------------------------------------------------------|------|----------------------------------------------------------------|--|
| t°.                                        | Gms. H <sub>2</sub> SeO <sub>2</sub> per<br>roo Gms. Solution. | <b>t °</b> . | Gms. H <sub>2</sub> SeO <sub>2</sub> per<br>100 Gms. Solution. | t °. | Gms. H <sub>2</sub> SeO <sub>2</sub> per<br>100 Gms. Solution. |  |
| - 10                                       | 42.2                                                           | 25           | 67 .0                                                          | 60   | <b>79</b> · <b>3</b>                                           |  |
| 0                                          | 47 · 4                                                         | 30           | 70.2                                                           | 70   | 79 · 3                                                         |  |
| + 10                                       | 55.0                                                           | 40           | 77 · 5                                                         | 80   | <b>79</b> · <b>3</b>                                           |  |
| 20                                         | 62.5                                                           | 50           | 79.2                                                           | 90   | <b>79 · 4</b>                                                  |  |

#### SILICON Si.

-

SOLUBILITY IN LEAD AND IN ZINC. (Moissan and Siemens - Ber. 37, 2088, '04.)

|              | •                                 |     |                                   |
|--------------|-----------------------------------|-----|-----------------------------------|
|              | In Lead.                          |     | In Zinc.                          |
| <b>t °</b> . | Gms. Si per 100<br>Gms. Solution. | t°. | Gms. Si per 100<br>Gms. Solution. |
| 1250         | 0.024                             | 600 | 0.06                              |
| 1330         | 0.070                             | 650 | 0.15                              |
| 1400         | 0.150                             | 730 | 0.57                              |
| 1450         | 0.210                             | 800 | 0.92                              |
| 1550         | 0.780                             | 850 | 1.62                              |

#### SILICON IODIDES Sigla, Sil.

SOLUBILITY IN CARBON BISULPHIDE.

(Friedel and Lachburg - Bull. soc. chim. [2] 12, 92, '69; Friedel - Liebig's Ann. 149, 96, '69)

100 gms. CS<sub>2</sub> dissolve 10 gms. Si<sub>3</sub>I<sub>6</sub> at 19°. 100 gms. CS<sub>2</sub> dissolve 26 gms. Si<sub>2</sub>I<sub>6</sub> at 27°. 100 gms. CS<sub>2</sub> dissolve 2.2 gms. SiI<sub>4</sub> at 27°.

#### SILICO TUNGSTIC ACID H,SiW13O42.

100 gms. H<sub>2</sub>O dissolve 961.5 crystallized silico tungstic acid at 18°, and solution has Sp. Gr. 2.843.

#### SILVER

For equilibrium between metallic Silver and mercury (Silver amalgam) and mixed aqueous solutions of their nitrates, determined for mixtures of the two metals in all proportions, see Reinders — Z. physik. Ch. 54, 609, '06.

#### SILVER ACETATE CH,COOAg.

#### SOLUBILITY IN WATER.

(Nernst — Z. physik. Ch. 4, 370, '89; Arrhenius — Ibid. 11, 396, '93; Goldschmidt — Ibid. 25, 93, '98, Nauman and Rucker — Ber. 38, 2203, '05; Raupenstrauch — Monatsh. Ch. 6, 585, '85; Wright and Thompson — Phil. Mag. [5] 17, 288, '84; 19, 1, '85.)

| t°. | Gms. Ag(C2H2O2)<br>per Liter. | t°. | Gms. Ag(C <sub>2</sub> H <sub>3</sub> O <sub>2</sub> )<br>per Liter. | <b>t</b> °. | Gms. Ag(C <sub>2</sub> H <sub>3</sub> O <sub>2</sub> )<br>per Liter. |
|-----|-------------------------------|-----|----------------------------------------------------------------------|-------------|----------------------------------------------------------------------|
| ο   | 7.22                          | 25  | II.2                                                                 | 50          | 16.4                                                                 |
| 10  | 8.75                          | 30  | 12.1                                                                 | бo          | 18.9                                                                 |
| 15  | 9.4                           | 40  | 14.I                                                                 | 70          | 21.8                                                                 |
| 20  | IO.4                          |     |                                                                      | 8o          | 25.2                                                                 |

SOLUBILITY OF SILVER ACETATE IN AQUEOUS SOLUTIONS OF:

|                                                                                             | Silver | Nitrate. | Sodium Acetate.                                                                                                                                     |       |     |  |
|---------------------------------------------------------------------------------------------|--------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|--|
| Gms.<br>AgNO3<br>per Liter. Gms. CH3COOAg per Liter at:<br>16° (Nernst). 19.8° (Arrhenius). |        |          | Gms. CH <sub>3</sub> COOHg per Liter a<br>CH <sub>3</sub> COONa Gms. CH <sub>3</sub> COOHg per Liter a<br>per Liter. 16° (N., N. and R.). 18.6°(A.) |       |     |  |
| 0                                                                                           | 10.05  | 9.85     | 0                                                                                                                                                   | 10.05 | 9.9 |  |
| 5                                                                                           | 8.2    | 7.9      | 5                                                                                                                                                   | 6.3   | 6.6 |  |
| IO                                                                                          | 7.0    | 6.6      | IO                                                                                                                                                  | 4.6   | 4.9 |  |
| 15                                                                                          | 6.4    | 5.5      | 15                                                                                                                                                  | 3.8   | 4.I |  |
| 20                                                                                          | 5.7    | 4 · 5    | 20                                                                                                                                                  | 3.3   | 3.5 |  |
| 30                                                                                          | 4 · 4  | •••      | 30                                                                                                                                                  | • • • | 2.8 |  |
| 40                                                                                          | 3.2    | •••      | 40                                                                                                                                                  | •••   | 2.4 |  |

#### SILVER Mono Chlor ACETATE CH\_ClCOOAg.

One liter aqueous solution contains 12.97 grams CH<sub>2</sub>ClCOOAg at 16.9°. (Arrhenius )

SOLUBILITY OF SILVER MONO CHLOR ACETATE AT 16.9° IN AQUEOUS SOLUTIONS OF:

| Silver Nitrate.                         |                                  | Sodium Chlor Acetate.                          |                                                |  |  |
|-----------------------------------------|----------------------------------|------------------------------------------------|------------------------------------------------|--|--|
| Gms.<br>AgNO <sub>2</sub><br>per Liter. | Gms.<br>CH2ClCOOAg<br>per Liter. | Gms.<br>CH <sub>2</sub> ClCOONa<br>per Liter.  | Gms.<br>CH <sub>2</sub> ClCOOAg<br>per Liter.  |  |  |
| 0.0<br>9.6<br>17.0                      | 12.97<br>10.05<br>7.55           | 0.0<br>3.88<br>7.77<br>15.53<br>31.07<br>58.26 | 12.97<br>10.05<br>8.16<br>6.02<br>4.19<br>3.26 |  |  |

#### SILVER Di Propyl ACETATE AgC<sub>8</sub>H<sub>15</sub>O<sub>2</sub>.

100 gms. H<sub>2</sub>O dissolve 0.123 gm. AgC<sub>8</sub>H<sub>18</sub>O<sub>2</sub> at 11.7°, and 0.190 gm. at 72°.

(Fürth - Monatsh. Ch. 9, 311, '88.)

SILVER Methyl Ethyl ACETATE Ag.CH3.CH2.CH(CH3)COO.

#### SILVER Di Ethyl ACETATE Ag.[(C2H5)2CH.COO].

#### SILVER Tri Methyl ACETATE Ag. (CH3) CCOO.\*

#### SOLUBILITY OF EACH WATER.

279

(Sedlitzky - Monatsh. Ch. 8, 563, '87; Keppish - Ibid. 9, 589, '88; Stiassny - Ibid. 12, 601, '91.)

|     | Gms. per 100 Gms. H2O. |            |            | +0  | Gms. per 100 Gms. H2O. |            |           |  |
|-----|------------------------|------------|------------|-----|------------------------|------------|-----------|--|
| t°. | Ag.C5H9O2.             | AgC6H11O2. | AgC5H9O2.* | t°. | AgCsH9O2.              | AgC6H11O2. | AgCsH9O2. |  |
| 0   | I.II2                  | 0.402      | I.IO       | 50  | 1.602                  | 0.536      | I.47      |  |
| IO  | 1.126                  | 0.413      | 1.15       | 60  | 1.827                  | 0.585      | 1.57      |  |
| 20  | 1.182                  | 0.432      | I.22       | 70  | 2.093                  | 0.643      | 1.68      |  |
| 30  | 1.280                  | 0.458      | 1.22       | 80  | 2.402                  |            | 1.80      |  |
| 40  | 1.420                  | 0.494      | 1.37       |     |                        |            |           |  |

#### SILVER BENZOATE C.H.COOAg.

One liter of aqueous solution contains 1.763 gms. C<sub>6</sub>H<sub>6</sub>COOAg at  $14.5^{\circ}$ , and 2.607 gms. at  $25^{\circ}$ .

(Holleman - Z. physik. Ch. 12, 129, '93; Noyes and Schwartz - Ibid. 27, 287, '98.)

SOLUBILITY OF SILVER BENZOATE AT 25° IN AQUEOUS SOLUTIONS OF:

| Nitric Acid (N. and S.).<br>Millimols per Liter. Grams per Liter. |         |       | Chlor Acetic Acid (N. and S.).<br>Millimols per Liter. Grams per Liter. |                |                |                |                |
|-------------------------------------------------------------------|---------|-------|-------------------------------------------------------------------------|----------------|----------------|----------------|----------------|
| HNO3.                                                             | CoOAg.  | HNO3. | CooAg.                                                                  | CH2<br>CICOOH. | CoH5<br>COOAg. | CH2<br>CICOOH. | CoHa<br>COOAg. |
| 0.0                                                               | 0.01144 | 0.0   | 2.607                                                                   | 0.0            | 0.01144        | 0.0            | 2.607          |
| 0.004435                                                          | 0.01395 | 0.280 | 3.195                                                                   | 0.00394        | 0.01385        | 0.371          | 3.172          |
| 0.00887                                                           | 0.01698 | 0.559 | 3.889                                                                   | 0.00787        | 0 01612        | 0.744          | 3.691          |
| 0.00892                                                           | 0.01715 | 0.562 | 3.926                                                                   | 0.01574        | 0.02093        | 1.487          | 4.792          |
| 0.01774                                                           | 0.02324 | 1.118 | 5.321                                                                   |                |                |                |                |
| 0.02674                                                           | 0.03071 | 1.686 | 7.031                                                                   |                |                |                |                |

One liter of cold alcohol dissolves 0.169 gm. C<sub>6</sub>H<sub>8</sub>COOAg; one liter of boiling alcohol dissolves 0.465 gram. (Liebermann – Ber. 35, 1094, '02.)

#### SILVER BORATE AgBO2.

One liter of aqueous solution contains about 9.05 gms. AgBO<sub>2</sub> at 25°. (Abegg and Cox - Z. physik. Ch. 46, 11, '03.)

#### SILVER BROMATE AgBrO.

#### SOLUBILITY IN WATER.

| t°.  | Gms. AgBrOa per Liter. | Authority.                               |
|------|------------------------|------------------------------------------|
| 20   | 1.586                  | (Böttger - Z. physik. Ch. 46, 602, '03.) |
| 24.5 | I.9II                  | (Noyes - Z. physik. Ch. 6, 246, '90.)    |
| 25   | I.68                   | (Longi - Gazz. chim. ital. 13, 87, '83.) |

SOLUBILITY OF SILVER BROMATE IN AQUEOUS AMMONIA AND NITRIC ACID SOLUTIONS AT 25°. (Longi)

|                                   | Solvent.                                                                            | Grams AgBrO <sub>3</sub> per            |                                                |  |
|-----------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------|--|
| Ammonia<br>Ammonia<br>Nitric Acid | Solvent.<br>Sp. Gr. $0.998 = 5\%$<br>Sp. Gr. $0.96 = 10\%$<br>Sp. Gr. $1.21 = 35\%$ | 1000 cc. Sol.<br>35.10<br>443.6<br>3.81 | 1000 Gms. Sol.<br>35 · 54<br>462 · 5<br>3 · 12 |  |

#### SILVER BROMATE

280

#### Solubility of Silver Bromate at 24.5° in Aqueous Solutions of:

| Silver Nitrate (Noyes). |                      |                     |         | Potassium Bromate (N.). |                      |                 |  |
|-------------------------|----------------------|---------------------|---------|-------------------------|----------------------|-----------------|--|
| Normal                  | Content.             |                     |         | Normal                  | Content.             | Gms. per Liter. |  |
| AgNO <sub>3</sub> .     | AgBrO <sub>2</sub> . | AgNO <sub>2</sub> . | AgBrOs. | KBrO <sub>3</sub> .     | AgBrO <sub>3</sub> . | KBrO3. AgBrO3.  |  |
| 0.0                     | 0.0081               | 0.0                 | 1.911   | 0.0                     | 0.0081               | 0.0 1.911       |  |
| 0.0085                  | 0.0051               | I.445               | I . 203 | 0.0085                  | 0.00519              | I.42 I.225      |  |
| o.o346                  | 0.0022               | 5.882               | 0.510   | 0.0346                  | 0.00227              | 5.78 0.536      |  |

#### SILVER BROMIDE AgBr.

#### SOLUBILITY IN WATER.

| <b>t</b> °.  | Gms. AgBr per Liter.          | - Authority.                                  |
|--------------|-------------------------------|-----------------------------------------------|
| 20           | 0.000084                      | (Böttger - Z. physik. Ch. 46, 602, '03.)      |
| 25           | 0.000137                      | (Abegg and Cox - Z. physik. Ch. 46, 11, '03.) |
| 100          | 0.00370                       | (Böttger — Z. physik. Ch. 56, 93, '06.)       |
| (See also Ho | lleman — Z. physik. Ch. 12, 1 | 29, '93; Kohlrausch — Ibid. 50, 365, '05.)    |

SOLUBILITY OF SILVER BROMIDE IN AQUEOUS AMMONIA SOLUTIONS. (Longi - Gazz. chim. ital. 13, 87, '83; at 80°, Pohl - Sitzber. Akad. Wiss. Wien, 41, 267, '60.)

|                               | Gms. AgBr            | at 12° per            | Gms. AgBr at 80° per  |
|-------------------------------|----------------------|-----------------------|-----------------------|
| Solvent.                      | 1000 cc.<br>Solvent. | 1000 Gms.<br>Solvent. | 1000 Gms.<br>Solvent. |
| Ammonia Sp. Gr. 0.998=5%      | 0.114                | 0.114                 | •••                   |
| Ammonia Sp. Gr. $0.96 = 10\%$ | 3.33-4.0             | 3· <b>4</b> 7         | •••                   |
| Ammonia Sp. Gr. 0.986         |                      | •••                   | 0.51* 1.0†            |
| * Dried AgBr.                 |                      | † Freshly pptd.       |                       |

#### Solubility of Silver Bromide in Aqueous Solutions of: Ammonia at o°. Mono Methyl Amine at 11.5°.

(Jarry - Ann. chim. phys. [7] 17, 363, '99.)

.

(Jarry.)

|                      | Grams per 100 cc. Solution. |          |         |         | cc. Solution. |
|----------------------|-----------------------------|----------|---------|---------|---------------|
| NH <sub>3</sub> Gas. | AgBr.                       | NH3 Gas. | AgBr.   | NH2CH3. | AgBr.         |
| 3.07                 | 0.080                       | 26.27    | 1.067   | IO. II  | 0.07          |
| 4.88                 | 0.096                       | 31.26    | 1 . 568 | 13.17   | 0.12          |
| 6.69                 | 0.172                       | 33.89    | 1.987   | 15.13   | <b>o</b> .16  |
| 8.29                 | 0.212                       | 36.52    | 2.669   | 17.97   | 0.28          |
| 11.51                | 0.349                       | 37.22    | 2.888   | 32 . 58 | 0.55          |
| 15.32                | 0.557                       | 37 . 70  | 2.930   | 35.62   | 0.73          |
| 18.09                | 0.722                       | 39.26    | 2.892   | 43.11   | 1.27          |
| 19.53                | 0.741                       | 39.95    | 2.852   | 48.44   | 2.89          |

#### Solubility of Silver Bromide in Aqueous Solutions of Sodium Thio Sulphate at 35°.

(Richards and Faber - Am. Ch. J. 21, 186, '99.)

| Gms. Cryst. Na Thio Sulphate<br>per Liter. | Gms. AgBr Dissolved<br>per Gram of Thio Sulphate. | Mols. AgBr Dissolved<br>per Mol. of Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> . |
|--------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------|
| 100                                        | 0.376                                             | o.496                                                                               |
| 200                                        | 0.390                                             | 0.515                                                                               |
| 300                                        | <b>o</b> .397                                     | 0.524                                                                               |
| 400                                        | 0.427                                             | 0.564                                                                               |

#### SILVER BROMIDE

SOLUBILITY OF SILVER BROMIDE IN AQUEOUS SALT SOLUTIONS. (Valenta - Monatsh. Ch. 15, 250, '94; see also Cohn - Z. physik. Ch. 18, 61, '95.)

| Salt Solution.          |     | Gms. AgBr per 100 Gms. Aq. Solution of Concentration |         |          | centration |          |
|-------------------------|-----|------------------------------------------------------|---------|----------|------------|----------|
| Cart Constitution       | • • | 1:100.                                               | 5: 100. | 10: 100. | 15: 100.   | 20: 100. |
| Sodium Thio Sulphate    | 20  | 0.35                                                 | I.00    | 3.50     | 4.20       | 5.80     |
| " Calc. by Cohn         | 20  | 0.50                                                 | 2.40    | 4.59     | 6.58       | 8.40     |
| Sodium Sulphite         | 25  |                                                      |         | 0.04     |            | 0.08     |
| Potassium Cyanide       | 25  |                                                      | 6.55    |          |            |          |
| " " Calc. by Cohn       |     |                                                      | 6.85    |          |            |          |
| Potassium Sulphocyanide | 25  |                                                      |         | 0.73     |            |          |
| Ammonium Sulphocyanide  | 20  |                                                      | 0.21    | 2.04     | 5.30       |          |
| Calcium Sulphocyanide   | 25  |                                                      |         | 0.53     |            |          |
| Barium Sulphocyanide    | 25  |                                                      |         | 0.35     |            |          |
| Aluminum Sulphocyanide  | 25  |                                                      |         | 4.50     |            |          |
| Thio Carbamide          | 25  |                                                      |         | 1.87     |            |          |
| Thio Cyanime            | 25  | 0.08                                                 | 0.35    | 0.72     |            |          |

Note. — Cohn shows that the lower results obtained by Valenta are due to the excess of solid AgBr used and the consequent formation of the less soluble di salt 3(AgS2O3Na)2 instead of the more soluble salt (AgS2O3Na)2Na2S2O3.

100 cc.  $H_2O$  containing 10 per cent of normal mercuric acetate,  $H_3(C_2H_3O_2)_2 + Aq.$ , dissolve 0.0122 gram AgBr at 20°. 100 gms. NaCl in conc. aq. solution dissolve 0.474 gm. AgBr at 15°.

100 gms. NaCl in 21 per cent solution dissolve 0.182 gm. AgBr at 15°.

100 gms. KBr in conc. solution dissolve 3.019 gms. AgBr at 15°.

95 gms. NaCl + 10 gms. KBr in conc. aq. solution dissolve 0.075 gm. AgBr at 15°.

(Schierholz - Sitzber. K. Akad. Wiss. (Vienna) 101, ab, 4, '90.)

#### SILVER BUTYRATE C.H.COOAg.

#### SILVER (Iso) BUTYRATE (CH\_1)\_CHCOOAg.

SOLUBILITY OF EACH IN WATER.

(Goldschmidt - Z. physik. Ch. 25, 93, '98; Arrhenius - Ibid. 11, 396, '93; Raupenstrauch - Monatsh Ch. 6, 589, '85.)

|               | Gms. per 100 Grat | £°.           | Grams per 100 Gms. H2O. |                  |               |
|---------------|-------------------|---------------|-------------------------|------------------|---------------|
| tº. Butyrate. | Butyrate.         | Iso Butyrate. |                         | Butyrate.        | Iso Butyrate. |
| 0             | 0.363             | 0.796         | 30                      | 0.561 (1.102 G.) | 1.060         |
| IO            | 0.419             | 0.874         | 40                      | 0.647.           |               |
| 17.8          | 0.432 (A.)        |               | 50                      | 0.742            | 1.313         |
| 18.8          | 0.445 (A.)        |               | 60                      | 0.848            |               |
| 20            | 0.484 (0.999 G.)  | 0.961         | 70                      | 0-901            | 1.670         |
| 25            | (1.044 G.)        |               | 80                      | 1.14             | 1.898         |

281

#### SILVER BUTYRATE

#### SOLUBILITY OF SILVER BUTYRATE IN AQ. SOLUTIONS OF SILVER ACETATE, SILVER NITRATE AND OF SODIUM BUTYRATE. (Arthenius – Z. physik. Ch. 11, 396, '93.)

| In Silver Acetate at 17.8°. |              |                          | In S            | In Silver Nitrate at 18.8°. |                  |  |  |
|-----------------------------|--------------|--------------------------|-----------------|-----------------------------|------------------|--|--|
| G. Mols                     | . per Liter. | Grams per Liter.         | G. Mols.        | per Liter.                  | Grams per Liter. |  |  |
| COOÅg.                      | CoOAg.       | CH3 C3H7<br>COOAg. COOAg | AgNO3.          | CooAg.                      | AgNO3. CoOAg.    |  |  |
| 0.0                         | 0.0221       | 0.0 4.32                 | 0.0             | 0.0228                      | 0.0 4.445        |  |  |
| 0.0270                      | 0.0139       | 4.51 2.71                | 0.0667          | o.co78                      | 11.33 1.521      |  |  |
| 0.0506                      | 0.0103       | 8.45 2.01                | 0 · I <b>00</b> | 0.0062                      | 17.00 1.209      |  |  |

#### In Sodium Butyrate at 18.2°.

| G. Mols        | per Liter.     | Grams p        | er Liter.      | G. Mols.       | per Liter. | Grams p        | er Liter.      |
|----------------|----------------|----------------|----------------|----------------|------------|----------------|----------------|
| CaH7<br>COONa. | CaH7<br>COOAg. | CaH7<br>COONa. | CaH7<br>COOAg. | CaH7<br>COONa. | COOAg.     | CaH7<br>COONa. | CaH7<br>COOAg. |
| 0.0            | 0.0224         | 0.0            | 4.363          | 0.0658         | 0.0091     | 7.24           | 1.774          |
| 0.0066         | 0.0199         | 0.73           | 3.881          | 0.1315         | 0.0060     | 14.47          | I . I70        |
| 0.0164         | 0.0169         | 1.81           | 3.296          | 0.263          | 0.0040     | 28.96          | 0.780          |
| 0.0329         | 0.0131         | 3.62           | 2.555          | 0.493          | 0.0027     | 54.28          | 0 526          |

#### SILVER CAPROATES $Ag(C_{e}H_{11}O_{2})$ .

SOLUBILITY IN WATER.

(Keppish — Monatsh. Ch. 9, 589, '88; Stiassny — Ibid. 12, 596, '91; Kulisch — Ibid. 14, 570, '93; König — Ibid. 15, 26, '94; Altschul — Ibid. 17, 568, '96.)

Results in terms of grams salt per 100 grams H<sub>2</sub>O.

| <b>t*</b> . | Normal (<br>CH <sub>2</sub> (CH <sub>2</sub> ) | COOAg.     | 2 Methyl Pentan M<br>4 Acid<br>CH3.CH.CH3<br>.(CH2)2COOAgCH | Acid 4<br>CH3.CH2 C | Methyl Pentan<br>4 Acid<br>H3(CH2)2CH(CH2)<br>.COOAg. |
|-------------|------------------------------------------------|------------|-------------------------------------------------------------|---------------------|-------------------------------------------------------|
| 0           | 0.076 (A•)                                     | 0.078(Kepp | isch) 0.168 (König)                                         |                     | ) 0.510 (Stiassny)                                    |
| 10          | o.085                                          | 0.089      | 0.162                                                       | o .858              | 0.528                                                 |
| 20          | 0.1 <b>00</b>                                  | 0 . 107    | 0.16 <b>3</b>                                               | o.849               | 0.550                                                 |
| 30          | 0.123                                          | 0.131      | 0.170                                                       | 0.854               | 0.574                                                 |
| 40          | 0.154                                          | 0.161      | 0.183                                                       | o.871               | 0.602                                                 |
| 50          | 0 . 193                                        | 0 . 198    | 0.203                                                       | 0.902               | 0.632                                                 |
| 60          | 0.240                                          | 0.243      | 0.229                                                       | o.946               | o.666                                                 |
| <b>7</b> 0  | 0 . 295                                        | o . 288    | 0.263                                                       | I.003               | 0.702                                                 |
| 80          | 0.354                                          |            | o.300                                                       | I.073               | 0.742                                                 |
| 90          | •••                                            | • • •      | o·347                                                       | 1.157               | •••                                                   |

#### SILVER CARBONATE Ag<sub>2</sub>CO<sub>3</sub>.

SOLUBILITY IN WATER.

| t°. | Gms. Ag <sub>2</sub> CO <sub>3</sub> per Liter.       | Authority.                                    |
|-----|-------------------------------------------------------|-----------------------------------------------|
| 15  | 0.031                                                 | (Kremers — Pogg. Ann. 85, 248, '52.)          |
| 25  | 0.033 (0.00012 gm. atoms Ag.)                         | (Abegg and Cox - Z. physik. Ch. 46, 11, '03.) |
| 100 | <b>o</b> .50                                          | (Joulin — Ann. chim. phys. [4] 30, 260, '73.) |
| 15  | 0.85 (in H <sub>2</sub> O sat. with CO <sub>2</sub> ) | (Johnson — Ch. News, 54, 75, 86.)             |

#### SILVER OHLOBATE AgClO.

100 grams cold water dissolve 10 grams AgClO<sub>3</sub> (Vauquelin); 20 gms. AgClO<sub>3</sub> (Wächter).

#### SILVER CHLORIDE AgCl.

#### SOLUBILITY IN WATER.

(A large number of determinations are quoted by Abegg and Cox - Z. physik. Ch. 46, 11, '03; see also Kohlrausch - Ibid. 50, 356, '04-'05; Böttger - Ibid. 46, 602, '03, 56, 93, '06.) t°. 14°. 20°. 25°. 42°. 100°.

Gms. AgCl per liter 0.0014 0.0016 0.0020 0.0040 0.0218

SOLUBILITY OF SILVER CHLORIDE IN AQUEOUS SOLUTIONS OF:

| Ammonia at o°.<br>(Jarry — Ann. chim. phys. [7] 17, 342, '99.)<br>Grams per 100 Grams Solution. |       |          | Mono Methyl A<br>(Jar<br>Gms. per 100 | ту.)    |       |
|-------------------------------------------------------------------------------------------------|-------|----------|---------------------------------------|---------|-------|
| NHa Gas.                                                                                        | AgCl. | NH3 Gas. | AgCl.                                 | NH2CH3. | AgCl. |
| 1.45                                                                                            | 0.49  | 28.16    | 6.59                                  | 1.78    | 0.16  |
| 1.94                                                                                            | 1.36  | 29.80    | 7.09                                  | 4.44    | 0.62  |
| 5.60                                                                                            | 3.44  | 30.19    | 7.25                                  | 5.51    | 0.83  |
| 6.24                                                                                            | 4.00  | 32.43    | 5.87                                  | 7.66    | 1.32  |
| 11.77                                                                                           | 4.68  | 34.56    | 4.77                                  | 13.70   | 3.29  |
| 16.36                                                                                           | 5.18  | 37.48    | 3.90                                  | 18.69   | 5.43  |
|                                                                                                 |       |          |                                       | 36.60   | 0.03  |

SOLUBILITY OF SILVER CHLORIDE IN AQUEOUS SOLUTIONS OF AMMONIA.

(Longi - Gazz. chim. ital. 13, 87, '83; at 25°, Valenta - Monatsh. Ch. 15, 250, '94; at 80°, Pohl - Sitzber. Akad. Wiss, Wien, 41, 627, '60.)

| Sol            | vent.              | tº. | Gms. AgCl per 100<br>Gms. Solvent. |
|----------------|--------------------|-----|------------------------------------|
| Aq. Ammonia of | 0.998 Sp. Gr. = 5% | 12  | 0.233                              |
|                | 0.96 Sp. Gr. = 10% | 18  | 7.84                               |
| **             | 0.986 Sp. Gr.      | 80  | 1.49                               |
| **             | = 3%               | 25  | I.40                               |
| **             | = 15%              | 25  | 7.58                               |

SOLUBILITY OF SILVER CHLORIDE IN AQUEOUS SOLUTIONS OF AMMONIUM CHLORIDE.

(Schlerholz — Sitzber, K. Akad. Wiss. (Vienna) 101, 2b, 8, '90; see also Vogel — N. Rep. Pharm. 23, 335, '74. Hahn — Wyandotte Silver Smelting Wks., 1877.)

| Solubility at 15°.<br>Grams per 100 Gms. Solution. |              | Solubility at Different Temperatures. |                 |                             |  |  |
|----------------------------------------------------|--------------|---------------------------------------|-----------------|-----------------------------|--|--|
|                                                    |              | t°.                                   | Gms. per 100 Gi | Gms. per 100 Gms. Solution. |  |  |
| NH4Cl.                                             | AgCl.        |                                       | NH4CI.          | AgCI.                       |  |  |
| IO.00                                              | 0.0050       | 15                                    | 26.31           | 0.276                       |  |  |
| 14.29                                              | 0.0143       | 40                                    | "               | 0.329                       |  |  |
| 17.70                                              | 0.0354       | 60                                    | ** -            | 0.421                       |  |  |
| 19.23                                              | 0.0577       | 80                                    | "               | 0.592                       |  |  |
| 21.98                                              | 0.110        | 90                                    | **              | 0.711                       |  |  |
| 25.31                                              | 0.228        | 100                                   | **              | 0.856                       |  |  |
| 28.45                                              | 0.340 (24.5) | IIO                                   | **              | 1.053                       |  |  |
| Sat. at ord. temp.                                 | 0.157        | Sp. Gr. of                            | f 26.31 % NH,   | Cl solution at              |  |  |

15°=1.08.

#### SILVER CHLORIDE

.

#### 284

.

#### SOLUBILITY OF SILVER CHLORIDE IN AQUEOUS SOLUTIONS OF Aluminum and Ammonium Salts. (Valenta; see also Cohn - Z. physik. Ch. 18, 61, '95.)

| Aq. Salt Solution. <b>\$°.</b> | Gms. AgCl per 100 ( | AgCl per 100 Gms. Solvent of Concentration: |           |  |  |
|--------------------------------|---------------------|---------------------------------------------|-----------|--|--|
| Aq. suit Solution.             | 1:100.              | 5 : 100.                                    | 10 : 100. |  |  |
| Aluminum Sulphocyanide 25      | •••                 | •••                                         | 2.02      |  |  |
| Ammonium Carbonate 25          | •••                 | •••                                         | 0.05      |  |  |
| " Sulphocyanide 20             | •••                 | o.08                                        | 0.54      |  |  |
| " Thio Sulphate 20             | 0.57                | I.32                                        | 3.92      |  |  |
| " Calc. by Co                  | ohn* 0.64           | 3.07                                        | 5.86      |  |  |

\* See Note, p. 281.

# Solubility of Silver Chloride in Aqueous Hydrochloric Acid Solutions at Ordinary Temperature.

(Pierre - J. pharm. chim. [3] 12, 237, '47; Vogel.)

| Solvent.                                                      | Gms. AgCl<br>per Liter. | Solve         | nt.    |     | ns. AgCl<br>er Liter. |
|---------------------------------------------------------------|-------------------------|---------------|--------|-----|-----------------------|
| Conc. HCl + Aq.<br>1 vol. Conc. HCl + 1 vol. H <sub>2</sub> O | 5.0<br>1.6              | 100 vol. sat. |        | H,O | 0.56<br>0.18          |
| Sat. HCl. Sp. Gr. 1. 165                                      | 2.98                    | "             | + 30 " |     | 0.09                  |
| " (at b. pt                                                   | .) 5.60                 | "             | + 50 " | "   | 0.035                 |

SOLUBILITY OF SILVER CHLORIDE IN AQUEOUS SALT SOLUTIONS. (Vogel; Hahn; Valenta)

|                         |                |              |                    | -                   |
|-------------------------|----------------|--------------|--------------------|---------------------|
| Salt Solution.          | Conc. of Salt. | <b>t °</b> . | Gms. Ag<br>100 Gms | Cl per<br>Solution. |
| Barium Chloride         | 27.32%         | 24.5         | 0. <b>057</b>      | (H.)                |
| Barium Chloride         | saturated      | ord. temp.   | 0.014              | (Vg.)               |
| Barium Sulphocyanide    | 10:100         | 25           | 0.20               | (VI.)               |
| Calcium Sulphocyanide   | 10:100         | 25           | 0.15               | (Vl.)               |
| Calcium Chloride        | 41 . 26%       | 24.5         | 0.571              | (H.)                |
| Calcium Chloride        | saturated      | ord. temp.   | 0.093              | (Vg.)               |
| Copper Chloride         | "              | 24.5         | 0.053              | (H.)                |
| Ferrous Chloride        | "              | "            | 0.169              | (H.)                |
| Ferric Chloride         | "              | "            | 0.006              | (H.)                |
| Manganese Chloride      | "              | "            | 0.013              | (H.)                |
| Magnesium Chloride      | 50 : 100       | 25           | 0.50               | (Vl.)               |
| Magnesium Chloride      | 36.35%         | 24.5         | 0.531              | (H.)                |
| Magnesium Chloride      | saturated      | ord. temp.   | 0.171              | (Vg.)               |
| Strontium Chloride      | "              | "            | o.o88              | (Vg.)               |
| Zinc Chloride           | "              | 24.5         | 0.0134             | (H.)                |
| Potassium Chloride      | "              | ord. temp.   | 0.0475             | (Vg.)               |
| Potassium Chloride      | 24.95%         | 19.6         | 0.0776             | (H.)                |
| Potassium Cyanide       | 5: 100         | 25           | 2.75               | (Vl.)               |
| Potassium Cyanide       | 5: 100         | 25           | 5.24               | (Cohn*)             |
| Potassium Sulphocyanide | 10:100         | 25           | 0.11               | (Vl.)               |
| Sodium Chloride         | saturated      | ord. temp.   | 0.095              | (Vg.)               |
| Sodium Chloride         | 25.95%         | 19.6         | 0 105              | (H.)                |
|                         |                |              | -                  |                     |

\* See Note, page 281.

.

SILVER CHLORIDE

#### SOLUBILITY OF SILVER CHLORIDE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE AT 15°. (Schierholz – Sitzber, K. Akad. Wiss. (Vienna) 101, 2b, 8, '90.)

| Grams per 100 Grams<br>Solution. |       | Grams per<br>Solu | 100 Grams<br>tion. |
|----------------------------------|-------|-------------------|--------------------|
| KCI.                             | AgC1. | KCL.              | AgCl.              |
| 10.0                             | 0.000 | 22.47             | 0.045              |
| 14.29                            | 0.004 | 24.0              | 0.072              |
| 16.66                            | 0.008 | 25.0              | 0.084              |
| 20.00                            | 0.020 | Sp. Gr. of 25%    | KCl sol., = 1.179  |

MIXTURES OF SILVER CHLORIDE AND SILVER HYDROXIDE IN EQUI-LIBRIUM WITH AQ. POTASSIUM HYDROXIDE SOLUTIONS AT 25°. (Noyes and Kohr - J. Am. Ch. Soc. 24, 1144, '02)

| Normality | Millimols |       | the second se | Grams per Liter. |        |  |  |
|-----------|-----------|-------|-----------------------------------------------------------------------------------------------------------------|------------------|--------|--|--|
| of KOH.   | KCl.      | KOH.  | KCI.                                                                                                            | KOH.             | AgCl.  |  |  |
| 0.333     | 3.414     | 347.8 | 0.255                                                                                                           | 10.05            | 0.4896 |  |  |
| 0.065     | 0.598     | 65.0  | 0.0446                                                                                                          | 2.00             | 0.0828 |  |  |

SOLUBILITY OF SILVER CHLORIDE IN AQ. SOL. OF SODIUM CHLORIDE. (Schierholz, Vogel; Hahn.)

| Solut<br>at 1                  |         | Solubility at Different<br>Temperatures. |                  |                |  |  |  |
|--------------------------------|---------|------------------------------------------|------------------|----------------|--|--|--|
| Gms. per 100 Gms.<br>Solution. |         | t".                                      | Gms. Age<br>Solt | I per 100 Gms. |  |  |  |
| NaCl.                          | AgCl.   |                                          | 14% NaCl         | 26.3% NaCl.    |  |  |  |
| 10.0                           | 0.0025  | 15                                       | 0.007            | 0.128          |  |  |  |
| 14.29                          | 0.0071  | 30                                       | U.OII            | 0.132          |  |  |  |
| 18.18                          | 0.0182  | 40                                       | 0.014            | 0.158          |  |  |  |
| 21.98                          | 0.0439  | 50                                       | 0.023            | 0.184          |  |  |  |
| 23.53                          | 0.0706  | 70                                       | 0.042            | 0.263          |  |  |  |
| 25.64                          | 0.103   | 80                                       | 0.054            | 0.315          |  |  |  |
| 26.31                          | 0.127   | 90                                       | 0.069            | 0.368          |  |  |  |
|                                |         | 100                                      | 0.090            | 0.460          |  |  |  |
| P 2 - 04                       | 37 01 1 |                                          |                  |                |  |  |  |

Sp. Gr. of 26.31% NaCl sol. =1.207. 109 0.107 (104°) 0.571

SOLUBILITY AT 20°, 50°, AND 90° (CALC. FROM ORIGINAL). (Barlow – J. Am. Chem. Soc 28, 1446, '06)

| Gms. NaCl per 100 cc. | 0       | dissolved per<br>olution at: | F 100 CC. | Gms. NaCl<br>per 100 cc. | Gms. AgCl dissolved per 100 cc.<br>Solution at: |        |        |  |
|-----------------------|---------|------------------------------|-----------|--------------------------|-------------------------------------------------|--------|--------|--|
| Solution.             | 20°.    | 50°.                         | 90°.      | Solution.                | 200.                                            | 50°.   | 90°.   |  |
| 3.43                  | 81000.0 | 0.0016                       | 0.0067    | 11.5                     | 0.0031                                          | 0.0124 | 0.0436 |  |
| 4.60                  | 0.00025 | 0.0025                       | 0.0100    | 15.3                     | 0.0090                                          | 0.0191 | 0.0732 |  |
| 5.75                  | 0.00047 | 0.0034                       | 0.0135    | 23.0                     | 0.0313                                          | 0.0889 | 0.1706 |  |
| 7.67                  | 0.00125 | 0.0058                       | 0.0236    |                          |                                                 |        |        |  |

Results are also given for the solubility of silver chloride in aqueous sodium chloride solutions containing hydrochloric acid.

SOLUBILITY OF SILVER CHLORIDE IN AQ. SODIUM NITRATE SOLUTIONS.

|          | Gms. per 100 Gms. H <sub>2</sub> O. |         | £°.   | Gms. per 100 Gms. H2O. |         |  |
|----------|-------------------------------------|---------|-------|------------------------|---------|--|
|          | NaNO3.                              | AgCl.   |       | NaNO3.                 | AgCI.   |  |
| 5        | 0.787                               | 0.00086 | 15-20 | 0.393                  | 0.00096 |  |
| 18<br>18 | 0.787                               | 0.00146 | 46    | 0 787                  | 0.00133 |  |
| 30       | 0.787                               | 0.00233 |       | 2.787                  | 0.00253 |  |
| 45-55    | 0.787                               | 0.00399 |       | (Mulde                 | ()      |  |

285

#### Solubility of Silver Chloride in Aqueous Solutions of SODIUM THIO SULPHATE, ETC.

(Valenta; Cohn; Richards and Faber - Am. Ch. J. 21, 168, '99.)

| Salt Solution.       | t°. | Gms. AgCl | per 100 Gr   | ns. Aq. Sol | utions of C | oncentration: |
|----------------------|-----|-----------|--------------|-------------|-------------|---------------|
|                      | • • | 1.100.    | 5:100.       | 10:100.     | 15:100.     | 20:100.       |
| Sodium Sulphite      | 25  | • • •     | •••          | 0.44        | • • •       | 0.95          |
| Sodium Thio Sulphate | 20  | 0.40      | 2.00         | 4.10        | 5.50        | 6.10          |
| " " Calc. by Co      | hn* | 0.38      | 1.83         | 3.50        | 5.02        | 6.41          |
| Sodium Thio Sulphate | 35  |           |              |             | • • • •     | 9.08 1        |
| Thio Carbamide       | 25  |           |              | 0.83        | • • •       | •••           |
| Thio Cyanime         | 25  | 0.40      | I.90         | 3.90        | • • •       | ••            |
| * See Note, page 2   | 81. | † Gms. pe | r 100 cc. sc | lution (R.  | and F.).    |               |

#### SILVER CHROMATE Ag\_CrO4.

One liter of water dissolves 0.026 gm. Ag<sub>2</sub>CrO<sub>4</sub> at 18°, and 0.020 gm. at 25°. (Abegg and Cox - Z. physik, Ch. 46, 11, '03, Kohlrausch - Ibid 50, 356, '04-'05)

SOLUBILITY OF SILVER CHROMATE IN AQUEOUS SOLUTIONS OF NITRATES AT 100°

(Carpenter --- J. Soc. Chem. Ind. 5, 286, '86.)

| Solvent.          | Gms. Salt<br>per 100 cc. H <sub>2</sub> O. | Gms Ar <sub>2</sub> CrO <sub>4</sub><br>per 100 cc Sclution. |
|-------------------|--------------------------------------------|--------------------------------------------------------------|
| Water             | 0                                          | 0.064                                                        |
| Sodium Nitrate    | 50                                         | 0.064                                                        |
| Potassium Nitrate | 50                                         | 0.192                                                        |
| Ammonium Nitrate  | 50                                         | 0.320                                                        |
| Magnesium Nitrate | 50                                         | 0.256                                                        |

#### SILVER (Di) CHROMATE Ag,Cr,O,.

One liter of aqueous solution contains 0.00019 gram mols. or 0.083 gram Ag<sub>2</sub>Cr<sub>2</sub>O, at 15°. (Mayer - Ber. 36, 1741, '03 )

#### SILVER CITRATE C.H.O.Ag.

100 gms. H<sub>2</sub>O dissolve 0.0277 gm. C<sub>6</sub>H<sub>5</sub>O<sub>7</sub>Ag<sub>3</sub> at 18°, and 0.0284 gm. at 25°. (Partheil and Hübner - Archiv. Pharm. 241, 413, '03.)

#### SILVER CYANIDE AgCN.

One liter of aqueous solution contains 0.000043 gm. AgCN at 17.5° and 0.00022 gm. at 20° (by Conductivity Method). (Abegg and Cox – Böttger – Z. physik. Ch. 46, 602, '03.)

SOLUBILITY OF SILVER CYANIDE IN AQUEOUS AMMONIA SOLUTIONS. (Longi - Gazz. chem. ital. 13, 87, '83.)

100 gms. aq. ammonia of 0.998 Sp. Gr. = 5% dissolve 0.232 gm. AgCN at 12°.

100 gms. aq. ammonia of 0.96 Sp. Gr. = 10% dissolve 0.542 gm. AgCN at 18°.

#### SILVER SODIUM CYANIDE AgCN.NaCN.

100 gms. H<sub>2</sub>O dissolve 20 gms. at 20°, and more at a higher temperature. 100 gms. 85% alcohol dissolve 4.1 gms. at 20°. (Baup – Ann. chim. phys. [3] 53, 468, 58.)

#### SILVER THALLOUS CYANIDE AgCN.TICN.

100 gms.  $H_2O$  dissolve 4.7 gms. at 0°, and 7.4 gms. at 16°. (Fronmiller - Ber IL 92, '78)

#### SILVER FLUORIDE AgF.

100 gms. H<sub>2</sub>O dissolve 181.8 gms. at 15.8°. Sp. Gr. of sol. = 2.61. (Gore - Proc. Roy. Soc. 18, 158, '70.)

287

#### SILVER FULMINATE CAg<sub>2</sub>(NO<sub>2</sub>)CN.

One liter of aqueous solution contains 0.075 gm.  $C_2Ag_2N_2O_2$  at  $13^\circ$ , and 0.180 gm. at  $30^\circ$ . (Holleman – Rec. trav. chim. 15, 159, '96.)

#### SILVER HEPTOATE (Önanthylate) AgC7H13O2.

SOLUBILITY IN WATER.

| idau | $\rightarrow N$ | lonatsh. | Ch. | 14, 709, | 93; | Altschul - | Ibid. | 17, | 568, | '96.) |  |
|------|-----------------|----------|-----|----------|-----|------------|-------|-----|------|-------|--|
|------|-----------------|----------|-----|----------|-----|------------|-------|-----|------|-------|--|

| t°. | Gms. AgC7H13O2 per 100 Gms. H2O. |                   | tº. | Gms. AgC7H13O2 per 100 Gms. H2O. |                   |  |
|-----|----------------------------------|-------------------|-----|----------------------------------|-------------------|--|
| 0   | 0.0635 (Landau)                  | 0.0436 (Altschul) | 50  | 0.1652 (Landau)                  | 0.0858 (Altschul) |  |
| IO  | 0.0817                           | 0.0494            | 60  | 0.1906                           | 0.1036            |  |
| 20  | 0.1007                           | 0.0555            | 70  | 0.2185                           | 0.1351            |  |
| 30  | 0.1206                           | 0.0617            | 80  | 0.2495                           | 0.1688            |  |
| 40  | 0.1420                           | 0.0714            |     |                                  |                   |  |

#### SILVER IODATE AgIOs.

(Lau

One liter of aqueous solution contains 0.04 gram or 0.00014 g. mols. at 18°-20°, and 0.05334 gm. or 0.000189 g. mols. at 25°. (Longi; Böttger; Kohlrausch; Noyes and Kohr – J. Am. Ch. Soc. 24, 1141, '02.)

SOLUBILITY OF SILVER IODATE IN AQUEOUS SOLUTIONS OF AMMONIA AND OF NITRIC ACID AT 25°. (Longi – Gazz. chim. ital. 13, 87, '83.)

100 gms. aq. ammonia of 0.998 Sp. Gr. = 5% dissolve 2.36 gms. AgIO<sub>3</sub>. 100 gms. aq. ammonia of 0.96 Sp. Gr. = 10% dissolve 45.41 gms. AgIO<sub>3</sub>.

100 gms. aq. nitric acid of 1.21 Sp. Gr. = 35% dissolve 0.096 gm. AgIO<sub>3</sub>.

#### SILVER IODIDE AgI.

One liter of aqueous solution contains 0.0000028 gm. AgI at 20°-25°. (Average of several determinations by Kohlrausch, Abegg and Cox, etc. Holleman gives higher figures.)

I liter of aq. ammonia of 0.96 Sp. Gr. = 10% dissolve 0.035 gm. AgI at 12°. (Longi.)

SOLUBILITY OF SILVER IODIDE IN AQUEOUS SALT SOLUTIONS. (Valenta -- Monatsh. Chem. 15, 250, '94; Cohn -- Z. physik. Ch. 18, 61, '95.)

| Aq. Salt Solution.     | t°.   | Gms. AgI   | per 100 G1 | ms. Aq. Sol | ution of Co | ncentration: |
|------------------------|-------|------------|------------|-------------|-------------|--------------|
| ng, our ourout.        |       | 1:100.     | 5:100.     | 10:100.     | 15:100.     | 20:100.      |
| Sodium Thio Sulphate   | 20    | 0.03       | 0.15       | 0.30        | 0.40        | 0.60         |
| " " Calc. by Col       | hn*   | 0.623      | 2.996      | 5.726       | 8.218       | 10.493       |
| Potassium Cyanide      | 25    |            | 8.28       |             |             |              |
| " " Calc. by Col       | hn*   |            | 8.568      |             |             |              |
| Sodium Sulphite        | 25    |            |            | IO.O        |             | 0.02         |
| Ammonium Sulphocyanide | 20    | ***        | 0.02       | 0.08        | 0.13        |              |
| Calcium "              | 25    |            |            | 0.03        |             |              |
| Barium "               | 25    | ***        |            | 0.02        |             |              |
| Aluminum "             | 25    |            |            | 0.02        |             |              |
| Thio Carbamide         | 25    |            |            | 0.79        |             |              |
| Thio Cyanime           | 25    | 0.008      | 0.05       | 0.09        | ***         |              |
|                        | * See | Note, page | 281.       |             |             |              |

#### SILVER IODIDE

288

SOLUBILITY OF SILVER IODIDE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE, POTASSIUM BROMIDE AND OF POTASSIUM IODIDE AT 15°. (Schierbolz — Sitzb. K. Akad. Wiss. (Vienna) 101, 2b, 10, '90.)

|                                                      | m Chloride.    | In Potassium Iodide.<br>Gms. per 100 Gms. Solution. |         |  |  |
|------------------------------------------------------|----------------|-----------------------------------------------------|---------|--|--|
| Gms. per 100                                         | Gms. Solution. |                                                     |         |  |  |
| NaCl.                                                | AgI.           | KI.                                                 | AgI.    |  |  |
| 26.31                                                | 0.0244         | 59.16                                               | 53.13   |  |  |
| 25.00                                                | 0.00072        | 57 . 15                                             | 40.0    |  |  |
|                                                      |                | 50.0                                                | 25.0    |  |  |
|                                                      |                | 40.0                                                | 13.0    |  |  |
| In Dotossi                                           | um Bromide     | 33 · 3                                              | 7 · 33  |  |  |
| In Potassium Bromide.<br>Gms. per 100 Gms. Solution. |                | 25.0                                                | 2.75    |  |  |
| KBr                                                  | AgI            | 21.74                                               | I . 576 |  |  |
| 30.77                                                | 0.132          | 20.0                                                | 0.80    |  |  |

100 gms. sat. silver nitrate solution dissolve 2.3 gms. AgI at 11°, and 12.3 gms. at b. pt.

100 gms. pyridine dissolve 0.10 gm. AgI at 10°, and 8.60 gms. at 121°. (von Laszcynski - Ber. 27, 2285, '94.)

#### SILVER MALATE C.H.O.Ag,.

100 gms. H<sub>2</sub>O dissolve 0.0119 gm. at 18°, and 0.1216 gm. at 25°. (Partheil and Hübner – Archiv. Pharm. 241, 413, '03.)

#### SILVER NITRATE AgNO.

SOLUBILITY IN WATER.

(Etard - Ann. chim. phys. [7] 2, 526, '94; Kremers - Pogg. Ann. 92, 497, '54; Tilden and Shenstone -Phil. Trans. 23, '84.)

| <b>t °</b> . | Grams AgNO <sub>3</sub> per 100 Gms. |            |        | t°.  | Grams AgNO <sub>3</sub> per 100 Gms. |       |        |  |
|--------------|--------------------------------------|------------|--------|------|--------------------------------------|-------|--------|--|
|              | Soluti                               | on.        | Water. | τ    | Soluti                               | on.   | Water. |  |
| - 5          | 48 (Etai                             | rd)        |        | 50   | 79 (Etar                             | d) 82 | 455    |  |
| ō            | 53                                   | 55         | I 2 2  | 60   | 81.5                                 | 84    | 525    |  |
| IO           | 62                                   | 63         | 170    | 80   | 85.5                                 | 87    | 669    |  |
| 20           | 68                                   | 6 <u>9</u> | 222    | 100  | 88.5                                 | 901   | 952    |  |
| 25           | 70.5                                 | 72         | 257    | I 20 | 91                                   | 95    | 1900   |  |
| 30           | 72.5                                 | 75         | 300    | 140  | 93 · 5                               | • • • | • • •  |  |
| 40           | 76.5                                 | 70         | 376    | 160  | 05                                   |       |        |  |

100 gms. 2HNO, 3H<sub>2</sub>O dissolve 3.33 gms. AgNO, at 20°, and 16.6 gms. at 100°.

100 gms. conc. HNO3 dissolve 0.2 gm. AgNO3. (Schultz – Zeit. Chem. [2] 5. 531, '69.) MUTUAL SOLUBILITY OF SILVER NITRATE AND SODIUM NITRATE IN AQ. ETHYL ALCOHOL.

(Hissnik - Z. physik. (h. 32, 557. '00.)

| Results at 25°.<br>(In Aq. Alcohol of d <sub>20</sub> 0.945 — 37 wt. %.) |                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Results at 50°.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                          |                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (In Aq. Alcohol of d <sub>17</sub> 0.859 - 75 wt. %.)                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Gms. per 100<br>Gms. Sol.                                                |                                                                                            | Wt. per cent in<br>Mix Crystals.                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gms. per 100<br>Gms. Sol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Wt. per cent in<br>Mix Crystals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| NaNO3.                                                                   | AgNO <sub>3</sub> .                                                                        | NaNO <sub>2</sub> .                                                                                                                                          | AgNO <sub>3</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NaNO <sub>3</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AgNO <sub>3</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NaNO3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 0.0                                                                      | 100                                                                                        | 0.0                                                                                                                                                          | 29.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 8.78                                                                     | 99 . I                                                                                     | 0.9                                                                                                                                                          | 27.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99 · 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 20 . 42                                                                  | 42.9                                                                                       | 57 · I                                                                                                                                                       | 26.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99 · 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | o.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 23.2                                                                     | 33.6                                                                                       | 66.4                                                                                                                                                         | 23.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 42 . 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 57 · I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 24 . 82                                                                  | 27 .6                                                                                      | 72.4                                                                                                                                                         | 18.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 · I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 69.o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 26.41                                                                    | 9.9                                                                                        | 90 · I                                                                                                                                                       | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 82.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 26.77                                                                    | 0.0                                                                                        | 100.0                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                          | Alcohol of d<br>er 100<br>Sol.<br>NaNO2.<br>0.0<br>8.78<br>20.42<br>23.2<br>24.82<br>26.41 | Alcohol of $d_{20} \circ .945 = 37$<br>er roo<br>NaNO3. Mix C<br>NaNO3. AgNO3.<br>0.0 IOO<br>8.78 99.1<br>20.42 42.9<br>23.2 33.6<br>24.82 27.6<br>26.41 9.9 | Alcohol of $d_{30} \circ 0.945 = 37$ wt. %.)<br>er roo<br>Sol.<br>NaNO3.<br>0.0<br>8.78<br>20.42<br>23.2<br>23.2<br>23.6<br>Marce cent in<br>Mix Crystals.<br>AgNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaNO3.<br>NaN | Alcohol of $d_{30} \circ 0.945 - 37$ wt. %.)       (In Aq. A         er roo       Wt. per cent in       Gms. r         Sol.       Mix Crystals.       Gms. r         NaNO3.       AgNO3.       NaNO3.       AgNO3.         0.0       100       0.0       29.78         8.78       99.1       0.9       27.9         20.42       42.9       57.1       26.4         23.2       33.6       66.4       23.0         24.82       27.6       72.4       18.3         26.41       9.9       90.1       9.5 | Alcohol of $d_{20} \circ .0.45 = .37$ wt. %.)(In Aq. Alcohol of $d_{11} \cdot G$ er rooGin Mix Crystals.(In Aq. Alcohol of $d_{11} \cdot G$ NaNO3.(In Aq. Alcohol of $d_{11} \cdot G$ OL (10 0) 00 0 0 0 0(20 2) 78 0.020 .42 42 .9 57 ·I 26 .4 4.223 .2 33 .6 66 .4 23 .0 6 .324 .82 27 .6 72 .4 18 .3 7 .126 .41 9 .9 90 .1 9 .5 8 .3 | Alcohol of $d_{20} \circ 0.945 = 37$ wt. %.)       (In Aq. Alcohol of $d_{17} \circ .859 = 75$ wt. per cent in Mix Crystals.         NaNO3.       Mix Crystals.       Gms. per roo       Wt. per cent in Gms. per roo       Mix Crystals.         NaNO4.       AgNO4.       NaNO5.       Mix Crystals.       Gms. per roo       Wt. per cent in Gms. per roo         0.0       IOO       0.0       29.78       0.0       IOO         8.78       99.1       0.9       27.9       2.5       99.5         20.42       42.9       57.1       26.4       4.2       99.3         23.2       33.6       66.4       23.0       6.3       42.9         24.82       27.6       72.4       18.3       7.1       31.0         26.41       9.9       90.1       9.5       8.3       17.5 |  |  |

.

#### SOLUBILITY OF SILVER NITRATE IN ALCOHOLS. (de Bruyn - Z. physik. Ch. 10, 783, '02.)

100 gms. abs. methyl alcohol dissolve 3.72 gms. AgNO, at 19°. 100 gms. abs. ethyl alcohol dissolve 3.10 gms. AgNO3 at 19°.

SOLUBILITY OF SILVER NITRATE IN AQUEOUS ETHYL ALCOHOL. (Eder - J. pr. Ch. [2] 17, 45, '78.)

| Sp. Gr. of Aq.        | Volume               | Gms. AgNO | a per 100 Gms. A | q. Alcohol at: |
|-----------------------|----------------------|-----------|------------------|----------------|
| Alcoholic<br>Mixture. | per cent<br>Alcohol. | 15°.      | 50°.             | 75°.           |
| 0.815                 | 95                   | 3.8       | 7.3              | 18.3           |
| 0.863                 | 80                   | 10.3      |                  | 42.0           |
| 0.889                 | 70                   | 22.I      |                  |                |
| 0.912                 | 60                   | 30.5      | 58.I             | 89.0           |
| 0.933                 | 50                   | 35.8      |                  |                |
| 0.951                 | 40                   | 56.4      | 98.3             | 160.0          |
| 0.964                 | 30                   | 73.7      |                  |                |
| 0.975                 | 20                   | 107.0     | 214.0            | 340.0          |
| 0.986                 | IO                   | 158.0     |                  |                |

100 gms. of a mixture of 1 vol. (95%) alcohol + 1 vol. ether dissolve 1.6 gms. AgNO<sub>2</sub> at 15°. 100 gms. of a mixture of 2 vols. (95%) alcohol + 1 vol. ether dis-

solve 2.3 gms. AgNO, at 15°.

100 gms. H<sub>2</sub>O sat. with ether dissolve 88.4 gms. AgNO<sub>2</sub> at 15°. (Eder.)

100 gms. acetone dissolve 0.35 gm. AgNO, at 14°, and 0.44 gm. at 18°. (von Lasczynski - Ber. 27, 2285, '04; Naumann - Ber. 37, 4332, '04.)

#### SILVER NITRITE AgNO2.

SOLUBILITY IN AQUEOUS SOLUTIONS OF SILVER NITRATE AT 18°. (Naumann and Rucker - Ber. 38, 2293, '05.)

| Mols. per Liter |         | Grams per Liter. |        | Mols. pe | r Liter | Grams per Liter. |                     |
|-----------------|---------|------------------|--------|----------|---------|------------------|---------------------|
| AgNO3.          | AgNO2.  | AgNO3            | AgNO2. | AgNO3.   | AgNO2.  | AgNO3.           | AgNO <sub>2</sub> . |
| 0.0000          | 0.02067 | 0.000            | 3.184  | 0.02067  | 0.01435 | 3.512            | 2.201               |
| 0.00258         | 0.01975 | 0.439            | 3.042  | 0.04134  | 0.01168 | 7.024            | I.799               |
| 0.00517         | 0.01900 | 0.878            | 2.926  | 0.08268  | 0.00961 | 14.048           | 1.480               |
| 0.01033         | 0.01689 | 1.756            | 2.601  |          |         |                  |                     |

#### SILVER OXALATE C.O.Ag.

One liter of H<sub>2</sub>O dissolves 0.035 gm. at 18°, and 0.0365 gm. at 20°. (Böttger; Kohlrausch.)

#### SILVER OXIDE Ag.O.

One liter of H<sub>2</sub>O dissolves 0.021 gm. at 20°, and 0.025 gm. at 25°. (Noyes and Kohr; Böttger; Abegg and Cox.)

#### SILVER PERMANGANATE AgMnO.

100 gms. cold water dissolve 0.92 gm., hot water dissolves more. (Mitscherlich - Pogg. Ann. 25, 301, '32.)

#### SILVER PHOSPHATE Ag,PO,.

One liter of water dissolves 0.00644 gm. at 20°.

(Böttger - Z. physik. Ch 46, 602, '03.)

#### SILVER PROPIONATE C,H,COOAg.

SOLUBILITY IN WATER.

(Raupenstrauch — Monatsh. Ch. 6, 587, '85; Arrhenius — Z. physik. Ch. 11, 396, '93; Goldschmidt — Ibid. 25, 93, '98.)

| <b>t°</b> . | Gms. CaHaO2Ag<br>per Liter. | t°. | Gms. C <sub>2</sub> H <sub>5</sub> O <sub>2</sub> Ag<br>per Liter. | t°. | Gms. CaH <sub>5</sub> O <sub>2</sub> Ag<br>per Liter. |
|-------------|-----------------------------|-----|--------------------------------------------------------------------|-----|-------------------------------------------------------|
| 0           | 5.12                        | 20  | 8.36 (8.48)                                                        | 50  | 13.35                                                 |
| 10          | 6.78                        | 25  | 9.06                                                               | 70  | 17.64                                                 |
| 18.2        | 8.36 (A.)                   | 30  | 9.93 (9.70)                                                        | 80  | 20.30                                                 |

SOLUBILITY OF SILVER PROPIONATE IN AQUEOUS SOLUTIONS OF: (Arrhenius.)

| Silver Nitrate at 19.7°. |            |                     |            | Sodiu     | im Propio | nate at 1        | :8.2°.   |
|--------------------------|------------|---------------------|------------|-----------|-----------|------------------|----------|
| Mols. per Liter.         |            | Grams               | per Liter. | Mols. p   | er Liter. | Grams per Liter. |          |
| AgNO3.                   | CallaO2Ag. | ÁgNO <sub>3</sub> . | CaHrOaAg.  | CaH5O2Na. | CaHsO2Ag. | CaH5O2Na.        | CaHsO2Ag |
| <b>O</b> · <b>O</b>      | 0.0471     | 0.0                 | 8.519      | 0.0       | 0.0462    | 0.0              | 8.362    |
| 0.0133                   | 0.0415     | 2 . 289             | 7.511      | 0.0167    | 0.0393    | 1.607            | 7.114    |
| 0.0267                   | 0.0379     | 4.577               | 6.86       | 0.0333    | 0.0345    | 3.215            | 6.244    |
| 0.0533                   | 0.0307     | 9.059               | 5.556      | 0.0667    | 0.0258    |                  | 4.670    |
| 0.100                    | 0.0222     | 16.997              | 4.019      | 0.1333    | 0.0191    | 12.859           | 3.456    |
|                          |            |                     |            | 0.2667    | 0.0131    | 25.718           | 2.371    |
|                          |            |                     |            | 0.5000    | 0.0101    | 48.77            | 1.828    |

#### SILVER SALICYLATE C<sub>6</sub>H<sub>4</sub>.OH.COOAg 1,2.

One liter of aqueous solution contains 0.95 gm. at 23°.

(Holleman - Z. physik. Ch. 12, 129, '93.)

#### SILVER SUCCINATE C.H.O.Ag.

100 gms. H<sub>2</sub>O dissolve 0.0176 gm. at 18°, and 0.0199 gm. at 25°. (Partheil and Hübner – Archiv. Pharm. 241, 413, '03)

#### SILVER SULPHATE Ag<sub>2</sub>SO<sub>4</sub>.

SOLUBILITY IN WATER.

(Euler - Z. physik Ch. 40, 314. '04; Wright and Thomson - Phil. Mag. [5] 17, 288, '84; Wentzel -Dammer's "Handbuch " II, 2, 858; Drucker - Z. anorg. Ch. 28, 362, '01.)

| t°. Gms. Ag <sub>2</sub> SO <sub>4</sub> per Liter. Gm. Mols. Ag <sub>2</sub> SO <sub>4</sub> p | per Liter. |
|-------------------------------------------------------------------------------------------------|------------|
|-------------------------------------------------------------------------------------------------|------------|

| 17  | 7.70         | 0.0247  | (Euler.)    |
|-----|--------------|---------|-------------|
| 18  | 7.28         | 0.0233  | (W. and T.) |
| 25  | <b>10</b> .8 | 0.0257  | (D.)        |
| 100 | 14.60        | • • • • | (W.)        |

One liter of aqueous solution in contact with a mixture of silver sulphate and silver acetate contains 3.95 gms.  $Ag_2SO_4 + 8.30$  gms.  $CH_3COOAg$  at  $17^\circ$ . Sp. Gr. of solution = 1.0094. (Euler.)

# Solubility of Silver Sulphate at 25° IN Aqueous Solutions of:

| Sulphuric Acid. |                                  |         |                                  | Potassium Sulphate.               |                                  |                                   |           |  |
|-----------------|----------------------------------|---------|----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|-----------|--|
| Mols. pe        | r Liter.                         | Grams r | or Liter.                        | Mols. per                         | r Liter.                         | Grams p                           | er Liter. |  |
| Ag2SO4          | H <sub>2</sub> SO <sub>4</sub> . | Ag2SO4. | H <sub>2</sub> SO <sub>4</sub> . | Ag <sub>2</sub> SO <sub>4</sub> . | K <sub>2</sub> SO <sub>4</sub> . | Ag <sub>2</sub> SO <sub>4</sub> . | K2504.    |  |
| 0.0260          | 0 02                             | 8.11    | o.98                             | 0.0246                            | 0.02                             | 7.67                              | I.74      |  |
| 0.0264          | 0.04                             | 8.23    | 1.96                             | 0.0236                            | 0.04                             | 7 . 36                            | 3 · 49    |  |
| 0.027I          | 0 · IO                           | 8.45    |                                  | 0.0231                            | 0.10                             | 7.20                              | 8.72      |  |
| 0.0275          | 0 · 20                           | 8.58    | 9.81                             | 0.0232                            | 0.20                             | 7 . 24                            | 17.44     |  |

#### SILVER SULPHATE

SOLUBILITY OF SILVER SULPHATE AT 18° IN AQUEOUS SOLU-TIONS OF:

201

#### (Eder - J. pr. Ch. [2] 17, 44, '78.)

| Ammonium Sulphate.             |                      | Potassiu          | m Sulphate. | Sodium Sulphate.              |         |  |
|--------------------------------|----------------------|-------------------|-------------|-------------------------------|---------|--|
| Gms. per 100 Gms.<br>Solution. |                      | Gms. per<br>Solut | 100 Gms.    | Gms. per 100 Gms<br>Solution. |         |  |
| (NH4)2SO4.                     | Ag <sub>2</sub> SO4. | K2SO4.            | Ag2SO4.     | NagSO4.                       | Ag2SO4. |  |
| 5                              | 0.66                 | 6                 | 0.60        | 12                            | 0.65    |  |
| 15                             | 0.85                 | 18                | 0.76        | 32                            | 0.80    |  |

#### SILVER SULPHOCYANIDE AgSCN.

One liter of aqueous solution contains 0.0002 gm. at 25°, and 0.0064 gm. at 100°.

(Abegg and Cox - Z. physik. Ch. 46, 11, '03; Böttger - Ibid. 46, 60, '05; 56, 93, '06.)

### Solubility of Mixtures of Silver Thiocyanate and Potas-sium Thiocyanate in Water at 25°. (Foote - Am. Ch. J. 30, 332, '03.)

| Gms. per 100 | Gms. Solution. | Mols. per 10 | Mols. H2O. | Solid                         |
|--------------|----------------|--------------|------------|-------------------------------|
| KSCN.        | AgSCN.         | KSCN.        | AgSCN.     | Phase.                        |
| 70.53        |                | 44.36        |            | KSCN                          |
| 66.55        | 9.32           | 51.13        | 4.19       | KSCN + 2KSCN AgSCN            |
| 64.47        | 10.62          | 47.98        | 4.60]      |                               |
| 61.25        | 11.76          | 42.07        | 4.72       | Double Salt.<br>2KSCN.AgSCN = |
| 58.34        | 13.55          | 38.47        | 5.23       | 53.92% KSCN                   |
| 53.21        | 17.53          | 33.71        | 6.50)      | TOOL A COLL                   |
| 50.68        | 20.43          | 32.52        | 7.67       | 2KSCN.AgSCN+<br>KSCN.AgSCN    |
| 49.43        | 20.32          | 30.29        | 7.287      | Double Salt.                  |
| 32.51        | 18-34          | 12.26        | 4.05 }     | KSCN.AgSCN =                  |
| 24.68        | 16.41          | 7.77         | 3.02       | 36.9% KSCN                    |
| 23.86        | 16.07          | 7.36         | 2.90       | KSCN AgSCN + AgSCN            |

#### SILVER TARTRATE C.H.O.Ag2.

100 gms. H2O dissolve 0.2012 gm. C4H4OeAg2 at 18°, and 0.2031 gm, at 25°. (Partheil and Hübner - Archiv. Pharm. 241, 413, '03.)

#### SILVER VALERATES AgC.H.O.

#### SOLUBILITY IN WATER

|     |                                                                  | SOLUBILIT | Y IN WATE                                                                                 | R.                      |        |  |  |
|-----|------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------|-------------------------|--------|--|--|
|     | Normal Val<br>CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> .C |           | Iso Valerate<br>CH <sub>3</sub> .CH(CH <sub>3</sub> ) <sub>2</sub> CH <sub>2</sub> COOAg. |                         |        |  |  |
|     |                                                                  |           |                                                                                           | - Ibid. 8, 563, '87     |        |  |  |
|     | Gms. per 100                                                     | Gms. H2O. |                                                                                           | Gms. per 100 Gnis. HgO. |        |  |  |
| t°. | Normal V.                                                        | Iso V.    | t°.                                                                                       | Normal V.               | Iso V. |  |  |
| 0   | 0.229                                                            | 0.177     | 50                                                                                        | 0.474                   | 0.360  |  |  |
| IO  | 0.259                                                            | 0.211     | 60                                                                                        | 0.552                   | 0.401  |  |  |
| 20  | 0.300                                                            | 0.246     | 70                                                                                        | 0.636                   | 0.443  |  |  |
| 30  | 0.349                                                            | 0.283     | 80                                                                                        |                         | 0.486  |  |  |
| 40  | 0.408                                                            | 0.321     |                                                                                           |                         |        |  |  |
|     |                                                                  |           |                                                                                           |                         |        |  |  |

100 gms. H<sub>2</sub>O dissolve 0.73 gm. silver valerate at 20°.

(Markwald - Ber. 32, 1089, '99.)

#### SILVER VALERATE

#### 292

#### SOLUBILITY OF SILVER VALERATE IN AQUEOUS SOLUTIONS OF SILVER ACETATE, SILVER NITRATE AND OF SODIUM VALERATE.

(Arrhenius - Z. physik. Ch. 11 396, '93.)

| In Silver Acetate at 17.8°. |                     |           |           | In Silver Nitrate at 16.5°. |            |                 |          |
|-----------------------------|---------------------|-----------|-----------|-----------------------------|------------|-----------------|----------|
| Mols. p                     | Mols. per Liter. Mo |           | Mols.     | Mols. per Liter.            |            | Gms. per Liter. |          |
| CallaOaAg.                  | CsHgO2Ag.           | C2H2O2Ag. | CaHaOsAg. | AgNO2                       | CallaOsAg. | AgNOs.          | C.H.O.A. |
| 0.0                         | 0.0094              | 0.0       | 1.96      | 0.0                         | 0.0094     | 0.0             | 1.96     |
| 0.0067                      | 0.0070              | 1.13      | 1.46      | 0.0067                      | o.cc68     | I.I4            | I .42    |
| 0.0135                      | 0.0057              | 2.27      | 1.19      | 0.0133                      | 0.0051     | 2 . 29          | I .07    |
| 0.0270                      | 0.0037              | 4 - 54    | 0.77      | 0.0267                      | 0.0031     | 4.58            | 0.65     |
| 0.0505                      | 0.00265             | 8.48      | 0.55      | 0.1000                      | 0.0012     | 17.00           | 0.25     |

#### In Sodium Valerate at 18.6°.

| Mols. pe  | r Liter.   | Grams. per | Liter.    |
|-----------|------------|------------|-----------|
| C2H2O2Na. | CallaOsAg. | C3H2O2Na.  | CsHeOsAg. |
| 0.0       | 0.0095     | 0.0        | 1.986     |
| 0.0175    | 0.0047     | 2.17       | 0.982     |
| 0.0349    | 0.0030     | 4.32       | 0.627     |
| o.o698    | 0.0018     | 8.65       | 0.376     |
| 0 . 1395  | 0.0015     | 17.31      | 0.313     |

#### SILVER VANADATE Ag.V.O.12.

One liter of aqueous solution contains 0.047 gram at 14°, and 0.073 gm. at 100°. (Carnelly – Liebig's Ann. 166, 155, '73.)

#### **SODIUM ACETATE** CH<sub>3</sub>COONa.<sub>3</sub>H<sub>2</sub>O.

SOLUBILITY IN WATER.

Interpolated from original.

| polaica      | monn |                                            | (Schiavor – | - Gazz. c   | him. ital. 32, II, 532, '02.)                  |
|--------------|------|--------------------------------------------|-------------|-------------|------------------------------------------------|
| <b>t °</b> . |      | CH <sub>3</sub> COONa<br>Gms.<br>Solution. | t°.         | Gms.<br>per | CH <sub>3</sub> COONa<br>100 Gms.<br>Solution. |
| o            | 34   | 25.4                                       | 25          | 53          | 34.7                                           |
| 10           | 41   | 29 · I                                     | 30          | 57          | 36.3                                           |
| 20           | 49   | 32.9                                       | 40          | 65          | 39 · 4                                         |
|              |      |                                            |             |             |                                                |

100 gms. H<sub>2</sub>O dissolve 46.9 gms. CH<sub>3</sub>COONa at 31.5°. (Köhler – Z. Ver. Zuckerind. 47, 447, '97.) 100 cc. aqueous solution contain 41.11 gms. CH<sub>3</sub>COONa at 10°. (Enklaar.)

SOLUBILITY OF SODIUM ACETATE IN AQUEOUS SOLUTIONS OF ACETIC ACID.

| (Enk                  | laar — Rec. trav | . chim. 20, 183, 'o | or.)       |
|-----------------------|------------------|---------------------|------------|
| Gram Mols.            | per Liter.       | Grams               | per Liter. |
| CH <sub>3</sub> COOH. | CH3COONa.        | CH3COOH.            | CH3COONa.  |
| 0                     | 5.0              | 0.0                 | 4II.I      |
| 0.085                 | 5.0              | 5 . I               | 410.3      |
| O . I 2               | 5.0              | 7.2                 | 410.4      |
| Solubility of Soc     | <b>Коом</b> Тем  |                     |            |

100 gms. alcohol dissolve 1.81 gms.  $CH_3COONa$  or 7.49 gms.  $CH_3$  COONa.3H<sub>2</sub>O.

AT

|                      | LITY OF SODIUI<br>At 18°.    |          |          | Aqueous .<br>erent Temp |                 |
|----------------------|------------------------------|----------|----------|-------------------------|-----------------|
|                      | chim. phys. [4] 5, 158,      |          | it Diit  | (Schiavor.)             | scratures       |
|                      | Gms. CH3COONa                |          | Degree   | Gms. per re             | o Gms. Alcohol. |
| per cent<br>Alcohol. | per 100 Gms.<br>Aq. Alcohol. | t°.      | Alcohol. | CH3COONa.               | CHaCOONa.3H2O.  |
| 5.2                  | 38.0                         | 8        | 98.4     | 2.08                    | 3.45            |
| 9.8                  | 35.9                         | 12       | 98.4     | 2.12                    | 3.51            |
| 23.0                 | 29.8                         | 19       | 98.4     | 2.33                    | 3.86            |
| 29.0                 | 27.5                         | II       | 90       | 2.07                    | 3-42            |
| 38.0                 | 23.5                         | 13       | 90       | 2.13                    | 3.52            |
| 45.0                 | 20.4                         | 15<br>18 | 63       | 13.46                   | 22.32           |
| 59.0                 | 14.6                         | 18       | 63       | 13.88                   | 23.03           |
| 86.0                 | 3.9                          | 21       | 63       | 14.65                   | 24.30           |
| 91.0                 | 2.1                          | 23       | 40       | 28.50                   | 47.27           |

203

100 gms. H<sub>2</sub>O dissolve 237.6 gms. sugar + 57.3 grams CH<sub>3</sub>COONa, or 100 gms. of the saturated solution contain 58.93 gms. sugar + 14.44 gms. CH<sub>3</sub>COONa at 31.25°. (Köhler)

#### SODIUM ARSENATE Na3AsO4.12H2O.

100 grams aqueous solution contain 21.1 grams Na<sub>3</sub>AsO<sub>4</sub>.12H<sub>2</sub>O. (=10.4 gms. Na<sub>3</sub>AsO<sub>4</sub>) at 17°. Sp. Gr. of solution = 1.1186.

(Schiff – Liebig's Ann. 113, 350, '60.) 100 grams glycerine dissolve 50 gms. sodium arsenate at 15.5°.

(Pharm. Centralh. No. 30, '81.)

#### SODIUM HYDROGEN ARSENATE Na2HAsO4.12H2O.

100 gms.  $H_2O$  dissolve 17.2 gms.  $Na_2HAsO_{4.12}H_2O$  (= 7.3 gms. anhydrous) at 0°. 56.0 gms. (= 19.89 gms. anhydrous) at 14°. Sp. Gr. 1.1722, 37.0 gms. anhydrous at 21°, and 140.7 gms. hydrated at 30°. (Schiff – Liebig's Ann. 113, 350, '60; Tilden – J. Ch. Soc. 45, 409, '84.)

#### SODIUM BENZOATE C.H.COONa.

100 gms. H<sub>2</sub>O dissolve 62 gms. at 25°, and 77 gms. at b. pt. 100 gms. alcohol dissolve 2.3 gms. at 25°, and 8.3 gms. at b. pt. (U.S.P.)

#### SODIUM (Tetra) BORATE Na2B.O7.10H2O (Borax).

SOLUBILITY IN WATER.

(Horn and Van Wagener - Am. Ch. J. 30, 347, '03.)

| t°.  | Gms. Na <sub>2</sub> B <sub>4</sub> O <sub>7</sub><br>per 100 Gms.<br>H O. | t°, | Gms. Na <sub>2</sub> B <sub>4</sub> O <sub>7</sub><br>per 100 Gms.<br>H <sub>2</sub> O. | t°. | per 10 | Na <sub>2</sub> B <sub>4</sub> O <sub>7</sub><br>o Gms. |
|------|----------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------|-----|--------|---------------------------------------------------------|
| 5    | 1.3                                                                        | 50  | 10.5                                                                                    | 60  | 19.4   | 20.3                                                    |
| IO   | 1.6                                                                        | 54  | 13.3                                                                                    | 62  | 22.0   | 20.7                                                    |
| 21.5 | 2.8                                                                        | 55  | 14.2                                                                                    | 65  | 22.0   | 21.9                                                    |
| 30   | 3.9                                                                        | 56  | 15.0                                                                                    | 70  | 24     | .4                                                      |
| 37.5 | 5.6                                                                        | 57  | 16.0                                                                                    | 80  | 31     | .5                                                      |
| 45   | 8.1                                                                        |     |                                                                                         | 90  | 41     | .0                                                      |
|      |                                                                            |     |                                                                                         | 100 | 52     | .5                                                      |

Transition temperature  $Na_2B_4O_7.10H_2O \rightarrow Na_2B_4O_7.5H_2O$  approximately 62°. Sp. Gr. of saturated solution at  $15^\circ = 1.032$ . (Gerlach)

#### 294

SOLUBILITY OF SODIUM BORATES IN WATER AT 30°.

(Dukelski - Z. anorg. Ch. 50, 42, '06, complete references given.)

| Gms. per 100      | Gms. Solution.                  | Gms. per 100      | Gms. Residue.                   | Solid                                                              |
|-------------------|---------------------------------|-------------------|---------------------------------|--------------------------------------------------------------------|
| K <sub>3</sub> O. | B <sub>2</sub> O <sub>3</sub> . | K <sub>2</sub> O. | B <sub>2</sub> O <sub>3</sub> . | Phase.                                                             |
| 42.0              | •••                             | •••               |                                 | NaOH.HgO                                                           |
| 41.37             | 5.10                            | 43 · 54           | 4.19                            | **                                                                 |
| 38.85             | 5.55                            | 37.20             | 11.18                           | Na <sub>2</sub> O_B <sub>2</sub> O <sub>3-4</sub> H <sub>2</sub> O |
| 34.44             | 3.73                            | 33.52             | 10. <b>80</b>                   | 44                                                                 |
| 29.39             | 2.51                            | 29.63             | 10.11                           |                                                                    |
| 26.13             | 2.75                            | 27.85             | 15.21                           | "                                                                  |
| 23.00             | 3.82                            | 24.91             | 11.60                           | 4                                                                  |
| 16.61             | 13.69                           | 21.29             | 20.64                           | "                                                                  |
| 21.58             | 4.63                            | 24.52             | 19.04                           | Na2O.B2O3.4H2O+Na2O.B2O3.8H2O                                      |
| 20.58             | 4.69                            | 21.61             | 16.59                           | Na2O.B2O2.8H2O                                                     |
| 15.32             | 6.21                            | 19.70             | 17.84                           | **                                                                 |
| 12.39             | 9.12                            | 18.05             | 18.17                           | 44                                                                 |
| 8.85              | 10. <b>49</b>                   | 11.72             | 20.62                           | Na2O.2B2O3.10H2O                                                   |
| 5.81              | 6.94                            | 10.82             | 21.31                           | **                                                                 |
| 1.88              | 2.4I                            | 7.31              | 15.50                           | "                                                                  |
| 1.38              | 5.16                            | 7.16              | 17.44                           | 44                                                                 |
| 2.02              | 7.79                            | 6.24              | 16.38                           | "                                                                  |
| 4.08              | 17.20                           | 8.96              | 29.20                           | Na2O.2B2O3.10H2O + Na2O.5B2O3.10H2O                                |
| 3.79              | 15.84                           | 5.68              | 28.19                           | NagO.5B2O3.10H2O                                                   |
| 2.26              | 12.14                           | 5.21              | 29.19                           | 4                                                                  |
| I.99              | 11.84                           | 5.74              | 39.66                           | Na2O.2B2O3.10H2O + B(OH)3                                          |
| 1.86 I            | 11.18                           | 1.06              | 28.78                           | B(OH)3                                                             |
| 0.64              | 6.11                            | 0.31              | 31.19                           | 48                                                                 |
| •••               | 3 · 54                          | •••               |                                 |                                                                    |

100 gms. alcohol of 0.941 Sp. Gr. dissolve 2.48 gms. sodium borate at 15.5°.

100 gms. glycerine dissolve 60.3 gms. at 15.5°, and 100 gms. at 80°. (U.S.P.)

Gaudolphe — J. pharm. chim. [4] 22, 366, '75 — says that glycerine dissolves its weight of sodium borate at ordinary temperatures.

#### SODIUM BROMATE NaBrO<sub>3</sub>.

#### SOLUBILITY IN WATER.

(Kremers - Pogg. Ann. 94, 271, 55: 97, 5, '56.)

| t °.                                                     | ٥°   | 20 <sup>0</sup> | 40°  | 60°  | 80°  | 100° |
|----------------------------------------------------------|------|-----------------|------|------|------|------|
| Gms. NaBrO <sub>3</sub> per 100<br>Gms. H <sub>2</sub> O | 27.5 | 34.5            | 50.2 | 62.5 | 75.7 | 90.9 |

Sp. Gr. of saturated solution at  $19.5^{\circ} = 1.231$ . (Gerlach.)

#### SODIUM BROMIDE NaBr.2H,O.

#### SOLUBILITY IN WATER.

(Etard - Compt. rend. 98, 1432, '84; de Coppet - Ann. chim. phys. [5] 30, 411, '83.)

| t°.  | Grams NaBr per 100<br>Gms. H <sub>2</sub> O. |       | <b>t °</b> . | Grams NaBr per 100<br>Gms. H2O. |      |
|------|----------------------------------------------|-------|--------------|---------------------------------|------|
| - 20 | 57·5 <b>*</b>                                | 71.4  | 50           | 95-112*                         | 116† |
| 0    | 66                                           | 79.5  | 60           | 112                             | 117  |
| 10   | 72                                           | 84.5  | 80           | 113                             | 119  |
| 20   | 77                                           | 90.3  | 100          | 114                             | 121  |
| 30   | 82.5                                         | 97.3  | 120          | 116                             | 124  |
| 40   | 88.0                                         | 105.8 | 140          | 118                             | •••  |
|      | * Etar                                       | d.    | † de (       | Coppet.                         |      |

Transition temperature for NaBr.2H, $O \rightarrow$  NaBr is approximately 50°. Kremers — Pogg. Ann. 97, 14, '56 — gives results which fall near those of de Coppet for the NaBr.2H<sub>2</sub>O, and near those of Etard for the NaBr section of the curve.

#### Solubility of Sodium Bromide in Aqueous Solutions of Sodium Hydroxide at 17°.

#### (Ditte - Compt. rend. 124, 30, '97.)

| Gms. per 100 Gms. HgO. |       | Gms. per 100 | Gms. H <sub>2</sub> O. | Gms. per 100 Gms. HgO. |       |
|------------------------|-------|--------------|------------------------|------------------------|-------|
| NaOH.                  | NaBr. | NaOH.        | NaBr.                  | NaOH.                  | NaBr. |
| 0.0                    | 91.38 | 17.17        | 63.06                  | 28.43                  | 48.00 |
| 3.26                   | 79.86 | 19.12        | 62.51                  | 36.61                  | 38.41 |
| 9.24                   | 68.85 | 22.35        | 59.60                  | 46.96                  | 29.37 |
| 13.43                  | 64.90 | 24.74        | 55.03                  | 54.52                  | 24.76 |

#### SOLUBILITY OF SODIUM BROMIDE IN ALCOHOLIC SOLUTIONS.

(Rohland – Z. anorg. Ch. 18 327, '98; Z. anal. Ch. 44, 252, '05; de Bruyn – Z. physik. Ch. 10, 783 92; Eder – Dingl. polyt. 221, 89, '75.)

| Alcohol   |        | Concentration<br>of Aq. Alcohol. | <b>t °</b> . | Gms. NaBr<br>per 100 Gms.<br>Alcohol. |                 |
|-----------|--------|----------------------------------|--------------|---------------------------------------|-----------------|
| Methyl A  | lcohol | $d_{15} = 0.799$                 | room temp.   | 21.7                                  | (R.)            |
| Ethyl     | "      | $d_{15} = 0.810$                 | " -          | 7.14                                  | **              |
| Propyl    | "      | $d_{15} = 0.816$                 | "            | 2.01                                  | "               |
| Ethyl     | "      | 90% by vol.                      | ?            | 4.0 (hy                               | drated NaBr)    |
| Methyl    | "      | Absolute                         | 19.5         | 17.35                                 | (de Bruyn.)     |
| Ethyl     | "      | "                                | 15           | 6.3 (N                                | Br2HgO) (Eder.) |
| Ethyl Eth | er     | ·:                               | 15           | 0.08                                  |                 |

#### SODIUM CARBONATE Na,CO, 10H,O.

#### SOLUBILITY IN WATER.

(Mulder; Löwel – Ann. chim. phys. [3] 33, 382, '51; at 15°, Reich – Monatah. Ch. 12, 464, '91; at 32-34-5° Na<sub>2</sub>CO<sub>2-7</sub>H<sub>2</sub>O 6, Ketner – Z. physik. Ch. 39, 646, '01-'02.) Solid Phase:

| <b>\$*</b> . | Na <sub>2</sub> CO <sub>3</sub> . 10 H <sub>2</sub> O.<br>Gms. Na <sub>2</sub> CO <sub>3</sub><br>per 100 Gms. |              | Na <sub>2</sub> CO <sub>2</sub> .7H <sub>2</sub> O (b).<br>Gms. Na <sub>2</sub> CO <sub>2</sub><br>per 100 Gms. |              | Na <sub>2</sub> CO <sub>8</sub> .7H <sub>2</sub> O (a).<br>Gms. Na <sub>2</sub> CO <sub>8</sub><br>per 100 Gms. |           |
|--------------|----------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------|-----------|
| •••          | Water.                                                                                                         | Solution.    | Water.                                                                                                          | Solution.    | Water.                                                                                                          | So'ution. |
| 0            | 7.0                                                                                                            | 6.5          | 20 - 4                                                                                                          | 16.9         | 32.0                                                                                                            | 24 . 2    |
| 5            | 9.5                                                                                                            | 6.9          | 23.2                                                                                                            | 18.8         | 35.0                                                                                                            | 25.9      |
| IO           | 12.5                                                                                                           | II.I         | 26.2                                                                                                            | 20.8         | 37.8                                                                                                            | 27 .4     |
| 15           | 16.4                                                                                                           | 14.1         | 29 - 5                                                                                                          | 22.8         | 41.2                                                                                                            | 29.2      |
| 20           | 21.5                                                                                                           | 17.7         | 33.5                                                                                                            | 25 . I       | 45 · 5                                                                                                          | 31.3      |
| 25           | 28.2 (29.8*)                                                                                                   | 22.0         | 38.0                                                                                                            | 27.5         |                                                                                                                 |           |
| 30           | 37.8 (40.9*)                                                                                                   | 27 . 4       | 43·5                                                                                                            | 30.3         |                                                                                                                 |           |
| 32.5         | 46.2                                                                                                           | 31.6         | (32.1°) 46.6                                                                                                    | 31.8         |                                                                                                                 |           |
| 35<br>40     | 46.2<br>46.1 (49.7*)                                                                                           | 31.6<br>31.5 | (33.3°) 48.6<br>(34.5°) 51.3                                                                                    | 32.7<br>33.9 |                                                                                                                 |           |
| 60           | 46.0 (46.4*)                                                                                                   | 31.5         | Solid Phase Na                                                                                                  | a2CO3.H2     | 0                                                                                                               |           |
| 80           | 45 · 8 (45 · 2 <b>*</b> )                                                                                      | 31.4         |                                                                                                                 |              |                                                                                                                 |           |
| 100          | 45·5                                                                                                           | 31.3         |                                                                                                                 |              |                                                                                                                 |           |
| 105          | 45·2                                                                                                           | 31.1 J       |                                                                                                                 |              |                                                                                                                 |           |

\* Epple - Dissertation, Heidelberg, p. 26, 1899.

Sp. Gr. of solution saturated at 17.5°, 1.165 (Hager); at 18°, 1.172 (Kohlrausch); at 23°, 1.222 (Schiff); at 30°, 1.342 (Lunge). See also Wegschroeder and Waller — Monatsh. Chem. 26, 685, '05, for Sp. Gr. determinations at other temperatures.

#### SOLUBILITY OF SODIUM CARBONATE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AT 15°. (Reich.)

|                |                                                        |                   | (/////                                               | 1.)          |                              |                             |                   |
|----------------|--------------------------------------------------------|-------------------|------------------------------------------------------|--------------|------------------------------|-----------------------------|-------------------|
| Gms. p<br>Gms. | er 100<br>H <sub>2</sub> O.                            |                   | Gms. Na <sub>2</sub> CO <sub>3</sub><br>per 100 Gms. | Gms.<br>Gms. | per 100<br>H <sub>2</sub> O. | Gms. NaCl Gm<br>per 100 per |                   |
| NaCl.          | Na <sub>2</sub> CO <sub>3</sub><br>.10H <sub>2</sub> O | Gms.<br>Solution. | NaCl<br>Solution.                                    | NaCl.        | Na2CO3<br>.10H2O.            | Gms.<br>Solution.           | NaCl<br>Solution. |
| 0.0            | 61.42                                                  | 0.0               | 16.42                                                | 23.70        | 39.06                        | 15.96                       | 9.76              |
| 4.03           | 53.86                                                  | 2.92              | 14.47                                                | 27 ·93       | <b>39</b> · 73               | 18.26                       | 9.62              |
| 8.02           | 48. <b>00</b>                                          | 5.80              | 12.87                                                | 31.65        | 4I · 44                      | 20.06                       | 9.73              |
| 12.02          | 43 · 78                                                | 8.61              | 11.62                                                | 35 46        | 43 · 77                      | 21.75                       | 7.95              |
| 16.05          | 40.96                                                  | 11.31             | 10. <b>70</b>                                        | 37 . 23      | 45 . 27                      | <b>* 22</b> .46             | 10.13             |
| 19.82          | 39.46                                                  | 13.71             | 10.11                                                |              |                              |                             |                   |
|                |                                                        |                   |                                                      | - 17 4 - 1   |                              |                             |                   |

\* Both salts in solid phase.

# SOLUBILITY OF SODIUM CARBONATE IN AQUEOUS SOLUTIONS OF ETHYL AND OF PROPYL ALCOHOL AT 20°. (Linebarger – Am. Ch. J. 14, 380, '92.)

| Wt. per cent | Gms. N<br>per 100 G |            | Wt. per cent | Gms. Na <sub>2</sub> CO <sub>3</sub><br>per 100 Gms. Sol. |            |  |
|--------------|---------------------|------------|--------------|-----------------------------------------------------------|------------|--|
| Alcohol.     | In Ethyl.           | In Propyl. | Alcohol.     | In Ethyl.                                                 | In Propyl. |  |
| 28           | • • •               | 4 · 4      | 48           | 0.9                                                       | I.3        |  |
| 38           | • • • •             | 2.7        | 50           | o.84                                                      | I . 2      |  |
| 44           | I.7                 | I.7        | 54           | o.80                                                      | 0.9        |  |
| 46           | 1.13                | I.5        | 62           | •••                                                       | 0.4        |  |

#### SOLUBILITY OF SODIUM CARBONATE IN AQUEOUS SOLUTIONS OF ETHYL ALCOHOL. (Ketner – Z. physik. Ch. 39, 646, '01-'02.)

Note. — The mixtures were so made that an alcoholic and an aqueous layer were formed, and these were brought into equilibrium with the solid phase.

|       | Gms. per 100 Gms. Alcoholic Layer. |                                   |        | Gms. per 1 | oo Gms. A                         | Solid  |                                                     |
|-------|------------------------------------|-----------------------------------|--------|------------|-----------------------------------|--------|-----------------------------------------------------|
| t°.   | C2H5OH.                            | Na <sub>2</sub> CO <sub>3</sub> . | H2O.   | C2H5OH.    | Na <sub>2</sub> CO <sub>3</sub> . | H2O.   | Phase.                                              |
| 35    | 62.9                               | 0.3                               | 36.8   | I.0        | 32.4                              | 66.6   | Na <sub>2</sub> CO <sub>3</sub> .H <sub>2</sub> O   |
| 40    | 61.0                               | 0.4                               | 38.6   | 1.2        | 31.9                              | 66.9   |                                                     |
| 49    | 61.0                               | 0.4                               | 38.6   | 1.2        | 31.5                              | 67.3   |                                                     |
| 68    | 55.8                               | 0.9                               | 43.3   | 2.3        | 28.8                              | 68.9   |                                                     |
| 31.   |                                    | 0.8                               | 46.8   |            | 29.3                              |        | Na2CO2.7H2O (b)                                     |
| 31.   | 9 54.8                             | 0.7                               | 44.5   | 1.7        | 29.8                              | 68.5   |                                                     |
| 32 .  |                                    | 0.6                               | 43.3   | 1.5        | 30.2                              | 68.3   |                                                     |
| 33 .  | 2 58.1                             | 0.5                               | 42.4   | 1.4        | 31.0                              | 67.6   |                                                     |
| 27.   | 7 Crit. sol.                       | ±14%                              | C2H5OH | I±13% N    | a2CO3                             | -73% H | l <sub>2</sub> O                                    |
| 28.   | 2 23.5                             | 7.3                               | 69.2   | 7.9        | 18.6                              | 73.5   | Na <sub>2</sub> CO <sub>3-10</sub> H <sub>2</sub> O |
| 29.   | 0 32.7                             | 3.8                               | 63.5   | 4.3        | 22.7                              | 73.0   |                                                     |
| 29.   | 7 40.0                             | 2.1                               | 57.9   | 2.9        | 25.5                              | 71.6   |                                                     |
| 30.   | 6 47.8                             | 1.2                               | 51.0   | 2.3        | 27.8                              | 69.9   |                                                     |
| - C - |                                    |                                   |        |            |                                   |        |                                                     |

## SOLUBILITY OF Na<sub>2</sub>CO<sub>3</sub>.10H<sub>2</sub>O IN DILUTE ALCOHOL AT 21°. (Ketner.)

| Grams per 100 Grams Solution. |         |      | Grams per 100 Grams Solution. |         |       |
|-------------------------------|---------|------|-------------------------------|---------|-------|
| Na2CO2.                       | C2H5OH. | H2O. | Na2CO3.                       | C2H5OH. | H2O.  |
| 18.5                          | 0.0     | 81.5 | 1.2                           | 39.2    | 59.6  |
| 12.7                          | 6.2     | 81.1 | 0.2                           | 58.2    | 41.6  |
| 6.9                           | 15.3    | 77.8 | O.I                           | 67.1    | 32.8  |
| 3.2                           | 26.1    | 70.7 | 0.06                          | 73-3    | 26.64 |

100 gms. saturated solution in glycol contain 3.28-3.4 gms. sodium carbonate. (de Coninck - Bull. acad. roy. Belgique, 359, '05.)

100 gms. H<sub>2</sub>O dissolve 229.2 gms. sugar + 24.4 gms. Na<sub>2</sub>CO<sub>2</sub>, or 100 gms. sat. aq. solution contain 64.73 gms. sugar + 6.89 gms. Na<sub>2</sub>CO<sub>2</sub>. (Köhler –Z. Ver. Zuckerind. 47, 447, '97.)

#### SODIUM (Bi) CARBONATE NaHCO3.

#### SOLUBILITY IN WATER. (Dibbits - J. pr. Ch. [2] 10, 439, '74.)

| t°. | Gms. NaHCO3 per 100 Gms |           | t°.   | Gms. NaHCO | per 100 Gms. |  |
|-----|-------------------------|-----------|-------|------------|--------------|--|
|     | Water.                  | Solution. | · · · | Water.     | Solution.    |  |
| 0   | 6.9                     | 6.5       | 30    | II.I       | 10.0         |  |
| IO  | 8.15                    | 7.5       | 40    | 12.7       | 11.3         |  |
| 20  | 9.6                     | 8.8       | 50    | 14.45      | 12.6         |  |
| 25  | 10.35                   | 9.4       | 60    | 16.4       | 13.8         |  |

Sp. Gr. of sat. solution at  $16^{\circ} = 1.069$ . (Stolba.) 100 gms. alcohol of 0.941 Sp. Gr. dissolve 1.2 gms. NaHCO<sub>3</sub> at 15.5°. 100 gms. glycerine dissolve 8 gms. NaHCO<sub>3</sub> at 15.5°.

#### SODIUM (Bi) CARBONATE 298

#### SOLUBILITY OF SODIUM BICARBONATE IN AQUEOUS AMMONIUM BICARBONATE SOLUTIONS SATURATED WITH CO<sub>3</sub>. (Fedotieff - Z. physik. Ch. 49, 169, '04.)

|     | (- Coonse of payment Can app 1001 cat.) |               |                          |              |                           |  |  |  |  |
|-----|-----------------------------------------|---------------|--------------------------|--------------|---------------------------|--|--|--|--|
| £*. | Wt. of 1 cc.                            | Mols. per 100 | o Gms. H <sub>2</sub> O. | Grams per 10 | Grams per 1000 Gras. HgO. |  |  |  |  |
| •   | Solution.                               | NH4HCO3       | NaHCO2.                  | NH_HCO3.     | NaHCO <sub>2</sub>        |  |  |  |  |
| 0   | I .072                                  | 1.39          | o.58                     | 109.4        | 48.2                      |  |  |  |  |
| "   | • • •                                   | 0.0           | 0.82                     | 0.0          | 6g.o                      |  |  |  |  |
| 15  | I.056                                   | 0.0           | I .05                    | 0.0          | 88.o                      |  |  |  |  |
| ű   | 1.001                                   | 0.29          | 0.95                     | 23.0         | 8o.o                      |  |  |  |  |
| "   | 1.065                                   | 0.56          | 0.89                     | 44.0         | 74.6                      |  |  |  |  |
| "   | I .073                                  | I .08         | o.79                     | 85.7         | 66.7                      |  |  |  |  |
| "   | I .090                                  | 2.16          | 0.71                     | 170.6        | 59.2                      |  |  |  |  |
| 30  | • • •                                   | 0.0           | 1.65                     | 0.0          | 138.6                     |  |  |  |  |
| -11 | • • •                                   | 2.91          | 0.83                     | 23.0         | 70.0                      |  |  |  |  |

SOLUBILITY OF SODIUM BICARBONATE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE SATURATED WITH CO<sub>2</sub>. (Fedotieff; see also Reich — Monatsh. Ch. 12, 404, '91.)

|     | (reducen, see also Keich — montaish. Ch. 12, 404, 91.) |         |                       |                |               |  |  |  |  |
|-----|--------------------------------------------------------|---------|-----------------------|----------------|---------------|--|--|--|--|
| ŧ°. | Wt. of 1 cc.                                           |         | ms per 1000 Gms. HgO. |                |               |  |  |  |  |
| • • | Solution.                                              | NaCl.   | NaHCO3.               | NaCl.          | NaHCO3.       |  |  |  |  |
| 0   | • • •                                                  | 0.0     | o.82                  | 0.0            | 6g.o          |  |  |  |  |
| "   | I . 208                                                | 6.o     | 0.09                  | 350.1          | 7.7           |  |  |  |  |
| 15  | 1.056                                                  | 0.0     | 1.05                  | 0.0            | 88.o          |  |  |  |  |
|     | 1.063                                                  | 0.52    | 0.82                  | 30.2           | 68.6          |  |  |  |  |
| "   | I 073                                                  | 1.03    | 0.64                  | 60.1           | 53. <b>6</b>  |  |  |  |  |
| "   | 1.096                                                  | 2 . I I | 0.41                  | 123 · I        | 34.8          |  |  |  |  |
| "   | I.127                                                  | 3.20    | 0.28                  | 187 . <b>2</b> | 23.0          |  |  |  |  |
| "   | 1.158                                                  | 4.39    | 0.19                  | 256.9          | 10.1          |  |  |  |  |
| "   | I 203                                                  | 6.06    | O.I2                  | 354.6          | IO · O        |  |  |  |  |
| 30  | 1.066                                                  | 0.0     | 1.31                  | 0.0            | I IO · 2      |  |  |  |  |
| "   | I .079                                                 | I .02   | o 87                  | 59 · <b>9</b>  | 72.8          |  |  |  |  |
| "   | I - 100                                                | 2.08    | o.56                  | 121.9          | <b>47</b> · 3 |  |  |  |  |
| "   | I . I 27                                               | 3 . 18  | o.38                  | 186.3          | 32.0          |  |  |  |  |
| "   | 1.156                                                  | 4 . 38  | 0.27                  | 256.0          | 22.3          |  |  |  |  |
| "   | I . <b>199</b>                                         | 6.12    | 0.17                  | 358.1          | 13.9          |  |  |  |  |
| 45  | 1.077                                                  | 0.0     | 1.65                  | 0.0            | 138.6         |  |  |  |  |
| (ī  | 1.086                                                  | I 04    | I.I2                  | 60.7           | 94 · O        |  |  |  |  |
| "   | 1.115                                                  | 2.65    | 0.62                  | 155.2          | 52.0          |  |  |  |  |
| "   | 1.127                                                  | 3 . 24  | 0.52                  | 189.4          | 43 · 4        |  |  |  |  |
| "   | 1.155                                                  | 4 . 38  | O.37                  | 256.1          | 30.7          |  |  |  |  |
| "   | 1.198                                                  | 6.18    | 0.23                  | 361 . 5        | 19.5          |  |  |  |  |

100 grams alcohol of 0.941 Sp. Gr. dissolve 5.55 grams sodium sulpho carbonate at  $15.5^{\circ}$ .

#### SODIUM CHLOBATE NaClO,

#### SOLUBILITY IN WATER. (Kremers — Pogg. Ann. 97, 4, '56.)

| <b>t °</b> . | Grams per | 100 Grams | t°. | Grams per | Grams per 100 Grams |  |
|--------------|-----------|-----------|-----|-----------|---------------------|--|
|              | Water.    | Solution. | •   | Water.    | Solution.           |  |
| 0            | 81.g      | 45.0      | 60  | 147 · I   | <b>59 · 5</b>       |  |
| 12           | 89.3      | 47.2      | 80  | 175.6     | 63.7                |  |
| 20           | 99.0      | 49.7      | 100 | 232.6     | 69.9                |  |
| 40           | 123.5     | 55·3      | 120 | 333 · 3   | 76.9                |  |

NaClOs.

#### SOLUBILITY OF SODIUM CHLORATE IN AQUEOUS SODIUM CHLORIDE SOLUTIONS AT 20°. (Winteler - Z. Electrochem. 7, 360, 'oo.)

200

|               | 1     |            |               |       |            |
|---------------|-------|------------|---------------|-------|------------|
| Volume Wt.    | Grams | per Liter. | Volume Wt.    | Grams | per Liter. |
| of Solutions. | NaCl. | NaClO3.    | of Solutions. | NaCl. | NaClOs     |
| 1.426         | 5     | 668        | 1.365         | 175   | 393        |
|               |       | 628        | 7 945         | 000   | 228        |

| 1.426 | 5   | 668 | 1.365 | 175 | 393 |
|-------|-----|-----|-------|-----|-----|
| 1.419 | 25  | 638 | 1.345 | 200 | 338 |
| 1.412 | 50  | 599 | 1.319 | 225 | 271 |
| 1.405 | 75  | 559 | 1.289 | 250 | 197 |
| 1.398 | 100 | 522 | 1.256 | 275 | 120 |
| 1.389 | 125 | 484 | 1.235 | 290 | 78  |
| 1.379 | 150 | 442 | 1.217 | 300 | 55  |

100 gms. H<sub>2</sub>O dissolve 24.4 gms. NaCl + 50.75 gms. NaClO, at 12°. 100 gms. H<sub>2</sub>O dissolve 11.5 gms. NaCl + 249.6 gms. NaClO, at 122°. (Schlosing - Compt. rend. 73, 1273, '71.) 100 gms. alcohol of 77 Wt. per cent dissolve 2.9 gms. NaClO, at 16°. (Wittstein.) 100 gms. alcohol dissolve 1 gm. NaClO<sub>3</sub> at 25°, and 2.5 gms. at b. pt. 100 gms. glycerine dissolve 20 gms. NaClO<sub>3</sub> at 15.5°.

#### SODIUM CHLORIDE NaCl.

#### SOLUBILITY IN WATER.

(Mulder ; de Coppet — Ann. chim. phys. [5] 30, 411, '83; Andræ — J. pr. Ch. [2] 29, 456, '84; above roo<sup>o</sup>, Tilden and Shenstone — Phil. Trans. 23, '84; Berkeley — Trans. Roy. Soc. (Lond.) 203 A, 206, '04; Etard — Ann. chim. phys. [7] 2, 527, '94, gives irregular results.)

| t°. | _     | s. H <sub>2</sub> O. | Gms. NaCl<br>per<br>100 g. Sol, | t°.  | 100 Gn | NaCl per<br>ns. H <sub>2</sub> O. | Gms. NaCl<br>per<br>100 g. Sol. |
|-----|-------|----------------------|---------------------------------|------|--------|-----------------------------------|---------------------------------|
| 0   | 35.7* | 35.63†               | 26.287                          | 70   | 37.8*  | 37.517                            | 27.27                           |
| IO  | 35.8  | 35.69                | 26.29                           | 80   | 38.4   | 38.00                             | 27.54                           |
| 20  | 36.0  | 35.82                | 26.37                           | 90   | 39.0   | 38.52\$                           | 27.80                           |
| 25  | 36.12 | 35.92                | 26.43                           | 100  | 39.8   | 39.12                             | 28.12                           |
| 30  | 36.3  | 36.03                | 26.49                           | 118  |        | 39.8                              | 28.46                           |
| 40  | 36.6  | 36.32                | 26.65                           | 140  |        | 42.1                              | 29.63                           |
| 50  | 37.0  | 36.67                | 26.83                           | 160  |        | 43.6                              | 30.37                           |
| 60  | 37.3  | 37.06                | 27.04                           | 180  |        | 44.9                              | 30.98                           |
|     |       | * M.; de C.          |                                 | † A. |        | ‡ B.                              | 6.00.00                         |

#### SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS SOLUTIONS OF Assesses

|     |              | AMMONI            | UM CHLORII             | DE.           |                          |  |  |
|-----|--------------|-------------------|------------------------|---------------|--------------------------|--|--|
|     |              | (Fedotieff - Z. ] | physik. Ch. 49, 1      | 70, '04.)     |                          |  |  |
| t°. | Wt. of 1 cc. | Mols. per 1000    | Gms. H <sub>2</sub> O. | Grams per 100 | Grams per 1000 Gms. H2O. |  |  |
|     | Solution.    | NH4CI.            | NaCl.                  | NH4CI.        | NaCl.                    |  |  |
| 0   |              | 0.0               | 6.09                   | 0.0           | 356.3                    |  |  |
| **  | 1.185        | 2.73              | 4.89                   | 146.1         | 286.4                    |  |  |
| 15  | I.200        | 0.0               | 6.12                   | 0.0           | 357.6                    |  |  |
|     | 1.191        | 1.07              | 5.58                   | 57.3          | 326.4                    |  |  |
| "   | 1.183        | 2.22              | 5.13                   | 118.9         | 300.0                    |  |  |
| **  | 1.176        | 3.48              | 4.64                   | 186.4         | 271.6                    |  |  |
| **  | 1.175        | 3.72              | 4.55                   | 198.8         | 266.8                    |  |  |
| 30  |              | 0.0               | 6.16                   | 0.0           | 360.3                    |  |  |
| **  | 1.166        | 4.77              | 4.26                   | 255.4         | 249.0                    |  |  |
| 45  |              | 0.0               | 6.24                   | 0.0           | 365.0                    |  |  |
| **  |              | 6.02              | 4.0                    | 322.1         | 233.9                    |  |  |

#### SODIUM CHLORIDE

.

#### SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID. (Engel - Ann. chim. phys. [6] 13, 374. '88; Enklaar - Rec. trav. chim. 20, 183, '01.)

| (દ્વા     | (Engel - Ann. chim. puys. [0] 13, 374, 66, Enkisht - Rec. 1187. chim. 26, 163, 61.) |                         |         |                          |         |           |         |           |  |  |
|-----------|-------------------------------------------------------------------------------------|-------------------------|---------|--------------------------|---------|-----------|---------|-----------|--|--|
|           | 🕞 At °.                                                                             | (Engel.)                | · At r  | At 10°–10.5°. (Enklaar.) |         |           |         |           |  |  |
| Mg. Mols. | per 10 cc.                                                                          | Sp. Gr. of<br>Solution. | Gms. pe | r Liter.                 | Mols. p | er Liter. | Grams p | er Liter. |  |  |
| HCI.      | NaCl.                                                                               | Solution.               | HCl.    | NaCl.                    | HCl.    | NaCl.     | HCl.    | NaCl.     |  |  |
| 0.0       | 54 · 7                                                                              | I . 207                 | 0.0     | 32.0                     | 0.0     | 6.11      | 0.0     | 35.77     |  |  |
| Ι.Ο       | 53 - 5                                                                              | I . 204                 | 0.365   | 31.3                     | 0.27    | 5.77      | 9.84    | 33.76     |  |  |
| 1.85      | 52.2                                                                                | I.202                   | 0.674   | 30.5                     | 0.35    | 5.67      | 12.76   | 33.19     |  |  |
| 5.I       | 48.5                                                                                | 1.196                   | 1.859   | 28.4                     | 0.43    | 5.59      | 15.68   | 32.71     |  |  |
| 9 . 28    | 44 · O                                                                              | 1.185                   | 3.38    | 25.7                     | 0.57    | 5.43      | 20.78   | 31.77     |  |  |
| 15.05     | 37 · 9                                                                              | 1.173                   | 5 · 49  | 22.2                     | 0.72    | 5.28      | 26.06   | 30.89     |  |  |
| 30.75     | 23.5                                                                                | I.I4I                   | II.20   | 13.7                     | 2.60    | 3.42      | 94 · 77 | 20.01     |  |  |
| 56.35     | б.1                                                                                 | 1.119                   | 20.54   | 3.6                      | 2.80    | 3.18      | IO2 . I | 19.04     |  |  |
|           |                                                                                     |                         |         |                          | 3.31    | 2.74      | 120.6   | 16.03     |  |  |
|           |                                                                                     |                         |         |                          |         |           |         |           |  |  |

#### Solubility of Mixtures of Sodium Chloride and Other Salts in Water, etc.

|               |     |        | TS IN WATER, ETC.               |                      |
|---------------|-----|--------|---------------------------------|----------------------|
| Solvent.      | t°. | Gm     | per 100 Gms. Solvent.           | Authority.           |
| Water         | 17  | 26.4   | NaCl+22.1NH <sub>4</sub> Cl* (K | arsten.)             |
| "             | 17  | 34 · 5 | " + $4 \cdot 1 \text{BaCl}_2$   | •                    |
| "             | ?`  | 38.3   | " $+29.5$ KNO <sub>8</sub>      | **                   |
| "             | 25  | 38.5   | <i>u</i> , <i>i u i</i>         | ic. Ch. 2, 46, '98.) |
| "             | 80  | 39.81  | " + <b>168</b> .8 "             | 4                    |
| Alcohol (40%) | 25  | 15.78  | " +13.74 "                      | "                    |
| Water         | 20  | 30.54  | " + 13.95 KCl (Quoted by Eule   | r — Z. physik. Ch.   |
| "             | 25  | 28.90  | " + 16.12 " ) 49, 315, '04.     | )                    |
|               |     | * Sp.  | Fr. of solution at 17° = 1.179. |                      |

#### SOLUBILITY OF MIXTURES OF SODIUM CHLORIDE AND POTASSIUM SULPHATE IN WATER AT VARIOUS TEMPERATURES. (Precht and Wittgen – Ber. 15, 1666, '82.)

| <b>t °</b> . | Grams pe | er 100 Gra         | ms H <sub>2</sub> O. | <b>t</b> °. | Grams per 100 Grams H2O. |                                |     |
|--------------|----------|--------------------|----------------------|-------------|--------------------------|--------------------------------|-----|
|              | NaCl     | K <sub>2</sub> SO4 | KĊĹ                  | • ·         | NaCl                     | K <sub>2</sub> SO <sub>4</sub> | KCl |
| IO           | 33 - 4   | <b>8</b> .1        | 3.2                  | 60          | 36.4                     | 11.9                           | 2.7 |
| 20           | 34.0     | 8.9                | 3.I                  | 70          | 36.6                     | 12.8                           | 3.2 |
| 30           | 34.6     | 9.6                | 2.9                  | 80          | 36.o                     | 12.3                           | 5.1 |
| 40           | 35.2     | - IO.4             | 2.8                  | 90          |                          | 12.4                           |     |
| 50           | 35.8     | II.I               | 2.8                  | 100         | 35.6                     | 12.6                           | 8.8 |

.

•

#### Solubility of Sodium Chloride in Aqueous Solutions of Sodium Bicarbonate Saturated with CO<sub>2</sub>. (Feddieff.)

| (Г | ea | ou | len | ۰, |
|----|----|----|-----|----|
|    |    |    |     |    |

| t°.                     | Wt. of rcc.   | Mols. per 1000 Gms. H2O. |       | Grams per 10000 Gms. H2O. |         |  |
|-------------------------|---------------|--------------------------|-------|---------------------------|---------|--|
| <b>U</b> <sup>2</sup> . | Solution.     | NaHCO <sub>3</sub> .     | NaCl. | NaHCO3.                   | NaCl.   |  |
| 0                       |               | 0.0                      | 6.09  | 0.0                       | 356.3   |  |
| "                       | 1 . 208       | o.o9                     | 6.0   | 7 · 7                     | 350.1   |  |
| 15                      | I . 203       | 0.0                      | 6.12  | 0.0                       | 357.6   |  |
| ũ                       | I . 203       | O . I 2                  | 6.06  | 10.0                      | 354.6   |  |
| 30                      | 1.19 <b>6</b> | 0.0                      | 6.16  | 0.0                       | 360.3   |  |
| - ( (                   | I . 199       | 0.17                     | б.12  | 139                       | 358.1   |  |
| <b>45</b>               | 1 · 189       | 0.0                      | 6.24  | 0.0                       | 356 ·o  |  |
| ιĩ                      | 1 . 198       | 0.23                     | 6.18  | 0.23                      | 361 . 5 |  |

SODIUM CHLORIDE

# SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS SODIUM HYDROXIDE SOLUTIONS.

|                      |                | (Engel; Winte | eler — Z. Elec | ctrochem. 7,     | 360, '00.) |                |                    |  |  |
|----------------------|----------------|---------------|----------------|------------------|------------|----------------|--------------------|--|--|
|                      | At o° (Engel). |               |                |                  |            |                | At 20° (Winteler). |  |  |
| Mg. Mols. per 10 cc. |                |               |                | Grams per Liter. |            | Gms. per Liter |                    |  |  |
| NagO.                | NaCl.          | Solutions.    | NaOH.          | NaCl.            | NaOH.      |                | Solutions.         |  |  |
| 0                    | 54.7           | 1.207         | 0.0            | 320.0            | IO         | 308            | I.200              |  |  |
| 4.8                  | 49.38          | 1.221         | 38.4           | 288.9            | 50         | 297            | I.230              |  |  |
| 6.73                 | 47.21          | 1.225         | 53.8           | 276.2            | 100        | 253            | 1.250              |  |  |
| 10.41                | 42.38          | 1.236         | 183.2          | 247.9            | 150        | 213            | 1.270              |  |  |
| 14.78                | 39.55          | 1.249         | 118.2          | 231.4            | 200        | 139            | 1.305              |  |  |
| 30.50                | 24.95          | 1.295         | 244.0          | 146.0            | 300        | 112            | I.330              |  |  |
| 37.88                | 19.30          | 1.314         | 303.0          | 112.9            | 400        | 61             | I.375              |  |  |
| 53.25                | 9.41           | 1.362         | 426.0          | 55.0             | 500        | 30             | 1.425              |  |  |
|                      |                |               |                |                  | 640        | 18             | 1.490              |  |  |

Solubility of Sodium Chloride in Aqueous Solutions of Sodium Nitrate and Vice Versa.

(Bodländer – Z. physik. Ch. 7, 361, '91; Nicol – Phil. Mag. [5] 31, 369, '91; results at 25° by Soch – J. Physic. Ch. 2, 46, '98.)

NaCl in Aqueous NaNO<sub>3</sub>. Results at 15.5° (B.). NaNO, in Aqueous NaCl. Results at 15° (B.).

| Sp. Gr. of | Gms. per | 100 cc. Sat. | Solution. | Sp. Gr. of | Gms. per | 100 cc. Sat       |        |  |  |  |
|------------|----------|--------------|-----------|------------|----------|-------------------|--------|--|--|--|
| Solutions. | NaNO3.   | H2O.         | NaCl.     | Solutions. | NaCl.    | H <sub>2</sub> O. | NaNO3. |  |  |  |
| I.2025     | 0        | 88.47        | 31.78     | 1.3720     | 0        | 74.82             | 62.38  |  |  |  |
| I.2305     | 7.53     | 87.63        | 27.89     | 1.3645     | 4.0      | 75.69             | 56.76  |  |  |  |
| 1.2580     | 13.24    | 86.25        | 26.31     | 1.3585     | 7.24     | 75.71             | 52.09  |  |  |  |
| 1.2810 -   | 21.58    | 82.66        | 23.98     | 1.3530     | 11.36    | 76.86             | 47.08  |  |  |  |
| 1.3090     | 28.18    | 80.42        | 22.30     | I.3495     | 15.33    | 76.96             | 42.66  |  |  |  |
| I.3345     | 33.80    | 79.25        | 20.40     | 1.3485     | 17.81    | 77.14             | 39.90  |  |  |  |
| 1.3465     | 37.88*   | 77.37        | 19.40*    | 1.3485     | 18.97*   | 77.15             | 38.73* |  |  |  |
| 1.3465     | 37.64*   | 77.34        | 19.67*    | 1.3485     | 19.34*   | 77.49             | 38.02* |  |  |  |

#### Results at 20° (N.).

| . Grams per 100 | Grams H <sub>2</sub> O. | Grams per 100 Grams H2O. |             |  |  |
|-----------------|-------------------------|--------------------------|-------------|--|--|
| o NaNO3         | 35.91 NaCl              | o NaCl                   | 87.65 NaNO3 |  |  |
| 14.17 "         | 32.82 "                 | 6.5 "                    | 77.34 "     |  |  |
| 28.33 "         | 29.78 "                 | 13.0 "                   | 68.50 "     |  |  |
| 42.50 "         | 26.91 "                 | 19.5 "                   | 60.40 "     |  |  |
| 54.63* "        | 24.92* "                |                          |             |  |  |

100 gms. H<sub>2</sub>O dissolve 43.66\* gms. NaNO<sub>3</sub> + 26.58\* gms. NaCl at 25°. 100 gms. H<sub>2</sub>O dissolve 121.6\* gms. NaNO<sub>3</sub> + 17.62\* gms. NaCl at

80°. 100 gms. aq. alcohol of 40 wt. per cent dissolve 22.78 gms. NaNO, + 10.17 gms. NaCl at 25°.

\* Indicates solutions saturated with both salts.

301

.

#### SOLUBILITY OF SODIUM CHLORIDE IN ALCOHOLS. (At 18.5°, de Bruyn - Z. physik. Ch. 10, 782, '93; Rohland - Z. anorg. Ch. 18, 327. '08.)

302

|             | (in 10.5 ; de bieje    | D. puyan. Cu                          | . 101 /021 921 1000 |                                                                             | ·/i 90./                              |
|-------------|------------------------|---------------------------------------|---------------------|-----------------------------------------------------------------------------|---------------------------------------|
| <b>t°</b> . | Alcohol.               | Gms. NaCl<br>per 100<br>Gms. Alcohol. | t°.                 | Alcohol                                                                     | Gms. NaCl<br>per 100<br>Gms. Alcohol. |
| 18.5<br>"   | Abs. Methyl<br>" Ethyl | 1.41<br>0.065                         | room temp.<br>"     | Methyl $d_{15} = 0.799$<br>Ethyl $d_{15} = 0.81$<br>Propyl $d_{15} = 0.816$ | 0.176                                 |

Solubility of Sodium Chloride in Aqueous Ethyl Alcohol Solutions.

(Bodländer – Z. physik. Ch. 7, 317, '91; Taylor – J. Phys. Ch. 1, 723, '97; also Bathrick – *Ibid.* 2, 159, '96.)

| Results at 11.5° (B.).   |                                   |                   | Results at 13° (B.). |                          |                                   |                   |               |  |
|--------------------------|-----------------------------------|-------------------|----------------------|--------------------------|-----------------------------------|-------------------|---------------|--|
| Sp. Gr. of               | Gms. per 100 cc. S                |                   | olution.             | Sp. Gr. of<br>Solutions. | Gms. per 100 cc. Solution.        |                   |               |  |
| Sp. Gr. of<br>Solutions. | C <sub>2</sub> H <sub>5</sub> OH. | H <sub>2</sub> O. | NaCl.                | Solutions.               | C <sub>2</sub> H <sub>5</sub> OH. | H <sub>2</sub> O. | NaCl.         |  |
| I . 2035                 | 0                                 | 86.62             | 31.73                | I . 2030                 | 0                                 | 88.70             | 31.60         |  |
| 1.1865                   | 2.86                              | 86.14             | 29.66                | 1.1348                   | 11.87                             | 78.41             | 23.26         |  |
| 1.1710                   | 5.41                              | 83. <b>93</b>     | 27 77                | 1.1144                   | 15.99                             | 74.64             | 20.81         |  |
| 1.1548                   | 7.93                              | 81.50             | 26.05                | 1.0970                   | 19.39                             | 71.45             | 18.8 <b>6</b> |  |
| 1.1350                   | 10.84                             | 78.78             | 24 · 28              | 1.0698                   | 24.95                             | 69.80             | 16.23         |  |
| 1.1390                   | II.22                             | 78.62             | 23 65                | 1.0295                   | 32.33                             | 57.96             | 12.66         |  |
| 1.1088                   | 16.85                             | 73.40             | 20.63                | 0.9880                   | 40.33                             | 49·34             | 9.13          |  |
|                          | -                                 |                   | -                    | 0.9445                   | 49 . 28                           | 38.54             | 5.93          |  |
|                          |                                   |                   |                      | 0.9075                   | 57 · 91                           | 29.37             | 3.47          |  |
|                          |                                   |                   |                      | 0.8700                   | 63.86                             | 21.62             | 1.52          |  |
|                          |                                   |                   |                      | 0.8400                   | 72.26                             | 11.24             | 0.50          |  |

Results at  $30^{\circ}$  and at  $40^{\circ}$  (T.).

| Wt. per cent                        | At 30°, Gms. Na | Cl per 100 Gms. | At 40°, Gms. NaCl per 100 Gms. |         |  |  |
|-------------------------------------|-----------------|-----------------|--------------------------------|---------|--|--|
| Wt. per cent<br>Alcohol in Solvent. | Solution.       | Water.          | Solution.                      | Water.  |  |  |
| 0                                   | 26.50           | 36.05           | 26.68                          | 36.38   |  |  |
| 5                                   | 24 - 59         | 34 - 29         | 24 . 79                        | 34.69   |  |  |
| IO                                  | 22.66           | 32.57           | 22.90                          | 33.00   |  |  |
| 20                                  | 19.05           | 29.40           | 19.46                          | 30 . 20 |  |  |
| 30                                  | 15.67           | 26.53           | 16.02                          | 27 . 25 |  |  |
| 40                                  | 12.45           | 23.70           | 12.75                          | 24 · 37 |  |  |
| 50                                  | 9.34            | 20.60           | 9.67                           | 21.42   |  |  |
| δο                                  | 6.36            | 16.96           | 6.65                           | 17.82   |  |  |
| 70                                  | 3.36            | 12.75           | 3.87                           | 13.10   |  |  |
| 80                                  | 1.56            | 7.95            | 1.69                           | 8.68    |  |  |
| 90                                  | 0.43            | 4 30            | <b>0</b> .50                   | 5.10    |  |  |

100 gms. alcohol of 0.9282 Sp. Gr. = 54.0% by wt. dissolve at:

| 4° | 100 | 13° | 23° | 32° | 33° | 44° | 51° | 60°                           |
|----|-----|-----|-----|-----|-----|-----|-----|-------------------------------|
|    |     |     |     |     |     |     |     | 14.1 gms. NaCl                |
|    |     |     | •   |     |     |     |     | chim. phys. [4] 5, 146, '56.) |

100 gms. of a mixture of equal parts of 96% alcohol and 98% ether dissolve 0.11 gm. NaCl.

(Mayer — Liebig's Ann. 98, 205, '56.)

•

Glycerine at 25°.

SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS SOLUTIONS OF:

| (Herz and Knoch - Z. an                | (H. and K Ibid. 45, 267, '05.)                     |       |                                          |                                  |                         |        |
|----------------------------------------|----------------------------------------------------|-------|------------------------------------------|----------------------------------|-------------------------|--------|
| cc. Acetone<br>per 100 cc.<br>Solvent. | NaCl per 100<br>cc. Solution.<br>Millimols. Grams. |       | Wt. per cent<br>Glycerine in<br>Solvent. | NaCl pe<br>cc. Sol<br>Millimols. | Sp. Gr. of<br>Solution. |        |
| 0                                      | 537.9                                              | 31.47 | 0.0                                      | 545.6                            | 31.93                   | 1.1960 |
| IO                                     | 464.6                                              | 27.18 | 13.28                                    | 50I.I                            | 29.31                   | 1.2048 |
| 20                                     | 394.8                                              | 23.10 | 25.98                                    | 448.4                            | 26.23                   | I.2133 |
| 30                                     | 330.I                                              | 19.32 | 45.36                                    | 370.2                            | 21.66                   | I.2283 |
| 32 Lower layer                         | 308.5                                              | 18.05 | 54.23                                    | 333.9                            | 19.54                   | 1.2381 |
| 87 Upper layer                         | 7.7                                                | 0.45  | 83.84                                    | 220.8                            | 12.91                   | 1.2666 |
| 88                                     | 7.3                                                | 0.43  | *00.001                                  | 167.1                            | 9.78                    | 1.2964 |
| 90                                     | 4.3                                                | 0.25  | *Sp. Gr. c                               | of Glycer                        | ine, 1.2                | 592.   |
|                                        |                                                    |       |                                          | urities al                       |                         |        |

100 gms. sat. solution in glycol contain 31.7 gms. NaCl at 14.8°, (de Coninck - Chem. Centralb. 76, II, 883, '05.)

100 gms. H<sub>2</sub>O dissolve 236.3 gms. sugar + 42.3 gms. NaCl at 31.25°, or 100 gms. sat. aq. solution contain 62.17 gms. sugar + 11.13 gms. NaCl. (Köhler - Z. Ver. Zuckerind. 47, 447, '97.)

#### SODIUM CHROMATES (Mono, Di, etc.)

Acetone at 20°.

#### SOLUBILITY IN WATER.

(Mylius and Funk - Wiss. Abh. p. t. Reichanstalt 3, 451, 'oo; see also Salkowski - Ber. 34, 1948, 'or.)

|      | Sodium Mono Chromate.                         |                                                                    |                 |      |                          | Sodium Di Chromate.                 |                   |  |  |
|------|-----------------------------------------------|--------------------------------------------------------------------|-----------------|------|--------------------------|-------------------------------------|-------------------|--|--|
| t°.  | Gms. Na2<br>CrO4 per<br>100 Gms.<br>Solution. | Mols. Na2<br>CrO <sub>4</sub> per<br>100 Mols<br>H <sub>2</sub> O. | Solid<br>Phase. | t°.  |                          |                                     | Solid<br>Phase.   |  |  |
| 0    | 24.07                                         | 3.521                                                              | a2CrO4.10H2O    | 0    | 61.98                    | 11.2                                | Na2Cr2O7.2H2O     |  |  |
| IO   | 33.41                                         | 5.55                                                               |                 | 17   | 63.82                    | 12.1                                |                   |  |  |
| 18*  | 40.10                                         | 7.43                                                               |                 | 181  | 63.92                    | 12.16                               |                   |  |  |
| 18.  | 5 41.65                                       | 7.94                                                               | **              | 34.5 | 67.36                    | 14.2                                | "                 |  |  |
| 19.  |                                               | 0.0I                                                               |                 | 52   | 71.76                    | 17.4                                |                   |  |  |
| 21   | 47.40                                         | 10.00                                                              |                 | 72   | 76.9                     | 22.8                                |                   |  |  |
| 25.0 | 6 46.08                                       | 9.521                                                              | a2CrO4-4H2O     | 81   | 79.8                     | 27 · I                              |                   |  |  |
| 31.  |                                               | 9.90                                                               |                 | 93   | 81.19                    | 29.6                                | NagCrgO7          |  |  |
| 36   | 47.98                                         | 10.2                                                               |                 | 98   | 81.25                    | 29.8                                |                   |  |  |
| 40   | 48.97                                         | 10.6                                                               |                 | -    | Codim                    | m Tri Chi                           |                   |  |  |
| 45   | 50.20                                         | 11.6                                                               |                 |      |                          |                                     | romate,           |  |  |
| 49.5 | 5 50.93                                       | 11.5                                                               | **              |      | Gms. Nag 1<br>CrgO10 per | Mols. Na2<br>CraO <sub>10</sub> per | Solid             |  |  |
| 54 . |                                               | 12.2                                                               |                 | £ °. | 100 Gms.<br>Solution.    |                                     | Phase.            |  |  |
| 59 . | 5 53.39                                       | 12.7                                                               |                 | 0    | 80.03                    | 10.0                                | NagCr3O10.H2O.    |  |  |
| 65   | 55.23                                         | 13.7                                                               | NagCrO4         | 157  | 80.44                    | 20.4                                |                   |  |  |
| 70   | 55.15                                         | 13.6                                                               |                 | 18   | 80.60                    |                                     |                   |  |  |
| 80   | 55-53                                         | 13.8                                                               |                 | 55   | 82.68                    | 23.7                                |                   |  |  |
| 100  | 55.74                                         | 14.0                                                               |                 | 99   | 85.78                    | 29.9                                |                   |  |  |
| *Sp. | Gr. of sat                                    | . sol. at                                                          | 18° = 1.4       |      |                          |                                     | l. at 18° = 2.059 |  |  |

\$\$p. Gr. of sat. solution at 18° = 1.745.

#### SODIUM CHROMATES

Sodium Tetra Chromate.

Tetra Sodium Chromate.

| <b>t°</b> .' | Gms.<br>NasCr4O23<br>per 100 Gms.<br>Solution. | Mols.<br>NagCr4O18<br>per 100<br>Mols. HgO. | Solid<br>Phase. | <b>t°</b> . 1 | Gms.<br>Na <sub>4</sub> CrO <sub>5</sub><br>per 100 Gms.<br>Solution. | Mols.<br>NacCrOs<br>per 100<br>Mols. HgO. | Solid<br>Phase.                                     |
|--------------|------------------------------------------------|---------------------------------------------|-----------------|---------------|-----------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
| 0            | 72.96                                          | 10.5                                        | NagCr4O13-4H2O  | 0             | 33.87                                                                 | 4.11                                      | Na <sub>4</sub> CrO <sub>5-13</sub> HO <sub>2</sub> |
| 16           | 74.19                                          | 11.2                                        | **              | IO            | 35.58                                                                 | 4 - 42                                    | *                                                   |
| 18#          | 74.60                                          | 11.27                                       | 44              | 18†           | 37.50                                                                 | 4.81                                      | *                                                   |
| 22           | 76.01                                          | 12.3                                        | **              | 27.7          | 40.09                                                                 | 5.38                                      | **                                                  |
|              | -                                              | -                                           |                 | 37            | 45.13                                                                 | 6.62                                      | **                                                  |

304

\* Sp. Gr. of sat. solution at 18° = 1.926. † Sp. Gr. of sat. solution at 18° = 1.446.

SOLUBILITY OF SODIUM CHROMATES IN WATER AT 30°. (Schreinemaker – Z. physik. Ch. 55, 91, '06.)

Composition in weight per cent:

Of Solution. Of Residue.

| %CrO3.        | % Na <sub>2</sub> O. | %CrO3.  | %Na2O.        | Solid Phase.                                             |
|---------------|----------------------|---------|---------------|----------------------------------------------------------|
| 0             | ±42                  | • • •   | • • •         | NaOH.H <sub>2</sub> O                                    |
| 2.00          | 41.44                | 5.83    | 42 .64        | NaOH.H <sub>2</sub> O + Na <sub>2</sub> CrO <sub>4</sub> |
| 2.04          | 40 . 89              |         | • • •         | NagCrO <sub>4</sub>                                      |
| 4.23          | 35.51                | 27 . 52 | 36.57         | ••                                                       |
| 6.64          | 32.34                | 27 . 72 | 34.60         | **                                                       |
| 15.19         | 27.06                | 37 .07  | 32.20         | **                                                       |
| 10.22         | 29.39                | 15.48   | 28.41         | NasCrO <sub>6</sub> + NacCrOs.13HsO                      |
| 8.93          | 28.49                | 18.09   | 26.89         | NacCrOs.13H2O                                            |
| 8.62          | 26.91                | •••     | • • •         | 66                                                       |
| 13.12         | 23.91                | 18.57   | 25.92         | 44                                                       |
| 18.44         | 22.86                | • • •   | • • •         | **                                                       |
| 19 . 26       | 22.98                | 21.54   | 25.31         | $Na_4CrO_{5.13}H_2O + Na_2CrO_{4.4}H_2O$                 |
| 17.84         | 24 · 2I              | 26.24   | 24 . 98       | Na2CrO4.4H2O                                             |
| 28.82         | 17.88                | 31.97   | 23 · 47       | 44                                                       |
| 38.93         | 16. <b>30</b>        | 40.70   | 20.83         | 44                                                       |
| 48.70         | 16.49                | 47 · 49 | 19.75         | $Na_{2}CrO_{4.4}H_{2}O + Na_{2}Cr_{2}O_{7.2}H_{2}O$      |
| 50.68         | 15.72                | • • •   | ••••          | Na2Cr2O7.2H2O                                            |
| 58.08         | 13.89                | 62.76   | 17.38         | 44                                                       |
| 66.13         | 13.70                | 69.48   | 16.06         | $Na_2Cr_2O_7.2H_2O + Na_3Cr_3O_{10}H_2O$                 |
| 65.98         | 14.15                | 69.46   | 15.15         | Na2Cr3O10.H2O                                            |
| <b>68</b> .46 | 10.95                | 73.88   | 13.38         | $Na_2Cr_3O_{10}H_2O + Na_3Cr_4Q_{13}H_2O$                |
| 66.88         | 9.85                 | 71.27   | 10.67         | Na2Cr3O18-4H2O                                           |
| 70.06         | 11.85                | 83.95   | <b>9</b> · 57 | (?) "                                                    |
| 69.04         | 11.04                | 81.80   | 6.43          | CrO <sub>8</sub>                                         |
| 67 .84        | 9.81                 | 82.85   | 5.42          | 64                                                       |
| 64 . 48       | 4.51                 | 79 · 49 | 2.71          | u                                                        |
| 62 . 28       | 0.0                  | 100.00  | •••           | 66                                                       |

100 gms. of a saturated aqueous solution contain at  $30^{\circ}$ : 46.627 gms. Na<sub>2</sub>CrO<sub>4</sub>, or 100 gms. H<sub>2</sub>O dissolve 87.36 gms. Na<sub>2</sub>CrO<sub>4</sub>. 66.4 gms. Na<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>, or 100 gms. H<sub>2</sub>O dissolve 197.6 gms. Na<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>. 100 gms. absolute methyl alcohol dissolve 0.345 gm. Na<sub>2</sub>CrO<sub>4</sub> at 25°. (de Bruyn - Z. physik. Ch. 10, 783, '92.)

#### SODIUM CITRATE 2C3H4(OH)(COONa)3.11H2O.

100 gms. H<sub>2</sub>O dissolve 90.9 gms. citrate at 25°, and 250 gms. at b. pt. (USP.)

305

#### SODIUM (Ferro) CYANIDE Na, Fe(CN).

SOLUBILITY IN WATER.

| t°                               | 20°. | 42°. | 80°. | 98.5°. |
|----------------------------------|------|------|------|--------|
| Gms. Na4Fe(CN)6 per 100 gms. H2O | 17.9 | 30.2 | 59.2 | 63.0   |

SODIUM FORMATE HCOONA. SOLUBILITY IN WATER. (Groschuff - Ber. 36, 1788, '03.)

| t°.  | Gms.<br>HCOONa<br>per 100 Gms.<br>Solution. | Mols.<br>HCOONa<br>per 100 Mols.<br>H <sub>2</sub> O. | Solid<br>Phase. | t°.   | Gms.<br>HCOONa<br>per 100 Gms<br>Solution. | Mols.<br>HCOONa<br>per 100 Mols<br>H <sub>2</sub> O. | Solid<br>Phase. |
|------|---------------------------------------------|-------------------------------------------------------|-----------------|-------|--------------------------------------------|------------------------------------------------------|-----------------|
| - 20 | 22.80                                       | 7.82                                                  | HCOONa.3H2O     | 25.5  | 50.53                                      | 27.0                                                 | HCOONa.2H2O     |
| C    | 30.47                                       | 11.6                                                  |                 | 18    | 49.22                                      | 25.65                                                | HCOONa          |
| +15  | 41.88                                       | 19.1                                                  |                 | 29    | 50.44                                      | 26.9                                                 |                 |
| 18   | 44.92                                       | 21.6                                                  |                 | 54    | 53.80                                      | 30.8                                                 | "               |
| 18   | 44.73                                       | 21.4                                                  | HCOONa.2H2O     | 74.5  | 56.82                                      | 34.8                                                 |                 |
| 21   | 46.86                                       | 23.3                                                  |                 | 100.5 | 61.54                                      | 42.35                                                |                 |
| 23   | 48.22                                       | 24.65                                                 |                 | 123   | 66.20                                      | 51.8                                                 |                 |

Sp. Gr. of the saturated solution of the dihydrate at  $18^{\circ} = 1.317$ .

SOLUBILITY OF SODIUM ACID FORMATE (EXPRESSED AS NEUTRAL SALT) IN AQUEOUS SOLUTIONS OF FORMIC ACID. (Groschuff.)

| t°.  | Gms.<br>HCOONa<br>per 100 Gms.<br>Solution. | Mols.<br>HCOONa<br>per 100 Mols.<br>H <sub>2</sub> O. | Solid<br>Phase, | t°.  | Gms.<br>HCOONa<br>per 100 Gms.<br>Solution. | Mols.<br>HCOONa<br>per 100 Mols<br>H2O. | Solid<br>Phase. |
|------|---------------------------------------------|-------------------------------------------------------|-----------------|------|---------------------------------------------|-----------------------------------------|-----------------|
| 0    | 22.35                                       | 19.5                                                  | HCOONa.HCOOH    | 45.5 | 38.85                                       | 43.I                                    | HCOONa          |
| 25.5 | 29.62                                       | 28.45                                                 |                 | 70   | 41.27                                       | 47.5                                    | **              |
| 66.5 | 41.08                                       | 47.I                                                  |                 | 85   | 43.09                                       | 51.2                                    | "               |

#### SODIUM FLUORIDE NaF.

roo gms. sat. aq. solution contain 4.3 gms. NaF at 18°. Sp. Gr. of solution = 1.044. (Mylius and Funk - Ber. 30, 1718, '97.)

SOLUBILITY OF SODIUM FLUORIDE IN AQUEOUS SOLUTIONS OF HYDROFLUORIC ACID AT 21°. (Ditte - Compt. rend. 123, 1282, '96.)

| Grams per 10 | oo Grams H2O. | Grams per 1000 Grams H2O. |          |  |  |  |  |
|--------------|---------------|---------------------------|----------|--|--|--|--|
| o.o HF       | 41.7 NaF      | 83.8 HF                   | 22.9 NaF |  |  |  |  |
| 10.0 "       | 41.4 "        | 129.7 "                   | 23.8 "   |  |  |  |  |
| 45.8 "       | 22.5 "        | 596.4 "                   | 48.8 "   |  |  |  |  |
| 56.5 "       | 22.7 "        | 777.4 "                   | 81.7 "   |  |  |  |  |

#### SODIUM FLUO SILICATE Na,SiF.

100 gms. H<sub>2</sub>O dissolve 0.65 gm. at 17.5°, and 2.45 gms. at 100°. (Stolba-Z. anal. Ch. 11, 199, '72.) •

#### SODIUM HYDROXIDE NaOH.

SOLUBILITY IN WATER. (Pickering - J. Ch. Soc. 63, 800, '93; Mylius and Funk (Dietz) - Wiss. Abh. p. t. Reichanstalt 3, 450, '00.)

| <b>t°</b> . |          | NaOH<br>o Gms. | Solid<br>Phase.                   | t°. | Gms. NaOH<br>per 100 Gms. |        | Solid<br>Phase.                 |
|-------------|----------|----------------|-----------------------------------|-----|---------------------------|--------|---------------------------------|
|             | Solution |                |                                   |     | Solution.                 | Water. |                                 |
| - 7.8       | 8.0      | 8.7            | Ice -                             | 20  | 52.2                      | 109    | NaOH.H <sub>3</sub> O           |
| - 20        | 16.0     | 19.1           | -                                 | 30  | 54.3                      | 119    | 44                              |
| - 28        | 19.0     | 23.5           | Ice + NaOH.7HgO                   | 40  | 56.3                      | 129    | 44                              |
| - 24        | 22.2     | 28.5           | NaOH.7H2O+NaOH.5H2O               | 50  | 59.2                      | 145    | "                               |
| - 17 .7     | 24.5     | 32.5           | $NaOH_5H_2O + NaOH_4H_2O =$       | 60  | 63.5                      | 174    | **                              |
| 0           | 29.6     | 42.0           | NaOH.4H2O a                       | 64. | 369.0                     | 222.3  |                                 |
| + 5         | 32.2     | 47 · 5         | $NaOH_4H_2O + NaOH_3H_2O$         | бі. | 874.2                     | 288    | NaOH.H <sub>2</sub> O<br>+ NaOH |
| 10          | 34.0     | 51.5           | NaOH.32H2O                        | 80  | 75.8                      | 313    | NaOH (?)                        |
| 15.5        | 38.9     | 63.53          | " f. pt.                          | 110 | 78.5                      | 365    | "                               |
| 5           | 45 · 5   | 83.5           | $NaOH_{3}H_{2}O + NaOH_{2}H_{2}O$ | 192 | 83.9                      | 521    | "                               |
| 12          | 50.7     | 103 .0         | NaOH.2H2O+NaOH.H2O                | -   |                           | -      |                                 |

Sp. Gr. of sat. solution at 18° – 1.539. For determinations of the Sp. Gr. of sodium hydroxide solution, see Kohlrausch — Wied. Ann. 1, 1879; Wegschnider and Waller — Monatsh. Chem. 26, 685, '05.

#### SODIUM IODATE NaIO,

## SOLUBILITY IN WATER.

|     | (Gay-Lussac; | Kremers - | Pogg. Ann. | 97, 5, 3          | ço.) |  |
|-----|--------------|-----------|------------|-------------------|------|--|
| ±°. |              | o°.       | 20°.       | 40 <sup>0</sup> . | 60°  |  |

| <b>t°</b> .                                          | 0°. | 20 <sup>0</sup> . | 40°. | 60° | 80°. | 100 <sup>0</sup> . |
|------------------------------------------------------|-----|-------------------|------|-----|------|--------------------|
| Gms. NaIO <sub>3</sub> per 100 gms. H <sub>2</sub> O | 2.5 | 9                 | 15   | 21  | 27   | 34                 |

#### SODIUM IODIDE Nal.2H,O.

SOLUBILITY IN WATER. (de Copper — Ann. chim. phys. [5] 30, 411, '83; see also Etard — Compt. rend. 98, 1434, '84; and Kremers — Pogg. Ann. 97, 14, '56.)

| t°.  | Grams NaI p | er 100 Gm | s. Solid | t°. | Grams NaI | per 100 Gms. | Solid     |
|------|-------------|-----------|----------|-----|-----------|--------------|-----------|
| υ.   | Water.      | Solution. | Phase.   | υ.  | Water.    | Solution.    | Phase.    |
| - 20 | 148 · O     | 59·7      | NaI.2H2O | 60  | 256.8     | 72.0         | Nal .2H2O |
| 0    | 158.7       | 61.4      | "        | 65  | 278.4     | 73.6         | "         |
| 10   | 168.6       | 62.8      | "        | 67  | 293       | 74.6         | NaI       |
| 20   | 178.7       | 64 . I    | **       | 70  | 294       | 74.6         | **        |
| 25   | 184 . 2     | 64.8      | **       | 8o  | 296       | 74.7         | 64        |
| 30   | 190.3       | 65.6      | "        | 100 | 302       | 75.I         | 44        |
| 40   | 205.0       | 67.2      | 54       | 120 | 310       | 75.6         | **        |
| 50   | 227 . 8     | 69.5      | **       | 140 | 321       | 76.3         | **        |

SOLUBILITY OF SODIUM IODIDE IN SEVERAL SOLVENTS.

(At 22.5°, de Bruyn - Z. physik. Ch. 10, 783, '92; at ord. temp., Rohland - Z. anorg. Ch. 18, 327, '98; Walden - Z. physik. Ch. 55, 713, 718, '06.) Cma Nat

| Solvent.                                                                                                                                                           | t°.                                                 | Gms. NaI<br>per 100<br>Gms. Solvent. | Solvent.                                                            | Solu                                       | Nal<br>o Gms.<br>tion.                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------|---------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------|
| Absolute Ethyl Alcohol<br>$d_{1s} \circ .810$ Ethyl Alcohol<br>Absolute Methyl Alcohol<br>$d_{1s} \circ .700$ Methyl Alcohol<br>$d_{1s} \circ .816$ Propyl Alcohol | 22.5<br>ord. temp<br>22.5<br>ord. temp<br>ord. temp | 43.1<br>58.8<br>77.7<br>6.83.3       | Acetonitril<br>Propionitril<br>Nitro Methane<br>Acetone<br>Furfurol | at o°.<br>22.09<br>9.09<br>0.34<br>very so | at 25°.<br>18.43<br>6.23<br>0.48<br>luble<br>25.10 |

#### SODIUM MOLYBDATE Na\_MoO.

#### SOLUBILITY IN WATER. (Funk - Ber. 33, 3697, '00.)

307

| t°. | Gms.<br>Na2MoO4<br>per 100<br>Gms.<br>Solution. | Mols.<br>Na2MoO4 Solid<br>per 100 Phase.<br>Mols.<br>H <sub>2</sub> O. | t°.  | Gms.<br>Na2MoO4<br>per 100<br>Gms.<br>Solution. | Mols.<br>Na2MoO4<br>per 100<br>Mols.<br>H2O. | Solid<br>Phase. |
|-----|-------------------------------------------------|------------------------------------------------------------------------|------|-------------------------------------------------|----------------------------------------------|-----------------|
| 0   | 30.63                                           | 3.86 Na2MoO4.10H2O                                                     | 15.5 | 39.27                                           | 5.65 Na2N                                    | 1004.2H2O       |
| 4   | 33.83                                           | 4.47 "                                                                 | 18   | 39.40                                           | 5.70                                         | "               |
| 6   | 35.58                                           | 4.83 "                                                                 | 32   | 39.82                                           | 5.78                                         |                 |
| 9   | 38.16                                           | 5.39 "                                                                 | 51.5 | 41.27                                           | 6.14                                         |                 |
| IO  | 39.28                                           | 5.65 Na2MoO4.2H2O                                                      |      | 45.57                                           | 7.32                                         | **              |

100 gms. H<sub>2</sub>O dissolve 3.878 gms. sodium tri molybdate Na<sub>2</sub>Mo<sub>3</sub>O<sub>10</sub> at 20°, and 13.7 gms. at 100°.

(Ullik - Liebig's Ann. 144, 244, '67.)

#### SODIUM NITRATE NaNO3.

SOLUBILITY IN WATER.

(Mulder; Berkeley — Trans. Roy. Soc. (Lond.) 203 A, 211, '04; see also Ditte — Compt. rend. 80, 1164, '75; Maumee — Ibid. 58, 81, '64; Etard — Ann. chim. phys. [7] 2, 527, '94.)

| tº. | Gms. NaN  | ms. NaNOa per 100 Gms. |        |            | Gms. Nal  | Mols. per    |        |
|-----|-----------|------------------------|--------|------------|-----------|--------------|--------|
| • • | Solution. | Water.                 | Liter. |            | Solution. | Water.       | Liter. |
| 0   | 42.2      | 72.9- 73.0*            | 6.71*  | 80         | 59.7      | 148.0-148.0* | 10.35* |
| IO  | 44.7      | 80.8- 80.5             | 7.16   | 100        | 64.3      | 180.0-175.8  | 11.30  |
| 20  | 46.7      | 87.5- 88.0             | 7.60   | 120        | 68.6      | 218.0-208.81 | 12.227 |
| 25  | 47.6      | 91.0- 92.0             | 7.80   | 180        | 78.I      | 356.7        |        |
| 30  | 48.7      | 94.9- 96.2             | 8.06   | 220        | 83.5      | 506.0        |        |
| 40  | 50.5      | 102.0-104.9            | 8.5I   | 225        | 91.5      | 1076.0       |        |
| 50  | 52.8      | 112.0-114.0            | 8.97   | 313 m. pt. | 100.0     | 00           |        |
| 60  | 54-9      | 122.0-124.0            | 9.42   |            |           |              |        |
|     |           |                        |        |            |           |              |        |

\* Berkeley.

† 110°.

#### Solubility of Sodium Nitrate in Aqueous Solutions of Nitric Acid at 0°.

(Engel - Compt. rend. 104, 911, '87; see also Schultz - Zeit. Ch. [2] 5, 531, '62.)

| Equivalents per 10 | cc. Solution. | Sp. Gr. of | Grams per 1 | oo cc. Solution. |
|--------------------|---------------|------------|-------------|------------------|
| NaNO2.             | HNOB.         | Solutions. | NaNO3.      | HNO3.            |
| 66.4               | 0             | 1.341      | 56.5        | 0.00             |
| 63.7               | 2.65          | 1.338      | 54.2        | 1.67             |
| 60.5               | 5-7           | 1.331      | 51.48       | 3.59             |
| 56.9               | 8.8           | I.324      | 48.42       | 5.55             |
| 52.75              | 12.57         | 1.312      | 44.88       | 7.92             |
| 48.7               | 16.9          | 1.308      | 41.44       | 10.65            |
| 39-5               | 27.0          | 1.291      | 33.61       | 17.02            |
| 35.1               | 32.25         | 1.285      | 29.86       | 20.33            |
| 31.1               | 37.25         | 1.282      | 26.46       | 23.48            |
| 23.5               | 48.0          | 1.276      | 20.0        | 30.26            |
| 18.0               | 57.25         | 1.276      | 15.32       | 36.09            |
| 12.9               | 71.0          | 1.291      | 10.97       | 44.76            |

#### Solubility of Mixtures of Sodium Nitrate and Potassium Nitrate in Water at 20°.

(Carnelly and Thomson - J. Ch. Soc. 53, 799, '88.)

| Per cent<br>NaNO <sub>3</sub> in<br>Mixtures |             | 100 Gms.<br>O. | Per cent<br>NaNO <sub>2</sub> in<br>Mixtures | Gms. per 100 Gms.<br>HgO. |        |  | Ja Nich in Gms. per loc |  |
|----------------------------------------------|-------------|----------------|----------------------------------------------|---------------------------|--------|--|-------------------------|--|
| Used.                                        | NaNO3.      | KNO3.          | Used.                                        | NaNO3.                    | KNO3.  |  |                         |  |
| 100                                          | 86.8        | 0              | 45 · 7                                       | 53·3                      | 34 · 7 |  |                         |  |
| 90                                           | 96.4        | 13.2           | 40                                           | 45.6                      | 35.5   |  |                         |  |
| 8o                                           | 98.0        | 38.5           | 20                                           | 20.8                      | 33 . 3 |  |                         |  |
| 60                                           | <u>90.0</u> | 47.6           | IO                                           | 9.4                       | 31.5   |  |                         |  |
| 50                                           | 66.o        | 40.0           | 0                                            | 0.0                       | 33.6   |  |                         |  |

100 gms. H<sub>2</sub>O dissolve 24.9 gms. NaCl + 53.6 gms. NaNO, at 20°. (Rüdorff – Ber. 6, 484, '73; Karsten; Nicol – Phil. Mag. [5] 31, 386, '91.)

#### Solubility of Sodium Nitrate in Aqueous Solutions of Sodium Hydroxide at 0°.

(Engel - Bull. soc. chim. [3] 6, 16, '91.)

| Milligram Mols. per 10<br>cc. Solution. |        | Sp. Gr.<br>of | Grams per 100 cc.<br>Solution. |         |  |
|-----------------------------------------|--------|---------------|--------------------------------|---------|--|
| NazO.                                   | NaNO3. | Solutions.    | NaOH.                          | NaNO3.  |  |
| 0.0                                     | 66.4   | 1.341         | 0.0                            | 56.50   |  |
| 2.875                                   | 62.5   | 1.338         | 2.30                           | 53.19   |  |
| 6.1                                     | 57.15  | I.333         | 4.89                           | 48.63   |  |
| 12.75                                   | 47.5   | I . 327       | 10.21                          | 40.42   |  |
| 26.0                                    | 29.5   | 1.326         | 20.83                          | 25 . 10 |  |
| . 39.0                                  | 17.5   | · I.332       | 31.25                          | 14.89   |  |
| 45.88                                   | 13.19  | 1.356         | 36.76                          | II.22   |  |
| 60.88                                   | 6.05   | I . 401       | 48.75                          | 5.15    |  |

#### SOLUBILITY OF SODIUM NITRATE IN ALCOHOLS.

100 gms. abs. methyl alcohol dissolve 0.41 gm. NaNO, at 25°. 100 gms. abs. ethyl alcohol dissolve 0.036 gm. NaNO, at 25°. (de Bruyn – Z. physik. Ch. 10, 783, '92.)

SOLUBILITY OF SODIUM NITRATE IN AQUEOUS ETHYL ALCOHOL AT DIFFERENT TEMPERATURES.

(Bodländer - Z. physik. Ch. 7, 317, '91; Taylor - J. Physic. Ch. 1, 723, '97; Bathrick - Ibid. 1, 162, '96.)

| Re                                                                               | Results at 13° (B.).                                   |                                                             |                                                             | Re                                                                                     | Results at 16.5° (B.).                                                     |                                                                               |                                                                                                |  |
|----------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|
| Sp. Gr. of<br>Solutions.                                                         | $\frac{Gms. pe}{C_6H_6OH}$                             | r 100 cc. S<br>HgO.                                         | Solution.<br>NaNO <sub>2</sub> .                            | Sp. Gr. of<br>Solutions.                                                               | Gms. per<br>C6H5OH.                                                        | 100 cc. So<br>H2O.                                                            | NaNO2.                                                                                         |  |
| I . 3700<br>I . 3395<br>I . 3120<br>I . 2845<br>I . 2580<br>I . 2325<br>I . 2010 | 0.0<br>3.08<br>6.01<br>8.30<br>10.91<br>13.77<br>16.46 | 75 34<br>73 53<br>71 81<br>70 85<br>69 47<br>67 12<br>66 16 | 61.66<br>57.34<br>53.39<br>49.30<br>45.42<br>42.36<br>37.48 | 1.3745<br>1.3162<br>1.2576<br>1.2140<br>1.1615<br>1.0855<br>1.0558<br>1.0050<br>0.9420 | 0.0<br>6.16<br>11.60<br>16.49<br>22.17<br>32.22<br>37.23<br>43.98<br>52.60 | 75.25<br>70.82<br>68.10<br>65.04<br>61.67<br>52.92<br>48.50<br>42.78<br>32.13 | 62 · 20<br>54 · 64<br>46 · 06<br>39 · 87<br>32 · 31<br>23 · 41<br>19 · 85<br>13 · 74<br>9 · 47 |  |
|                                                                                  |                                                        |                                                             |                                                             | 0.9030<br>0.8610                                                                       | 60.00<br>63.16                                                             | 25.65<br>21.31                                                                | 4.65<br>1.63                                                                                   |  |

| Results                                | s at 30° (7                    | <b>.</b> .). | Results at 40°.<br>(Bathrick.) |                                            |  |  |
|----------------------------------------|--------------------------------|--------------|--------------------------------|--------------------------------------------|--|--|
| Wt. per cent<br>Alcohol in<br>Solvent. | Gms. 1<br>per 100<br>Solution. |              | Wt.<br>Per cent<br>Alcohol.    | Gms. NaNOs<br>per 100 Gms.<br>Aq. Alcohol. |  |  |
| 0                                      | 49.10                          | 96.45        | o                              | 104.5                                      |  |  |
| 5                                      | 46.41                          | 91.15        | 8.22                           | 90. <b>8</b>                               |  |  |
| IO                                     | 43.50                          | 85.55        | 17.4                           | 73.3                                       |  |  |
| 20                                     | 37.42                          | 74.75        | 26.0                           | 61.6                                       |  |  |
| 30                                     | 31.31                          | 65.10        | 36.0                           | 48.4                                       |  |  |
| 40                                     | 25.14                          | 55.95        | 42.8                           | 40.6                                       |  |  |
| 50                                     | 18.94                          | 46.75        | 55.3                           | 27 . I                                     |  |  |
| δo                                     | 12.97                          | 37.25        | 65.1                           | 18.1                                       |  |  |
| 70                                     | 7.81                           | 28.25        | 77.0                           | 9.4                                        |  |  |
| 90                                     | I.2I                           | 12.25        | 87.2                           | 4.2                                        |  |  |

| SOLUBILITY | OF | SODIUM | Nitrate | IN  | Aqueous | Solutions | OF |
|------------|----|--------|---------|-----|---------|-----------|----|
|            |    |        | Асето   | NE. |         |           |    |

| Res                                    | ults at 30'     | Results at 40°. |                 |                                            |  |  |
|----------------------------------------|-----------------|-----------------|-----------------|--------------------------------------------|--|--|
|                                        | (Taylor.)       |                 | (Bathrick.)     |                                            |  |  |
| Wt. per cent<br>Acetone in<br>Solvent. |                 | o Gms.          | Wt.<br>per cent | Gms. NaNOs<br>per 100 Gms.<br>Aq. Acetone. |  |  |
|                                        | Solution.       | Water.          | Acetone.        |                                            |  |  |
| ο                                      | <b>4</b> 9 · IO | 96.45           | 0.0             | 105                                        |  |  |
| 5                                      | 46.96           | 93.20           | 8.47            | 91 · 2                                     |  |  |
| 9.09                                   | 45.11           | 90.40           | 16.8            | 78.3                                       |  |  |
| 20                                     | 40.10           | 83.70           | 25.2            | 66 . 4                                     |  |  |
| 30                                     | 35.08           | 77 - 20         | 34 · 3          | 57 · 9                                     |  |  |
| 40                                     | <b>29</b> .80   | 70.75           | 44 · I          | 46. <b>2</b>                               |  |  |
| 50                                     | <b>24</b> · 34  | 64 . 40         | 53·9            | 32.8                                       |  |  |
| 60                                     | 18.55           | 59 · 95         | 64.8            | 23.0                                       |  |  |
| 70                                     | 13.15           | 50.50           | 76.0            | 10.8                                       |  |  |
| 8o                                     | 7 . 10          | 38 · 20         | 87.6            | 3.2                                        |  |  |
| 90                                     | 1.98            | 20.20           |                 |                                            |  |  |

#### SODIUM NITEITE NaNO,.

100 gms. H<sub>2</sub>O dissolve 83.3 gms. at 15°.

(Divers - J. Ch. Soc. 75, 86. '09.)

100 gms. abs. methyl alcohol dissolve 4.43 gms. NaNO, at 19.5°. 100 gms. abs. ethyl alcohol dissolve 0.31 gm. NaNO, at 19.5°. (de Bruyn – Z. physik. Ch. 10, 783, '92)

### SODIUM BHODO NITRITE Na,Rh,(NO,)12.

100 gms. H<sub>2</sub>O dissolve 40 gms. at 17°, and 100 gms. at 100°. (Leidle - Compt. rend. 111, 107, '90.)

#### SODIUM OXALATE C.O.Na.

SOLUBILITY IN WATER. (Souchay and Leussen – Liebig's Ann. 99, 33, '56; Pohl – J. pr. Ch. 56, 216, '52.) t°. 15.5°. 21.8°. 100°. Gms. Na<sub>2</sub>C<sub>2</sub>O<sub>4</sub> per 100 gms. H<sub>2</sub>O 3.22 3.74 6.33 ...

phate at 15.5°.

#### SOLUBILITY OF MIXTURES OF SODIUM OXALATE AND OXALIC ACID IN WATER AT 25°.

(Foote and Andrew - Am. Ch. J. 34, 154, '05.)

| Gms. per 100 Gms.<br>Solution. |          | Mols. per<br>Hg                                | voo Mols.<br>O. | Solid<br>Phase.                                                 |
|--------------------------------|----------|------------------------------------------------|-----------------|-----------------------------------------------------------------|
| H <b>2C2O4</b> .               | NagCgO4. | H <sub>2</sub> C <sub>2</sub> O <sub>4</sub> . | NasCsO4.        |                                                                 |
| IO.20                          | • • •    | 2.274                                          | • • •           | H <sub>2</sub> C <sub>2</sub> O <sub>4</sub> .2H <sub>2</sub> O |
| 10.50                          | 0.83     | 2.370                                          | 0.130           | HgCgO4.2HgO + HNaCgO4.HgO                                       |
| 9.15                           | 0.71     | 2.032                                          | 0.106]          |                                                                 |
| 6.88                           | o.86     | I.493                                          | 0.125           | Double Salt, HNaCrO4.HrO                                        |
| I.14                           | I.25     | 0.234                                          | 0.172           | Double Sait, EnvacyOgingO                                       |
| o · 47                         | 3.20     | 0.098                                          | 0.446           |                                                                 |
| 0.42                           | 3.85     | 0.090                                          | 0.541           | HNaCzO4.HzO + NazCzO4                                           |
| •••                            | 3.60     | •••                                            | 0.502           | Na <sub>2</sub> C <sub>2</sub> O <sub>6</sub>                   |

#### **SODIUM** *p* **NITRO PHENOL** C<sub>6</sub>H<sub>4</sub>.ONa(1).NO<sub>2</sub>(4).

Solubility in Water and in Aqueous Normal Solutions of Non Electrolytes.

(Goldschmidt — Z. physik. Ch. 17, 154, '95.)

Gms. C<sub>6</sub>H<sub>4</sub>.ONa(1).NO<sub>2</sub>(4) per 100 Gms. Solution in:

| ¥     | Water. | Alcohol. | Urea.          | Glycerine. | Acetone. | Propionitril. | Acetonitril. | Urethane. |
|-------|--------|----------|----------------|------------|----------|---------------|--------------|-----------|
| 23.7  | 5.597  | 5.615    | 6.244          | 6.188      | 6.225    | 6.257         | 6.065        | 6.520     |
| 28.6  | 6.721  | 6.874    | 7.489          | 7.440      | 7.498    | 7.571         | 7.328        | 7.889     |
| 30.6  | 7.256  |          | •••            | •••        | • • •    |               | •••          |           |
| 33.6  | 8. 125 | 8. 318   | 9.000          | 9.025      | 9.025    | 9.066         | 8.886        | 9.507     |
| 35.9  | 8.851  | •••      | •••            | •••        | •••      | •••           | •••          | •••       |
| 36. I | 8.883  |          | 9.68 <u>3</u>  | 9.688      | 9.665    | 9.911         | 9.667        | 10. 248   |
| 40.2  | 9.881  | 10. 147  | 10.666         | 10.777     | 10.695   | 10.905        | 10.667       | 11.379    |
| 45.2  | 11.235 | 11.513   | 12.068         | 12.229     | • • •    | •••           | •••          | 12.869    |
| 50. 1 | 12.730 | 13.133   | <b>13</b> .555 | 13. 785    | •••      | •••           | •••          | •••       |

The solid phase is  $C_6H_4ONa.NO_{2.4}H_2O$  below 36°, and  $C_6H_4ONa.NO_{2.2}H_2O$  above 36° in each case.

#### SODIUM PHOSPHATES, Ortho, Hydrogen, and Pyro.

SOLUBILITY OF EACH IN WATER.

#### (Mulder; Poggiale.)

| t°. | Gms. per 100 Gms. Water. |                                    |          | t°. | Gms. per 100 Gms. H <sub>2</sub> O. |                                    |          |  |
|-----|--------------------------|------------------------------------|----------|-----|-------------------------------------|------------------------------------|----------|--|
|     | NasPO4.                  | Na <sub>2</sub> HPO <sub>4</sub> . | Na4P2O7. |     | Na3PO4.                             | Na <sub>2</sub> HPO <sub>4</sub> . | Na4P2O7. |  |
| 0   | I.5                      | 2.5                                | 3.16     | 40  | 31.0                                | 63.9                               | 13.50    |  |
| 10  | 4.I                      | 3.9                                | 3 · 95   | 50  | 43.0                                | 82.5                               | 17.45    |  |
| 20  | <b>II</b> .0             | 9.3                                | 6.23     | 60  | 55.0                                | 91.6                               | 21 .83   |  |
| 25  | 15.5                     | 15.4                               | 8.14     | 8o  | 0. 18                               | 96.6                               | 30.04    |  |
| 30  | 20.0                     | 24 . I                             | 9.95     | 100 | 108.0                               | <u>9</u> 9.0                       | 40.26    |  |

Solid phases, Na,PO,.12H<sub>2</sub>O, Na,HPO,.12H<sub>2</sub>O and Na,P<sub>2</sub>O,.10H<sub>2</sub>O respectively. Sp. Gr. of saturated solution of Na,HPO, at 15°=1.047. 100 gms. alcohol of 0.941 Sp. Gr. dissolve 0.33 gm. sodium phos-

**SODIUM** (Double) **PHOSPHATE**, **FLUORIDE** Na<sub>3</sub>PO<sub>4</sub>.NaF.12H<sub>2</sub>O. 100 gms. water dissolve 12 gms. of the double sodium salt at 25°, and 57.5 gms. at 70°. Sp. Gr. of solution at 25° = 1.0329; at 70° = 1.1091. (Briegkb - Liebig's Ann. 97, 95, '36)

#### SODIUM PHOSPHITES

311 SOLUBILITY OF SODIUM PHOSPHITES, ETC., IN WATER.

| Salt.                  | Formula.                                                          | t°.    | Gms. Salt<br>per 100 Gms.<br>H <sub>2</sub> O. | Authority.                               |
|------------------------|-------------------------------------------------------------------|--------|------------------------------------------------|------------------------------------------|
| Hydrogen Phosphite     | (NaH)HPO3.21H2O                                                   | 0      | 56 )                                           | (Amat Compt.                             |
| "                      | u                                                                 | IO     | 66 }                                           | rend. 106, 1351, '88.)                   |
| u                      | "                                                                 | 42     | 193                                            |                                          |
| Hypophosphate          | Na4P2O6.10H2O                                                     | cold   | 3.3)                                           | and the baseline                         |
| Hydrogen Hypophosphate | Na <sub>3</sub> HP <sub>2</sub> O <sub>6</sub> .9H <sub>2</sub> O | 2      | 4.5                                            | (Salzer - Liebig's<br>Ann. 211, 1, '82.) |
| Tri Hydrogen "         | NaH <sub>3</sub> P <sub>2</sub> O <sub>63</sub> H <sub>2</sub> O  | cold   | 6.7)                                           | Aun. 211, 1, 82.)                        |
| Di Hydrogen "          | Na2H2P2O6.6H2O                                                    | cold   | 2.2)                                           | (Salzer - Liebig's                       |
| Di Hydrogen "          | Na2H2P2O6.6H2O                                                    | b. pt. | . 20.01                                        | Ann. 187, 331, '77.)                     |
| Hypophosphite          | (NaH)HPO2.H2O                                                     | 25     | 100.0 )                                        | (U. S. P.)                               |
| Hypophosphite          |                                                                   | b. pt. | . 830 )                                        |                                          |

SODIUM SELENATE Na<sub>2</sub>SeO<sub>4</sub>. roH<sub>2</sub>O. SOLUBILITY IN WATER. (Funk - Ber. 33, 3697, '00.)

| t°.      | Gms.<br>Na <sub>2</sub> SeO <sub>4</sub> per<br>100 Gms.<br>Solution. | Mols.<br>Na <sub>2</sub> SeO <sub>4</sub> per<br>100 Mols.<br>H <sub>2</sub> O. |               | t°   | Gms.<br>Na <sub>2</sub> SeO <sub>4</sub> per<br>100 Gms.<br>Solution. | Mols.<br>Na <sub>2</sub> SeO <sub>4</sub> per<br>100 Mols.<br>H <sub>2</sub> O. | Solid<br>Phase.      |
|----------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------|------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------|
| 0        | 11.74                                                                 | 1.26                                                                            | Na2SeO4.10H2O | 35.2 | 45.47                                                                 | 7.94                                                                            | Na <sub>2</sub> SeO4 |
| 15<br>18 | 25.OI                                                                 | 3.18                                                                            | **            | 39.5 | 45.26                                                                 | 7.87                                                                            |                      |
| 18       | 29.00                                                                 | 3.90                                                                            | **            | 50   | 44.49                                                                 | 7.63                                                                            |                      |
| 25.2     | 36.91                                                                 | 5.57                                                                            |               | 75   | 42.83                                                                 | 7.14                                                                            |                      |
| 27       | 39.18                                                                 | 6.13                                                                            |               | 100  | 42.14                                                                 | 6.93                                                                            |                      |
| 30       | 44.05                                                                 | 7.50                                                                            |               |      |                                                                       |                                                                                 |                      |

Sp. Gr. of saturated solution at  $18^\circ = 1.315$ .

#### SODIUM STANNATE Na2SnO2.3H2O.

100 gms.  $H_2O$  dissolve 67.4 gms. at 0°, and 61.3 gms. at 20°. Sp. Gr. of solution at 0° = 1.472; at 20° = 1.438. (Ordway – Am. J. Sci. [2] 40, 173, '65.)

**SODIUM SULPHATE** Na<sub>2</sub>SO<sub>4</sub>. SOLUBILITY IN WATER. (Mulder; Löwel – Ann. chim. phys. [3] 33, 382, '51; Tilden and Shenstone – Proc. Roy. Soc. (Lond.) 35, 345, '83; Etard – Ann. chim. phys. [7] 2, 527, '94; Funk – Ber. 33, 3701, '00; Berkeley – Trans. Roy. Soc. (Lond.) 203 A, 209, '04.)

| **    | Gms. Na2SO4 per<br>100 Gms. |        | Mols.<br>NapSO4 per | Solid                           | tº. | Gms. Na <sub>2</sub> SO <sub>4</sub> per<br>100 Gms. |        | Mols.<br>Na2SO4 per | Solid               |
|-------|-----------------------------|--------|---------------------|---------------------------------|-----|------------------------------------------------------|--------|---------------------|---------------------|
|       | Solution.                   | Water. |                     | Phase.                          | -   | Solution.                                            | Water. | Liter (B.).         | Phase.              |
| 0     | 4.76                        | 5.0    | 0.31                | Na2SO4.10H2O                    | 50  | 31.8                                                 | 46.7   | 2.92                | Na <sub>2</sub> SO4 |
| 5     | 6.0                         | 6.4    |                     |                                 | 60  | 31.2                                                 | 45.3   | 2.83                |                     |
| 10    | 8.3                         | 9.0    | 0.631               |                                 | 80  | 30.4                                                 | 43-7   | 2.69                |                     |
| 15    | 11.8                        | 13.4   |                     |                                 | 100 | 29.8                                                 | 42.5   | 2.60                |                     |
| 20    | 16.3                        | 19.4   | I.32                |                                 | 120 | 29.5                                                 | 41.95  |                     | 86                  |
| 25    | 21.9                        | 28.0   |                     |                                 | 140 | 29.6                                                 | 42     |                     |                     |
| 27.5  | 25.6                        | 34.0   |                     |                                 | 160 | 30.7                                                 | 44.25  |                     | **                  |
| 30    | 29.0                        | 40.8   | 2.63                |                                 | 230 | 31.7                                                 | 46.4   |                     |                     |
| 31    | 30.6                        | 44.0   |                     |                                 | 0   | 16.3                                                 | 19.5   |                     | NagSO4.7H2O         |
| 32    | 32.3                        | 47.8   |                     |                                 | 5   | 19.4                                                 | 24     |                     |                     |
| 32.75 | 33.6                        |        | 3.11                |                                 | IO  | 23.I                                                 | 30     |                     |                     |
| 33    | 33.6                        | 50.6   |                     | Na <sub>2</sub> SO <sub>6</sub> | 15  | 27.0                                                 | 37     |                     |                     |
| 35    | 33.4                        | 50.2   |                     | **                              | 20  | 30.6                                                 | 44     |                     |                     |
| 40    | 32.8                        | 48.8   | 3.01                |                                 | 25  | 34.6                                                 | 53     |                     |                     |

## SODIUM SULPHATE

## SOLUBILITY OF MIXTURES OF SODIUM SULPHATE AND MAGNESIUM SULPHATE IN WATER (ASTRAKANITE) Na<sub>2</sub>Mg(SO<sub>4</sub>)<sub>2</sub>.4H<sub>2</sub>O.

312

| <b>t°</b> . | Mols. per 100<br>Mols. H <sub>2</sub> O. |        | Grams per 100<br>Grams H <sub>2</sub> O. |        | Solid                                         |  |
|-------------|------------------------------------------|--------|------------------------------------------|--------|-----------------------------------------------|--|
|             | Na2SO4.                                  | MgSO4. | Na2SO4.                                  | MgSO4. | Phase.                                        |  |
| 22          | 2.95                                     | 4.70   | 23.3                                     | 31.4   | Astrakanite                                   |  |
| 24.5        | 3 · 45                                   | 3.68   | 27.2                                     | 24.6   | ••                                            |  |
| 30          | 3 · 59                                   | 3 · 59 | 28.4                                     | 24 · I | **                                            |  |
| 35          | 3.71                                     | 3.71   | <b>2</b> 9 · 4                           | 24.8   | **                                            |  |
| 47          | 3.6                                      | 3.6    | 28·4                                     | 24 · I | 45                                            |  |
| 22          | 2.95                                     | 4.70   | 23.3                                     | 31.4   | Astrakanite + Na <sub>3</sub> SO <sub>4</sub> |  |
| 24.5        | 3 45                                     | 3.62   | 27.2                                     | 24.2   | 44                                            |  |
| 30          | 4.58                                     | 2.91   | 36.1                                     | 19.1 · | 46                                            |  |
| 35          | 4.3                                      | 2.76   | 33.9                                     | 18.44  | 44                                            |  |
| 18.5        | 3.41                                     | 4.27   | 43.0                                     | 45 · 5 | Astrakanite + MgSO <sub>6</sub>               |  |
| 22          | 2.85                                     | 4.63   | 35.2                                     | 48.9   | **                                            |  |
| 24.5        | 2.68                                     | 4.76   | 32.5                                     | 50.3   | **                                            |  |
| 30          | 2.3                                      | 5.31   | 25.9                                     | 55.0   | 44                                            |  |
| 35          | 1.73                                     | 5.88   | 23.5                                     | 59.4   |                                               |  |

(Roozeboom - Rec. trav. chim. 6, 342, '87; Z. physik. Ch. 2, 518, '88.)

## Solubility of Mixtures of Sodium Sulphate, Potassium Chloride, Potassium Sulphate, etc., in Water.

(Meyerhoffer and Saunders - Z. physik. Ch. 28, 469; 31, 382, '99.)

| t°.            | Sp. Gr. of | Mo            | ls. per 100     | o Mols. H       | <sub>2</sub> O. | Solid Phase.                                 |
|----------------|------------|---------------|-----------------|-----------------|-----------------|----------------------------------------------|
| 6.             | Solutions. | SO.           | K <sub>2</sub>  | Na <sub>2</sub> | Cl <sub>2</sub> |                                              |
| *4.4           | •••        | 5.42          | 14.39           | 51.8 <b>3</b>   | 60.8            | K2Na(SO4)2+Na2SO4.10H2O+<br>KCl+NaCl         |
| 0.2            | •••        | <b>3</b> · 35 | 12.78           | 50.93           | 60.36           | Na2SO4.10H2O+KCl+NaCl                        |
| - 0.4          | •••        | 3.59          | 16.38           | 40.75           | 53.54           | Na2SO4.10H2O+KCl+K2Na(SO4)2                  |
| 16.3           | •••        | 4.72          | 17.58           | 50.56           | 63.42           | K3Na(SO4)2+KCl+NaCl                          |
| 24.8           | 1 . 2484   | 4.37          | 20.00           | 48.36           | 64.01           | K3Na(SO4)2+KCl+NaCl                          |
| <b>*</b> 16.3  | •••        | 16.29         | 9 <i>.</i> 16   | 61.06           | 53.93           | K3Na(SO4)2+NaCl+Na2SO4.10H2O+<br>Na2SO4      |
| 24.5           | 1.2625     | 14.45         | 9.90            | 58.46           | 53.91           | K3Na(SO4)2+NaCl+Na2SO4                       |
| 0.3            | • • •      | 2.75          | <b>2</b> 5 · 77 | 17.93           | 40.95           | $K_3Na(SO_4)_2 + KCl + K_2SO_4$              |
| 25.0           | 1.2034     | 2.94          | 36.20           | 14.80           | 48.06           | $K_{3}Na(SO_{4})_{2}+KCl+K_{2}SO_{4}$        |
| <b>*</b> 17.9  | 1.2474     | 13.84         | 0.0             | 62.57           | 48.70           | Na2SO4.10H2O+Na2SO4+NaCl                     |
| <b>*</b> 30. 1 | 1.2890     | 50.41         | 10.08           | 40.33           | 0.0             | $K_3Na(SO_4)_2 + Na_2SO_4.10H_2O + Na_2SO_4$ |
| -21.4          |            | •••           |                 | 46.61           | 46.36           | NaCl.2H2O+Na2SO4.10H2O                       |
| - 23.7         | •••        | •••           | 10.51           | 39.58           | 50. <b>0</b> 9  | NaCl.2H2O+KCl                                |
| - 10.9         |            | I.45          | 30.68           | • • •           | 29.23           | KCl+K2SO4                                    |
| - 3            |            | 16.25         | 10.03           | 6.21            | •••             | K3Na(SO4)2+Na2SO4.10H2O                      |
| - 3            |            | 16.24         | 10.03           | 6.21            | • • •           | $K_3Na(SO_4)_2 + K_2SO_4$                    |
| - 14           |            | 1.39          | 25.59           | 8.78            | 32.94           | K3Na(SO4)2+Na2SO4.10H2O+KCl                  |
| - 14           |            | I. 39         | 25.59           | 8.78            | 32.94           | K3Na(SO4)2+K2SO4+KCl                         |
| -23.3          | •••        | 0.41          | 15.15           | 44.20           | 58.97           | Na2SO4.10H2O+KCl+NaCl-2H <b>2O</b>           |

\* Indicates transition points.

## SOLUBILITY OF SODIUM SULPHATE IN AQUEOUS SOLUTIONS OF SULPHURIC ACID.

313

(D'Ans, Shepherd and Günther - Z, anorg. Chem. 49, 356-61, '06.)

| ms. Solution.       | Mols. per 1000                                                                        | gms. Solution                                                                                                                                                                                          | Solid Phase,                                                                                                                                                                                                                                                |  |  |
|---------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Na <sub>2</sub> SO4 | HaSO,                                                                                 | Na <sub>2</sub> SO4                                                                                                                                                                                    |                                                                                                                                                                                                                                                             |  |  |
| 219.0               | 0.0                                                                                   | 1.541                                                                                                                                                                                                  | $Na_2SO_4 \cdot 10 H_2O$                                                                                                                                                                                                                                    |  |  |
| 237.4               | 0.286                                                                                 | 1.671                                                                                                                                                                                                  | "                                                                                                                                                                                                                                                           |  |  |
| 247.5               | 0.338                                                                                 | 1.742                                                                                                                                                                                                  | "                                                                                                                                                                                                                                                           |  |  |
| 320.7               | 0.884                                                                                 | 2.256                                                                                                                                                                                                  | $Na_2SO_4 \cdot 10 H_2O + Na_2SO_4$                                                                                                                                                                                                                         |  |  |
| 335.8               | 1.576                                                                                 | 2.363                                                                                                                                                                                                  | $Na_3H(SO_4) \cdot H_2O + Na_2SO_4$                                                                                                                                                                                                                         |  |  |
| 346.4               | 1.666                                                                                 | 2.437                                                                                                                                                                                                  | $Na_3H(SO_4)_2 + Na_2SO_4$                                                                                                                                                                                                                                  |  |  |
| 297.4               | 2.611                                                                                 | 2.091                                                                                                                                                                                                  | $Na_{2}H(SO_{4})_{2} + Na_{2}H(SO_{4})_{2} \cdot H_{2}O$                                                                                                                                                                                                    |  |  |
|                     | Na <sub>2</sub> SO <sub>4</sub><br>219.0<br>237.4<br>247.5<br>320.7<br>335.8<br>346.4 | Na2SO4         H2SO,           219.0         0.0           237.4         0.286           247.5         0.338           320.7         0.884           335.8         1.576           346.4         1.666 | 219.0         0.0         1.541           237.4         0.286         1.671           247.5         0.338         1.742           320.7         0.884         2.256           335.8         1.576         2.363           346.4         1.666         2.437 |  |  |

Solubility of Sodium Sulphate in Aqueous Solutions of Sodium Chloride at Different Temperatures.

(Seidell - Am. Ch. J. 27, 52, '02.)

## Results at 10°.

#### at 10°.

## Results at 21.5°. Results at 27°.

| Sp. Gr.    |       | 1 100 Gms. | Sp. Gr.    | Gms. per 100 Gms.<br>H2O. |         | Sp. Gr.    | Gms. per 100 Gms.<br>H <sub>2</sub> O. |                     |
|------------|-------|------------|------------|---------------------------|---------|------------|----------------------------------------|---------------------|
| Solutions. | NaCl. | Na2SO4.    | Solutions. | NaCl.                     | Na2SO4. | Solutions. | NaCl.                                  | Na <sub>2</sub> SO. |
| 1.080      | 0.0   | 9.14       | 1.164      | 0.0                       | 21.33   | 1.228      | 0.0                                    | 31.10               |
| 1.083      | 4.28  | 6.42       | 1.169      | 9.05                      | 15.48   | 1.230      | 2.66                                   | 28.73               |
| I.IO2      | 9.60  | 4.76       | I.199      | 17.48                     | 13.73   | 1.230      | 5.29                                   | 27.17               |
| 1.150      | 15.65 | 3.99       | 1.214      | 20.41                     | 13.62   | 1.235      | 7.90                                   | 26.02               |
| 1.164      | 21.82 | 3.97       | 1.243      | 26.01                     | 15.05   | 1.259      | 16.13                                  | 24.83               |
| 1.192      | 28.13 | 4.15       | I.244      | 26.53                     | 14.44   | 1.253      | 18.91                                  | 21.39               |
| 1.207      | 30.11 | 4.34       | I.244      | 27.74                     | 13.39   | 1.249      | 19.64                                  | 20.II               |
| 1.217      | 32.27 | 4.59       | I.244      | 31.25                     | 10.64   | 1.245      | 20.77                                  | 19.29               |
| 1.223      | 33.76 | 4.75       | 1.243      | 31.80                     | 10.28   | 1.238      | 32.33                                  | 9.53                |
|            |       |            | 1.245      | 32.10                     | 8.43    |            |                                        |                     |
|            |       |            | 1.219      | 33.69                     | 4.73    |            |                                        |                     |
|            |       |            | 1.212      | 34.08                     | 2.77    |            |                                        |                     |
|            |       |            | 1.197      | 35.46                     | 0.00    |            |                                        |                     |

## Results at 30°.

Results at 33°.

## Results at 35°.

| Sp. Gr.    | Gms. per 100 Gms.<br>HaO. |         |            |       | Gms. per 100 Gms.<br>HgO. |                  | Gms. per 100 Gms.<br>HgO. |       |
|------------|---------------------------|---------|------------|-------|---------------------------|------------------|---------------------------|-------|
| Solutions. | NaCl.                     | NazSO4. | Solutions. | NaCl. | Na2SO4.                   | of<br>Solutions. | NaCl.                     | Na2SO |
| 1.281      | 0.0                       | 39.70   | I.329      | 0.0   | 48.48                     | 1.324            | 0.0                       | 47.94 |
| 1.282      | 2.45                      | 38.25   | 1.323      | I.22  | 46.49                     | 1.314            | 2.14                      | 43.75 |
| 1.284      | 5.61                      | 36.50   | 1.318      | 1.99  | 45.16                     | 1.256            | 13.57                     | 26.26 |
| 1.290      | 7.91                      | 35.96   | 1.315      | 2.64  | 44.09                     | 1.238            | 18.78                     | 19.74 |
| 1.276      | 10.61                     | 31.64   | I.309      | 3.47  | 42.61                     | 1.231            | 31.91                     | 8.28  |
| 1.270      | 12.36                     | 29.87   | 1.265      | 12.14 | 29.32                     | 1.193            | 35.63                     | 0.00  |
| 1.258      | 15.65                     | 25.02   | 1.237      | 21.87 | 16.83                     |                  |                           |       |
| 1.249      | 18.44                     | 21.30   | 1.234      | 32.84 | 8.76                      |                  |                           |       |
| I.244      | 20.66                     | 19.06   | 1.217      | 33.99 | 4.63                      |                  |                           |       |
| 1.236      | 32.43                     | 9.06    | 1.208      | 34.77 | 2.75                      |                  |                           |       |

## SODIUM SULPHATE

## 314 SOLUBILITY OF SODIUM SULPHATE IN AQUBOUS ETHYL ALCOHOL. (de Bruyn – Z. physik. Chem. 32, 101, '00.)

.

| (de bruya - 2. puysa, Chem. 34, 101, 00.) |                           |                                                                      |                  |          |      |                                                     |  |  |  |
|-------------------------------------------|---------------------------|----------------------------------------------------------------------|------------------|----------|------|-----------------------------------------------------|--|--|--|
| t°.                                       | Content<br>of<br>Alcohol. | Gms. Na <sub>s</sub> SO <sub>6</sub><br>per 100 Gms.<br>Aq. Alcohol. | Gms. per<br>HgO. | 100 Gms. |      | Solid<br>Phase.                                     |  |  |  |
| 15                                        | 0.7                       | 12.7                                                                 | 88.7             | 0.0      | 11.3 | NasSO4.10HgO                                        |  |  |  |
| ้นั                                       | 9.2                       | 6.7                                                                  | 85.1             | 8.6      | 6.3  | "                                                   |  |  |  |
| "                                         | 19.4                      | 2.6                                                                  | 7 <b>8</b> .6    | 18.9     | 2.9  | **                                                  |  |  |  |
| "                                         | 39.7                      | 0.5                                                                  | <u>б</u> о.о     | 39.5     | 0.5  | 64                                                  |  |  |  |
| "                                         | 58.9                      | 0.1                                                                  | 41.1             | 58.8     | 0.1  | 68                                                  |  |  |  |
| "                                         | 72.0                      | 0.0                                                                  | 28.0             | 72.0     | 0.0  |                                                     |  |  |  |
| "                                         | 0.0                       | 37 • 4                                                               | 72.8             | 0.0      | 27.2 | NasSO4.7HzO                                         |  |  |  |
| "                                         | II.2                      | 16.3                                                                 | 76.5             | 9.5      | 14.0 | **                                                  |  |  |  |
| "                                         | 20.6                      | 7.0                                                                  | 74.3             | 19.2     | 6.5  | **                                                  |  |  |  |
| "                                         | 30.2                      | 2.0                                                                  | 68.4             | 29.6     | 2.0  | **                                                  |  |  |  |
| 25                                        | 0.0                       | 28.2                                                                 | 78.I             | 0.0      | 21.9 | Na <sub>2</sub> SO <sub>4</sub> .10H <sub>2</sub> O |  |  |  |
| "                                         | 10.6                      | 13.9                                                                 | 78.5             | 9.3      | 12.2 | 46                                                  |  |  |  |
| "                                         | 24.0                      | 4.5                                                                  | 72.8             | 22.9     | 4.3  | "                                                   |  |  |  |
| "                                         | 54.0                      | 0.4                                                                  | 45.6             | 54.0     | 0.4  | 84                                                  |  |  |  |
| 36                                        | 0.0                       | <b>4</b> 9 · 3                                                       | 67.0             | 0.0      | 33.0 | Na <sub>2</sub> SO <sub>6</sub>                     |  |  |  |
| -<br>                                     | 8.8                       | 29.2                                                                 | 70.6             | 6.8      | 22.6 | "                                                   |  |  |  |
| "                                         | 12.8                      | 22.4                                                                 | 71.2             | 10.5     | 18.3 | 66                                                  |  |  |  |
| "                                         | 17.9                      | 15.4                                                                 | 71.1             | 15.5     | 13.4 | 64 <sup>·</sup>                                     |  |  |  |
| "                                         | 18.1                      | 15.3                                                                 | 71.0             | 15.7     | 13.3 | 4                                                   |  |  |  |
| "                                         | 28.9                      | 5.4                                                                  | 66.5             | 28.4     | 5.1  | "                                                   |  |  |  |
| "                                         | 48.7                      | ō.8                                                                  | 50.9             | 48.3     | ō.8  | **                                                  |  |  |  |
| 45                                        | 0.0                       | 47 · 9                                                               | 67.6             | 0.0      | 32.4 | 44                                                  |  |  |  |
| **                                        | 9.0                       | 27.5                                                                 | 71.3             | 7.1      | 21.6 | 44                                                  |  |  |  |
| "                                         | 14.5                      | 19.2                                                                 | 71.8             | 12.1     | 16.1 | "                                                   |  |  |  |
| "                                         | 20.6                      | 12.3                                                                 | 70.6             | 18.4     | 10.0 |                                                     |  |  |  |
| "                                         | 31.0                      | 5.1                                                                  | 65.6             | 29.5     | 4.9  | **                                                  |  |  |  |
|                                           |                           |                                                                      |                  |          |      |                                                     |  |  |  |

Between certain concentrations of the aqueous alcohol the liquid separates into two layers at  $25^{\circ}$ ,  $36^{\circ}$  and  $45^{\circ}$ .

| ŧ°.     |                        | Upper Layer  |              | Lower Layer. |                                        |              |  |
|---------|------------------------|--------------|--------------|--------------|----------------------------------------|--------------|--|
| £*,     | Gms. H <sub>2</sub> O. | Gms. C2H5OH. | Gms. NasSO4. | Gms. H2O.    | Gms. C <sub>2</sub> H <sub>8</sub> OH. | Gms. Na2SO4. |  |
| 25<br>" | 66.5                   | 27.3         | 6.2          | 67.4         | 5.1                                    | 27.5         |  |
|         | 68 . I                 | 23.9         | 8.o          | 68.5         | 6.o                                    | 25.5         |  |
| "       | 68.3                   | 23 . I       | 8.6          | 68.3         | 6.7                                    | 25.0         |  |
| 36      |                        |              | •••          | 66.6         | 4.I                                    | 29.3         |  |
|         | 57.7                   | 38.4         | 3.9          | • • •        |                                        |              |  |
| "       | 65.0                   | 28.3         | 6.7          | 68.8         | 5.9                                    | 25.3         |  |
| "       | 68.I                   | 21.2         | 10.7         | 68.9         | 9.4                                    | 21.7         |  |
| 45      | 61.8                   | 32.9         | 5.3          |              | • • •                                  |              |  |
|         | 65.8                   | 25.3         | 8.g          | 68.4         | 8.8                                    | 22.8         |  |
| "       | 6ŏ.o                   | 24.0         | 10.0         | 68.6         | 10.I                                   | 21.3         |  |

#### SOLUBILITY OF SODIUM SULPHATE IN AQUEOUS PROPYL ALCOHOL AT 20°.

315

#### (Linebarger - Am. Ch. J. 14, 380, '92.)

| Gms. C <sub>3</sub> H <sub>7</sub> OH<br>per 100 Gms.<br>Alcohol-Water<br>Mixture. | Gms. Na <sub>2</sub> SO <sub>4</sub><br>per 100<br>Gms. Sat.<br>Solution. | Gms. C <sub>3</sub> H <sub>7</sub> OH<br>per 100 Gms.<br>Alcohol-Water<br>Mixture. | Gms. NagSO4<br>per 100<br>Gms. Sat.<br>Solution. |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------|
| 42.20                                                                              | 1.99                                                                      | 56.57                                                                              | 0.55                                             |
| 49.77                                                                              | 1.15                                                                      | 60.64                                                                              | 0.44                                             |
| 55.65                                                                              | 0.72                                                                      | 62.81                                                                              | 0.38                                             |

100 gms. H<sub>2</sub>O dissolve 183.7 gms. sugar + 30.5 gms. Na<sub>2</sub>SO<sub>4</sub> at  $31.25^{\circ}$ , or 100 gms. sat. solution contain 52.2 gms. sugar + 9.6 gms. Na<sub>2</sub>SO<sub>4</sub>. (Köhler – Z. Ver. Zuckerind. 47, 447, '97.)

#### SODIUM (Bi) SULPHATE NaHSO.

100 gms.  $H_2O$  dissolve 28.6 gms. at 25°, and 50.0 gms. at 100°. 100 gms. alcohol dissolve 1.4 gms. at 25°. (U. S. P.)

#### SODIUM THIO SULPHATE Na2S2O3.

## SOLUBILITY IN WATER.

(Young and Burke - J. Am. Chem. Soc. 26, 1417, '04.)

| t º.     | Gms. Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> per<br>100 Gms. |        | Solid               | t°.  | Gms. Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> per<br>100 Gms. |        | Solid            |
|----------|--------------------------------------------------------------------|--------|---------------------|------|--------------------------------------------------------------------|--------|------------------|
|          | Solution.                                                          | Water. | Phase.              | -    | Solution.                                                          | Water. | Phase.           |
| IO       | 37.38                                                              | 59.69  | Pentahydrate (com.) | 20   | 62.11                                                              | 163.92 | Monohydrate      |
| 20       | 41.20                                                              | 70.07  | *                   | 25   | 62.73                                                              | 168.32 | **               |
| 25       | 43.15                                                              | 75.90  | **                  | 30   | 63.53                                                              | 174.20 |                  |
| 30       | 45.19                                                              | 82.45  |                     | 20   | 55.15                                                              | 122.68 | Dihydrate        |
| 35       | 47.71                                                              | 91.24  |                     | 25   | 56.03                                                              | 127.43 |                  |
| 40       | 50.83                                                              | 103.37 |                     | 30   | 57.13                                                              | 133.27 |                  |
| 45       | 55.33                                                              | 123.87 |                     | 35   | 58.13                                                              | 138.84 |                  |
| 20       | 49.38                                                              | 97.55  | Pentahydrate (8)    | 40   | 59.17                                                              | 144.92 | **               |
| 25       | 52.15                                                              | 108.98 |                     | 50   | 62.28                                                              | 165.11 |                  |
| 25<br>28 | 54.48                                                              | 119.69 |                     | 33.5 | 58.59                                                              | 141.48 | Tetrahydrate (?) |
| 29.5     | 55.85                                                              | 126.50 |                     | 36.2 | 60.51                                                              | 153.23 |                  |
| 30       | 56.57                                                              | 130.26 |                     | 36.6 | 62.80                                                              | 168.82 |                  |

100 gms. alcohol dissolve 0.0025 gm. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> and 0.0034 gm. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>·5H<sub>2</sub>O at room temperature. (Bödiker – Z. physik. Chem. 22, 510, '97.)

100 gms. alcohol of 0.941 Sp. Gr. dissolve 33.3 gms. at 15.5°. (See also Parmentier - Compt. rend. 122, 136, '96.)

#### SODIUM SULPHITE Na,SO,.

100 gms. H<sub>2</sub>O dissolve 14.1 gms. at 0°, 25.8–28.7 gms. at 20°, and 49.5 gms. at 40°. (Kremers – Pogg. Ann. 99, 50, '56.)

### SODIUM TELLURIATE Na, TeO, 2H,O.

100 gms. H<sub>2</sub>O dissolve 0.77 gm. Na<sub>2</sub>TeO, at 18°, and 2.0 gms. at 100°. Solid phase Na<sub>2</sub>TeO<sub>4</sub>.2H<sub>2</sub>O.

100 gms. H<sub>2</sub>O dissolve 1.43 gms. Na<sub>2</sub>TeO, at 18°, and 2.5 gms. at 50°. Solid phase Na<sub>2</sub>TeO<sub>4</sub>.4H<sub>2</sub>O. (Mylius - Ber. 34, 2208, 'or.)

#### SODIUM TUNGSTATE

## **SODIUM TUNGSTATE** (Wolframate) Na<sub>2</sub>WO<sub>4</sub>.2H<sub>2</sub>O.

## SOLUBILITY IN WATER.

316

(Funk — Ber. 33, 3701, '00.)

| <b>\$*</b> . | Gms.<br>NagWO <sub>4</sub> per<br>100 Gms.<br>Solution. | Mols<br>NaeWO <sub>4</sub><br>per<br>100 Mols.<br>H <sub>3</sub> O | Solid<br>Phase. | t°.            | Gms.<br>NagWO4 per<br>100 Gms.<br>Solution. | Mols.<br>NagWO6<br>per<br>100 Mols.<br>HgO. | Solid<br>Phase. |
|--------------|---------------------------------------------------------|--------------------------------------------------------------------|-----------------|----------------|---------------------------------------------|---------------------------------------------|-----------------|
| -5           | 30.60                                                   | 2.70                                                               | NagWO4.10H2O    | -3.5           | 41.67                                       | <b>4</b> ·37                                | Na2WO4-2H2O     |
| -4           | 31.87                                                   | 2.86                                                               | **              | +5             | 41.73                                       | 4.39                                        | "               |
| -3.          | 5 32.98                                                 | 3.01                                                               | 64              | 18             | 42.0                                        | 4.40                                        | *               |
| -2           | 34.52                                                   | 3.23                                                               | 46              | 21             | 42.27                                       | 4.48                                        | *               |
| 0            | 36.54                                                   | 3.52                                                               | 4               | <b>4</b> 3 · 5 | 43.98                                       | 4.81                                        | •               |
| +3           | 39.20                                                   | 3.95                                                               | **              | 80.5           | 47.65                                       | 5.57                                        | 66              |
| 5            | 41.02                                                   | 4.26                                                               | 46              | 100            | 49.31                                       | 5.95                                        | •               |

Sp. Gr. of sat. solution at 18° = 1.573. For Sp. Gr. determinations of aqueous solutions at 20°, see Pawlewski — Ber. 33, 1223, '00.

#### SODIUM Fluo ZIRCONATE 5NaF.ZrF.

100 gms. H<sub>2</sub>O dissolve 0.387 gm. at 18°, and 1.67 gms. at 100°.

(Marignac - J. pr. Chem. 83, 202, '61.)

## STRONTIUM BENZOATE Sr(C,H,O,),H,O.

SOLUBILITY IN WATER.

(Paietta - Gazz. chim. ital 36, II, 67, '06.)

## STRONTIUM BROMATE Sr(BrO3),.

One liter of aqueous solution contains 0.9 gram molecules or 309 gms. Sr(BrO<sub>3</sub>), at 18°. (Kohlrausch – Sitzb. K. Akad. Wiss. (Berlin) 90, '97.)

#### STRONTIUM BROMIDE SrBr,.6H2O.

SOLUBILITY IN WATER.

(Average curve from results of Kremers -- Pogg. Ann. 103, 65, '58; and Etard -- Ann. chim. phys. [7] 2, 540, '04.)

| <b>t°</b> . | Gms. SrBr2 p | er 100 Gms. | t°. | Gms. SrBr2 per 100 Gms. |          |  |
|-------------|--------------|-------------|-----|-------------------------|----------|--|
|             | Solution.    | Water.      | ••• | Solution.               | Water.   |  |
| 0           | 46 .o        | 85.2        | 40  | 55.2                    | 123.2    |  |
| 10          | 48 · 3       | 93.O        | 50  | 57.6                    | 135.8    |  |
| 20          | 50.6         | 102 . 4     | 60  | 60.0                    | I 50 · O |  |
| 25          | 51.7         | 107.0       | 80  | 64.5                    | 181.8    |  |
| 30          | 52.8         | 111.9       | 100 | 69.0                    | 222.5    |  |

Sp. Gr. of sat. solution at 20° approximately 1.70.

100 gms. abs. alcohol dissolve 64.5 gms.  $\$rBr_2$  at o°. Sp. Gr. of solution = 1.21. (Fonzes; Diacon - J. pharm. chim. [6] 1, 59, '95.)

## STRONTIUM CARBONATE SrCO,

One liter of water dissolves 0.0082 gm. at 8.8° and 0.0109 gm. at 24° by conductivity method.

(Holleman – Z. physik. Chem. 12, 130, '93; Kohlrausch and Rose – *Ibio.* 12, 241, '93.) One liter of water saturated with CO<sub>2</sub> dissolves 1.19 gms. Sr(HCO<sub>2</sub>)<sub>2</sub>.

## 317 STRONTIUM CHLORATE

## STRONTIUM CHLORATE Sr (ClO3)2.

100 gms. H<sub>2</sub>O dissolve 174.9 gms. Sr(ClO)<sub>2</sub>, or 100 gms. sat. solution contain 63.6 gms. at 18°. Sp. Gr. of solution is 1.839. (Mylius and Funk – Ber. 30, 1718, '97.)

### STRONTIUM CHLORIDE SrCl2.6H2O.

SOLUBILITY IN WATER.

(Average curve from the results of Mulder; Etard; see also Tilden - J. Chem. Soc. 45, 409, '84.)

|      | Gms. SrCl2 per 100 Gms. |        |            | t°.       | Gms. SrCl2 per 100 Gms. |        | Solid      |
|------|-------------------------|--------|------------|-----------|-------------------------|--------|------------|
|      | Water.                  | Phase. |            | Solution. | Water                   | Phase. |            |
| - 20 | 26.0                    | 35.1   | SrCl2.6H2O | 60        | 45.0                    | 81.8   | SrCl2.6H2O |
| 0    | 30.3                    | 43.5   |            | 70        | 46.2                    | 85.9   | SrCl2.2H2O |
| IO   | 32.3                    | 47.7   |            | 80        | 47.5                    | 90.5   |            |
| 20   | 34.6                    | 52.9   |            | 100       | 50.2                    | 100.8  |            |
| 25   | 35.8                    | 55.8   |            | 120       | 53.0                    | 112.8  |            |
| 30   | 37.0                    | 58.7   | ax         | 140       | 55.6                    | 125.2  |            |
| 40   | 39.5                    | 65.3   | - 14       | 160       | 58.5                    | 141.0  |            |
| 50   | 42.0                    | 72.4   |            | 180       | 62.0                    | 163.1  |            |

Transition temperature about  $62.5^{\circ}$ . Sp. Gr. of sat. solution at  $0^{\circ} = 1.334$ ; at  $15^{\circ} = 1.36$ .

#### SOLUBILITY OF STRONTIUM CHLORIDE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID AT 0°. (Engel – Ann. chim. phys. [6] 13, 376, '88.)

| Mg. Mols. per | 10 cc. Solution. | Sp. Gr. of | Grams per 10        | cc. Solution. |
|---------------|------------------|------------|---------------------|---------------|
| ISrCl2.       | HCl.             | Solution.  | SrCl <sub>2</sub> . | HCI.          |
| 51.6          | 0                | 1.334      | 40.9                | 0.0           |
| 44.8          | 6.I              | 1.304      | 35-5                | 2.22          |
| 37.85         | 12.75            | 1.269      | 30.0                | 4.65          |
| 27.2          | 23.3             | 1.220      | 21.56               | 8.49          |
| 22.0          | 28.38            | I.20I      | 17.44               | 10.35         |
| 14.0          | 37.25            | 1.167      | 11.09               | 13.58         |
| 4.25          | 52.75            | 1.133      | 3-37                | 19.23         |

100 gms. abs. methyl alcohol dissolve 63.3 gms. SrCl<sub>2</sub>.6H<sub>2</sub>O at 6°. 100 gms. abs. ethyl alcohol dissolve 3.8 gms. SrCl<sub>2</sub>.6H<sub>2</sub>O at 6°. (de Bruyn – Z. physik. Chem. 10, 787, '02.)

#### SOLUBILITY OF STRONTIUM CHLORIDE IN AQUEOUS ETHYL ALCOHOL SOLUTIONS AT 18°. (Gerardin — Ann. chim. phys. [4] 5, 156, '65.)

Sp. Gr. of Aq. Alcohol at o<sup>9</sup>. Sp. Gr. of Aq. Alcohol at o<sup>9</sup>. Wt. Wt. Gms. SrCl<sub>2</sub> Gms. SrCla per cent per 100 Gms. Alcohol. Alcohol. per cent Alcohol. per 100 Gms. Alcohol. 49.81 6 26.8 0.990 0.939 45 0.909 47.0 19.2 0.985 IO 59 86 0.846 39.6 4.9 0.973 23 0.832 0.966 30 35.9 91 3.2 38 0.953 30.4

### STRONTIUM CHROMATE 318

## STRONTIUM CHROMATE SrCrO4.

SOLUBILITY IN WATER, ETC., AT 15°. (Fresenius – Z. anal. Chem. 29, 419, '90; 30, 672, '91.)

| Solvent.                                                     | Gms. SrCrO <sub>4</sub><br>per 100<br>Gms. Solvent. | Solvent.                | Gms. SrCrO <sub>4</sub><br>per 100<br>Gms. Solvent. |
|--------------------------------------------------------------|-----------------------------------------------------|-------------------------|-----------------------------------------------------|
| Water                                                        | 0.12                                                | Aq. Ethyl Alcohol (29%) | 0.0132                                              |
| Aq. NH <sub>4</sub> Cl (5%)<br>Aq. CH <sub>4</sub> COOH (1%) | 0.195                                               | Aq. Ethyl Alcohol (53%) | 0.002                                               |
| $\mathbf{A}_{\mathbf{I}}$                                    | ) I.57                                              |                         |                                                     |

### STRONTIUM FLUORIDE SrF,.

One liter of water dissolves 1.87 mg. equiv. or 0.117 gm. SrF<sub>2</sub> at 18°, by conductivity method. (Kohrausch – Z. physik. Chem. 50, 356, '04-'05.)

## STRONTIUM HYDROXIDE Sr(OH),.

SOLUBILITY IN WATER. (Scheibler — N. Z. Rubenzuckerind. 7, 257; abstract in J. pharm. chim. [5] 8, 540, '83.)

| t°. | Grams per a | oo Grams Solution. | Grams per    | r 100 cc. Sclution. |
|-----|-------------|--------------------|--------------|---------------------|
| ¥°. | SrO.        | Sr(OH)2.8H2O.      | SrO.         | Sr(OH)2.8H2O.       |
| 0   | 0.35        | 0.90               | <b>0</b> .35 | 0.90                |
| 10  | 0.48        | 1.23               | o.48         | I.23                |
| 20  | o.68        | I.74               | o.68         | 1.74                |
| 30  | I.00        | 2.57               | I.OI         | 2 . 59              |
| 40  | 1.48        | 3.80               | 1.51         | 3.87                |
| 50  | 2.13        | 5.46               | 2.18         | 5 · 59              |
| 60  | 3.03        | 7.77               | 3.12         | 8.00                |
| 70  | 4.35        | 11.16              | 4.55         | 11.67               |
| 80  | 6.56        | 16.83              | 7.02         | 10.81               |
| 90  | 12.0        | 30.78              | 13.64        | 34.99               |
| 100 | 18.6        | 47.71              | 22.85        | 58.61               |
|     |             |                    |              |                     |

## STRONTIUM IODATE Sr(IO3)2.

100 gms. H<sub>2</sub>O dissolve 0.026 gm. at 15°, and 0.72–0.91 gm. at 100°. (Gay-Lussac; Rammelsberg – Pogg. Ann. 44, 575, '38.)

## STRONTIUM IODIDE SrI2.6H2O.

#### SOLUBILITY IN WATER.

(Average curve from the results of Kremers - Pogg. Ann. 103, 65, '58; and Etard - Ann. chim. phys. [7] 2, 528, '74.)

| <b>t°</b> . | Gms Srl- pri | t ton Gms | Solid     | t°.  | Gms. SrI2 per | 100 Gms. | Solid     |
|-------------|--------------|-----------|-----------|------|---------------|----------|-----------|
| • • •       | Solution.    | Water.    | Phase.    | • .  | Solution.     | Water.   | Phase.    |
| 0           | 62.3         | 165.3     | SrI2.6H2O | 90   | 78.5          | 365 . 2  | SrI2.2H2O |
| 20          | 64.0         | 177.8     | **        | 100  | 79·3          | 383 . 1  | **        |
| 40          | 65.7         | 191.5     | **        | I 20 | 80.7          | 418.1    | "         |
| 60          | 68.5         | 217.5     | **        | 140  | 82.5          | 471.5    | 68        |
| 80          | 73.0         | 270.4     | "         | 175  | 85.6          | 594 4    | **        |

Transition temperature about 90°. Sp. Gr. of sat. solution at  $20^{\circ}$  = 2.15.

100 gms. saturated solution of strontium iodide in absolute alcohol contain 2.6 gms. SrI, at -20, 3.1 gms. at  $+4^{\circ}$ , 4.3 gms. at 39°, and 4.7 gms. at 82°. (Etard.)

## STRONTIUM MALATE SrC.H.O.

## SOLUBILITY IN WATER.

## (Cantoni and Basadonna - Bull. soc. chim. 35, 731, 'o6.)

319

| \$°. | Gms. per 100<br>cc. Solution. | t°. | Gms. per 100<br>cc. Solution. | tº. | Gms. per 100<br>cc. Solution. |
|------|-------------------------------|-----|-------------------------------|-----|-------------------------------|
| 20   | 0.448                         | 40  | I.385                         | 55  | 2.460                         |
| 25   | 0.550                         | 45  | I.743                         | 60  | 2.821                         |
| 30   | 0.752                         | 50  | 2.098                         | 65  | 3.148                         |
| 35   | 1.036                         |     |                               | 70  | 3-360                         |

### STRONTIUM MOLYBDATE SrMoO.

100 gms. H<sub>2</sub>O dissolve 0.0104 gm. SrMoO, at 17°.

(Smith and Bradbury - Ber. 24, 2930, '91.)

### STRONTIUM NITRATE Sr(NO3)2.

#### SOLUBILITY IN WATER. (Mulder; see also Etard for slightly lower results.)

| t°. | Gms.Sr(NO3)2 per 100 Gms. |        | ns. Solid     | tº, G | Gms. Sr(NO3)? per 100 Gms. |        |          |
|-----|---------------------------|--------|---------------|-------|----------------------------|--------|----------|
|     | Solution.                 | Water. | Phase.        | • • • | Solution.                  | Water. | Phase.   |
| 0   | 28.3                      | 39.5   | Sr(NO2)2-4H2O | 40    | 47 - 7                     | 91.3   | Sr(NOa)s |
| IO  | 35.5                      | 54.9   |               | 50    | 48.1                       | 92.6   |          |
| 20  | 41.5                      | 70.8   |               | 60    | 48.5                       | 94.0   |          |
| 25  | 44 · I                    | 79.0   | **            | 80    | 49.3                       | 97.2   |          |
| 30  | 46.7                      | 87.6   |               | 100   | 50.3                       | 101.1  |          |

Transition temperature about  $31^{\circ}$ . Sp. Gr. of sat. solution at  $20^{\circ} = 1.44$ .

100 gms. absolute alcohol dissolve 0.024 gm. Sr(NO3)2.

100 gms. rectified spirit dissolve 0.50 gm. Sr(NO<sub>3</sub>)<sub>2</sub>.

(Hill - Pharm. J. Trans. [3] 19. 420, '88.)

#### STRONTIUM OXALATE SrC2O4.H2O.

One liter of aqueous solution contains 0.52 mg. equivalent SrC<sub>3</sub>O, or 0.046 gm. at 18°, conductivity method.

(Kohlrausch - Z. physik. Chem. 50, 356, '04-'05.)

SOLUBILITY OF STRONTIUM OXALATE IN AQUEOUS ACETIC ACID SOLUTIONS AT 26°-27°.

(Herz and Muhs - Ber. 36, 3715, '03.)

| Normality          | Gms. per 100 cc. Solution. |                                                               | Normality    | Gms. per 100 cc. Solution. |                        |
|--------------------|----------------------------|---------------------------------------------------------------|--------------|----------------------------|------------------------|
| of<br>Acetic Acid. | СНаСООН.                   | Residue<br>SrC <sub>2</sub> O <sub>4</sub> .H <sub>2</sub> O. | Acetic Acid. | CE.COOH.                   | Residue<br>SrC2O4.H2O. |
| 0.0                | 0.0                        | 0.000                                                         | 3.86         | 23.16                      | 0.0898                 |
| 0.58               | 3.48                       | 0.0526                                                        | 5.79         | 34.74                      | 0.0496                 |
| 1.45               | 8.70                       | 0.0622                                                        | 16.26        | 97.56                      | 0.0060                 |
| 2.89               | 17.34                      | 0.0642                                                        |              |                            |                        |

## STRONTIUM SALICYLATE Sr(C.H.OH.COO)2.2H2O.

100 gms.  $H_3O$  dissolve 5.55 gms. at 25°, and 28.6 gms. at b. pt. (U.S. P.) 100 cc. aqueous solution contain 1.830 gms. anhydrous salt. (Barthe) 100 gms. alcohol dissolve 1.5 gms. at 25°, and 9.52 gms. at b. pt.

(U. S. P.; Barthe - Bull. soc. chim. [3] 11, 519, '94.)

#### STRONTIUM SULPHATE 320

## STRONTIUM SULPHATE SrSO.

One liter of aqueous solution contains 1.24 mg. equivalents or 0.114 gm. SrSO<sub>4</sub> at 18°, by conductivity method. (Kohlrausch – Z. physik. Chem. 50, 356, '04-'05; Holleman – *Ibid.* 12, 120, '93; Wolfmann – Öster. Ung. Z. Zuckerind. 25, 997, '97.)

SOLUBILITY OF STRONTIUM SULPHATE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC, NITRIC, CHLORACETIC AND FORMIC ACIDS. (Banthisch – J. pr. Chem. [2] 29, 52, '84.)

| cc. of Aq.<br>Acid con-<br>taining 1<br>Mg. Equiv. | Śo     | . HCl<br>r 100 cc.<br>l. | In Aq.<br>Gms. per<br>Sol |        | In Aq. CH <sub>3</sub><br>Gms. per 1<br>CH <sub>2</sub> Cl | oo cc. Sol. | In Aq. HC<br>Gms. per 1<br>Sol. |        |
|----------------------------------------------------|--------|--------------------------|---------------------------|--------|------------------------------------------------------------|-------------|---------------------------------|--------|
| in each case.                                      | HCI.   | SrSO4.                   | HNO3.                     | SrSO4. | COOH.                                                      | SrSO4.      | нсоон.                          | SrSO4. |
| 0.2                                                | 18.23  | 0.161                    |                           | 0.381  | • • •                                                      | •••         | •••                             | • • •  |
| 0.5                                                | 7 . 29 | 0 . 207                  | 12.61                     | 0.307  | •••                                                        | • • •       |                                 | • • •  |
| I.0                                                | 3.65   | o.188                    | 6.30                      | 0.217  | 94 · 47                                                    | 0.026       | 46.02                           | 0.024  |
| 2.0                                                | 1.82   | 0.126                    | 3.15                      | 0.138  | 47.23                                                      | 0.022       | •••                             | •••    |
| 10.0                                               | 0.36   | o.o48                    | 0.63                      | 0.049  |                                                            | •••         | •••                             | •••    |

### SOLUBILITY OF STRONTIUM SULPHATE IN SULPHURIC ACID SOLUTIONS.

| t°.  | Conc. of<br>H <sub>2</sub> SO <sub>4</sub> . | Gms. SrSO<br>per 100<br>Gms. Acid. | Authority.                                          |
|------|----------------------------------------------|------------------------------------|-----------------------------------------------------|
| ord. | concentrated                                 | 5.68                               | (Struve — Z. anal. Chem. 9, 34, 1870.)              |
| **   | fuming                                       | 9.77                               | 64 64                                               |
| "    | 91%                                          |                                    | (Varenne and Paulean - Compt. rend. 93, 1016, '81.) |
| 70   | Sp. Gr. 1.843 = 99                           | % 14.0                             | (Garside — Chem. News, 31, 245, '75.)               |

## SOLUBILITY OF STRONTIUM SULPHATE IN AQUEOUS SALT SOLUTIONS.

| (Virck — Chem. Centralb. 402, '62.) |                            |                            |                            |  |  |  |  |  |
|-------------------------------------|----------------------------|----------------------------|----------------------------|--|--|--|--|--|
| In Aq. NaCl.                        | In Aq. KCl.                | In Aq. MgCl <sub>2</sub> . | In Aq. CaCl <sub>2</sub> . |  |  |  |  |  |
| (a.) (b.)                           | (a.) (b)                   | (a.) (b.)                  | (a.) (b.)                  |  |  |  |  |  |
| 8.44 0.165                          | 8.22 0.193                 | 1.59 0.199                 | 8.67 0.176                 |  |  |  |  |  |
| 15.54 0.219<br>22.17 0.181          | 12.54 0.193<br>18.08 0.251 | 4.03 0.206<br>13.63 0.242  | 16.51 0.185<br>33.70 0.171 |  |  |  |  |  |
| 22.17 0.101                         | 10.00 0.251                | 13.03 0.242                | 33.70 0.171                |  |  |  |  |  |

(a) = Gms. salt per 100 gms. aq. solution. (b) = Gms. SrSO<sub>4</sub> per100 gms. solvent.

### STRONTIUM TARTRATE SrC,H,O,.3H2O.

#### SOLUBILITY IN WATER.

(Cantoni and Zachoder - Bull. soc. chim. [3] 33, 751, 'o5.)

| <b>t</b> °. | Gms.<br>SrC4H4O6<br>.3H2O per<br>100 cc.<br>Solution. | <b>t °</b> . | Gms.<br>SrC4H4O6<br>.3H2O per<br>100 cc.<br>Solution. | <b>t °</b> . | Gms:<br>SrC4H4Og-<br>.3H2O<br>per 100 cc.<br>Solution. |
|-------------|-------------------------------------------------------|--------------|-------------------------------------------------------|--------------|--------------------------------------------------------|
| 0           | O.II2                                                 | 25           | 0.224                                                 | 60           | o.480                                                  |
| 10          | 0.149                                                 | 30           | 0.252                                                 | 70           | 0.580                                                  |
| 15          | 0.174                                                 | 40           | 0.328                                                 | 80           | 0.680                                                  |
| 20          | 0.200                                                 | 50           | 0.407                                                 | 85           | 0.755                                                  |

## 321 STRONTIUM TARTRATE

SOLUBILITY OF STRONTIUM TARTRATE IN AQUEOUS SOLUTIONS OF ACETIC ACID AT 26°-27°. (Hers and Muhs - Ber. 36, 3715, '03.)

| Normality of<br>Acetic Acid. | Gms. per 100 cc. Solution. |                | Normality of Acetic Acid. | Gms. per 100 cc. Solution. |                |  |
|------------------------------|----------------------------|----------------|---------------------------|----------------------------|----------------|--|
| Acetic Acid.                 | Сн.соон.                   | SrC4H4O6.3H2O. | Acetic Acid.              | сн <sub>я</sub> соон.      | SrC4H4O8.3H2O. |  |
| 0.0                          | 0.0                        | 0.227          | 3.77                      | 21.85                      | I.05I          |  |
| 0.565                        | 3 · 39                     | o.678          | 5.65                      | 33.90                      | 0.982          |  |
| I 425                        | 8.15                       | o.864          | 16.89                     | 101 . 34                   | 0.184          |  |
| 2.85                         | 17.10                      | o.996          |                           |                            |                |  |

## STRONTIUM (Di) TUNGSTATE SrW207.3H2O.

100 cc. H<sub>2</sub>O dissolve 0.35 gm. at 15°.

(Lefort - Ann. chim. phys. [5] 15, 326, '78.)

## STRYCHNINE C21H22N3O2.

SOLUBILITY IN SEVERAL SOLVENTS.

(U. S. P.; at 20°, Müller - Apoth.-Ztg. 18 258, '03; Schindelmeiser.)

| Solvent.                                                                                             | Gms. C <sub>21</sub> H <sub>22</sub> N <sub>2</sub> O <sub>2</sub><br>per 100 Gms. |                                          | Solvent.                                                                                         |                                  | 2 H22N3O2<br>0 Gms.                                     |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------|
|                                                                                                      | Solution<br>at 20°.                                                                | Solvent<br>at 25°.                       | Solvent.                                                                                         | Solution<br>at 20 <sup>6</sup> . |                                                         |
| Water<br>Water Sat. with Ether<br>Ether<br>Ether Sat. with H <sub>2</sub> O<br>Benzene<br>Chloroform | 0.021<br>0.0166<br>0.0432<br>0.0513<br>0.770<br>100+                               | 0.016<br><br>0.0182<br><br>0.666<br>16.6 | Petroleum Ether<br>Acetic Ether<br>Carbon Tetra Chloride<br>Alcohol<br>Amyl Alcohol<br>Glycerine |                                  | <br>o. 645( 17°)(8.)<br>o. 909<br>o. 555<br>o. 25 (15°) |

100 gms. pyridine dissolve 1.24 gm. C<sub>21</sub>H<sub>22</sub>N<sub>3</sub>O<sub>3</sub> at 26°.

(Holty - J. Physic. Chem. 9, 764, '05.)

## Solubility of Strychnine Nitrate and Sulphate in Several Solvents.

(U. S. P.)

| Strychnine Nitrate. |              |                  | Strychnine Sulphate.          |           |  |
|---------------------|--------------|------------------|-------------------------------|-----------|--|
| Solvent.            | Gms. per 100 | Gms. Solvent at: | Gms. per 100 Gms. Solvent at: |           |  |
| Solvent.            | 25°.         | 80°.             | 25°.                          | 80°.      |  |
| Water               | 2.38         | 12.5             | 3.23                          | 16.6      |  |
| Alcohol             | o.83         | 1.66 (60°)       | I.54                          | 5.0 (60°) |  |
| Chloroform          | 0.64         |                  | 0.31                          | •••       |  |
| Glycerine           | 1.66         | 4.0 (15°)        | 22.5 (15°)                    | •••       |  |

## SUBERIC ACID C.H.,(COOH),.

|                                               | Solu             | BILITY I          | N WATE            | R.                |      |                   |
|-----------------------------------------------|------------------|-------------------|-------------------|-------------------|------|-------------------|
|                                               | (Lamourou        | x — Compt. :      | rend. 128, 99     | 8, '99.)          |      |                   |
| $t^{\circ}$ .<br>Gms. $C_{e}H_{12}(COOH)_{2}$ | o <sup>e</sup> . | 15 <sup>0</sup> . | 20 <sup>8</sup> . | 35 <sup>0</sup> . | 50°. | 65 <sup>0</sup> . |
| per 100 cc. solution                          | o.08             | 0.13              | 0.16              | 0.45              | 0.98 | 2.22              |

## SUCCINIC ACID (CH<sub>2</sub>)<sub>2</sub>(COOH)<sub>2</sub>.

SOLUBILITY IN WATER. (Miczynski — Monatsh. Chem. 7, 263, '86; Van der Stadt — Z. physik. Chem. 41, 355, '02; Lamouroux — Compt. rend. 128, 908, '90; for other concordant results, see Bourgoin — Bull. soc. chim. [2] 21, 110 '74; Henry — Compt. rend. 99, 1157, '84.) -~ • • •

| t°.       | Gms. (CH2)2(COOH)2 per 100 |               | Gms. Succinic<br>Anhydride<br>(CH2)2COCOO | Mol. per cent.    |                                        |  |
|-----------|----------------------------|---------------|-------------------------------------------|-------------------|----------------------------------------|--|
| ⊎         | Gms. HgO.                  | cc. Solution. | per<br>100 Gms. H <sub>2</sub> O.         | H <sub>2</sub> O. | (CH <sub>2</sub> ) <sub>2</sub> COCOO. |  |
| 0         | 2.80                       | 2.78 (L.)     | 2.34                                      | 99 . 58           | 0.42                                   |  |
| IO        | 4.51                       | 4.0           | 3.80                                      | 99 · 32           | o.68                                   |  |
| 20        | 6.89                       | 5.8           | 5 · 77                                    | 98.97             | I .03                                  |  |
| 25        | 8.06                       | 7.0           | 6.74                                      | 98.80             | I . 20                                 |  |
| 30        | 10 . 58                    | 8.5           | 8.79                                      | 98.44             | I.56                                   |  |
| 40        | 16.21                      | 12.5          | 13.42                                     | 97 . 64           | 2.36                                   |  |
| 50        | 24 . 42                    | 18.0          | 19.95                                     | 96.53             | 3 · 47                                 |  |
| бо        | 35 . 83                    | 24.5          | 28.77                                     | 95.07             | 4.93                                   |  |
| 70        | 51.07                      | •••           | 40.11                                     | 93.26             | 6.74                                   |  |
| 8o        | 70.79                      | •••           | 54.08                                     | 91 . 12           | 8.88                                   |  |
| 89.4      | 95 · 45                    | • • •         | 70.62                                     | 88.71             | II · 29                                |  |
| 104.8     | 146.3                      | •••           | IOI . 2                                   | 84 57             | 15. <b>43</b>                          |  |
| 115.1     | 188.5                      | •••           | 126.8                                     | 81.4              | 18.6                                   |  |
| 134.2     | 335.4                      | •••           | 187 .8                                    | 74.72             | 25.28                                  |  |
| 159.5     | 748.2                      | •••           | 295.2                                     | 65.27             | 34.73                                  |  |
| 180.6     | 1839.0                     | •••           | 408.5                                     | 57.6              | 42 . 4                                 |  |
| 182 .8    | 00                         | •••           | 542.3                                     | 50.0              | 50.0                                   |  |
| 174.4     | •••                        | • • •         | 808.5                                     | 40.7              | 59·3                                   |  |
| 153.3     | •••                        | • • •         | 2239.0                                    | 19.86             | 80.14                                  |  |
| 128.0     | •••                        |               | 8865.0                                    | 5.89              | .94 .11                                |  |
| 118.8-119 | •••                        | •••           | 80                                        | 0.00              | 100.00                                 |  |

SOLUBILITY OF SUCCINIC ACID IN ALCOHOLS AND IN ETHER. (Timofeiew - Compt. rend. 112, 1137, '91; at 15°, Bourgoin - Ann. chim. phys. [5] 13, 405, '78.) Gms. (CH2)2(COOH)2 per 100 Gms.

| Solvent.            |         | Solvent at: |          |
|---------------------|---------|-------------|----------|
|                     | — 1°.   | + 15°.      | + 21.5°. |
| Abs. Methyl Alcohol | 10.51   | • • •       | 19.40    |
| Abs. Ethyl "        | 5.06    | 12.59       | 9.49     |
| 90% <b>"</b> "      | • • •   | 7.51        | • • •    |
| Abs. Propyl "       | 2 . I I | •••         | 4.79     |
| Abs. Ether          | • • •   | 1.265       | •••      |

DISTRIBUTION OF SUCCINIC ACID BETWEEN WATER AND AMYL ALCOHOL AT 20°.

(Herz and Fischer - Ber. 37, 4748, '04.)

|                             |                                  | •                                |                            | • • • • • •                   |                              |                            |                         |
|-----------------------------|----------------------------------|----------------------------------|----------------------------|-------------------------------|------------------------------|----------------------------|-------------------------|
| Millimols<br>per 10         |                                  | Gms. C41                         |                            |                               | ls <u>3</u> C4H6O4<br>10 cc. | Gms. C                     |                         |
| Alcohol<br>Layer.<br>O.1888 | Aq.<br>Layer.<br>0.2684          | Alcohol<br>Layer.<br>O . I I I 4 | Aq.<br>Layer.<br>0 . 1 584 | Alcohol<br>Layer.<br>3 . 899  | Aq.<br>Layer.<br>6.0795      | Alcohol<br>Layer.<br>2.302 | Aq.<br>Layer.<br>3.588  |
| 0.3643<br>0.7077            | 0 · 5252<br>I ·0373<br>2 · I 266 | 0.215<br>0.418<br>0.850          | 0.310<br>0.612<br>1.255    | 5 · 199<br>6 · 334<br>7 · 119 | 8.099<br>10.170<br>11.555    | 3.069<br>3.739<br>4.202    | 4.779<br>6.000<br>6.821 |
| 1.440<br>2.715              | 4.0495                           | 1.603                            | 2.391                      | 7.119                         | 11.335                       | 4 · 202                    | 0.021                   |

SOLUBILITY OF SUCCINIC ACID IN AQUEOUS ACETONE AT 20°. (Herz and Knoch - Z. anorg. Chem. 41, 320, '04.)

| cc. Acetone per   | C4H6O4 per 1 | oo cc. Solution. | cc. Acetone per   | C4H6O4 per 100 cc. Solution |        |
|-------------------|--------------|------------------|-------------------|-----------------------------|--------|
| 100 cc. Solution. | Millimols.   | Grams.           | 100 cc. Solution. | Millimols.                  | Grams. |
| 0                 | 107.8        | 6.363            | 60                | 275.7                       | 16.27  |
| IO                | 127.4        | 7.519            | 70                | 278.5                       | 16.44  |
| 20                | 155.8        | 9.194            | 80                | 265.3                       | 15.66  |
| 30                | 186.7        | 11.02            | 90                | 201.9                       | 11.91  |
| 40                | 225.4        | 13.30            | 100               | 51.5                        | 3.04   |
| 50                | 254.3        | 15.0I            |                   |                             |        |

#### SOLUBILITY OF SUCCINIC ACID IN AQUEOUS GLYCERINE SOLUTIONS AT 25°.

(Herz and Knoch - Z. anorg. Chem. 45, 268, '05.) Wt. % C.H.O. per 100 cc. Glycerine Solution. in Solvent. Millimols. Grams. Sp. Gr. of Solutions. Wt. % C4HeO4 per 100 cc. Glycerine in Solvent. Millimols. Grams. C4H6O4 per 100 cc. Solution. Sp. Gr. Solutions. 
 133.4
 7.874
 1.0213

 128.2
 7.566
 1.0407

 118.3
 6.982
 1.0644

 109.7
 6.476
 1.0897
 105.8 6.244 I.1120 0 40.95 48.70 99.9 5.896 69.20 88.5 5.223 100.00\* 74.6 4.440 7.15 1.1208 1.1804 20.44 31.55 1.2530 \* Sp. Gr. of Glycerine = 1.2555. Impurity about 1.5 per cent.

## SUCCINIMID $C_{2}H_{4} < CO \\ CO > NH.$

....

SOLUBILITY IN WATER AND IN ETHYL ALCOHOL.

| Inte | erpolated t               | rom origin                              | al results.                            | (Speyers -                  | - Am. J. Sci. [4               | ] 14. 294. '02.            |
|------|---------------------------|-----------------------------------------|----------------------------------------|-----------------------------|--------------------------------|----------------------------|
|      | I                         | n Water.                                |                                        | In H                        | Ethyl Alco                     | hol.                       |
| tº.  | Wt. of 1 cc.<br>Solution. | Mols. per<br>100 Mols. H <sub>2</sub> O | Gms. per 100<br>Gms. H <sub>2</sub> O. | Wt. of r cc.<br>Solution. 1 | Mols. per 100<br>Mols. C2H5OH. | Gms. per 10<br>Gms. C2H5OH |
| 0    | 1.025                     | 1.58                                    | 8.69                                   | 0.815                       | o.88                           | 1.89                       |
| IO   | I.035                     | 2.4                                     | 14.0                                   | 0.809                       | I.35                           | 2.7                        |
| 20   | 1.052                     | 4.0                                     | 23.0                                   | 0.806                       | 2.00                           | 4.1                        |
| 25   | 1.067                     | 5.9                                     | 33.0                                   | 0.805                       | 2.5                            | 5.3                        |
| 30   | I.086                     | 8.0                                     | 45.0                                   | 0.804                       | 3.1                            | 6.8                        |
| 40   | 1.120                     | 12.8                                    | 70.0                                   | 0.809                       | 4.9                            | 10.5                       |
| 50   | 1.145                     | 17.8                                    | 96.0                                   | 0.816                       | 7.8                            | 16.0                       |
| 60   | 1.167                     | 22.6                                    | 124.0                                  | 0.835                       | 12.3                           | 26.5                       |
| 70   | 1.189                     | 27.5                                    | 152.0                                  | 0.873                       |                                |                            |
| 80   | 1.204                     | 32.8                                    |                                        | 0.954                       |                                |                            |

## SUCCINIC NITRIL (Ethylene Cyanide) CNCH2CH2CN.

The solubility of succinic nitril in water and also in aqueous sodium chloride solutions at various temperatures has been determined by Schreinemaker (Z. physik. Chem. 23, 439, '97), and the results presented in terms of mols. of nitril per 100 mols. of nitril +  $H_2O$ . The following calculation of these results to gram quantities was made by Rothmund. (Landolt and Bornstein, 3d ed. p. 50ć, '66)

| to. Gr | ms. CNCH2CH | I2CN per 100 Gms. | t°.    | Gms. CNCH2 CH   | 2CN per 100 Gms. |
|--------|-------------|-------------------|--------|-----------------|------------------|
| 1      | Aq. Layer.  | Nitril Layer.     |        | Aq. Layer.      | Nitril Layer.    |
| 18.5   | 10.2        | 92.0              | 53-5   | 33.2            | 66.4             |
| 20     | II.O        | 91.5              | 55     | 40.3            | 62.8             |
| 39     |             | 85.2              | 55.4 ( | (crit. temp.) 5 | I.0              |
| 45     | 22.0        |                   |        |                 |                  |

.

## 324

## **SUGAR** $C_{12}H_{22}O_{11}$ (Cane Sugar.)

## SOLUBILITY IN WATER.

(Herzfeld - Z. Ver. Zuckerind. 181, '92; see also Courtonne - Ann. chim. phys. [5] 12, 569, '77.)

| t*. | Gms. C <sub>12</sub> H<br>100 Ģ | l <sub>22</sub> O <sub>11</sub> per<br>ms. | <b>\$*</b> . | Gms. C <sub>19</sub> H <sub>22</sub> O <sub>11</sub> per<br>100 Gms. |         |
|-----|---------------------------------|--------------------------------------------|--------------|----------------------------------------------------------------------|---------|
|     | Solution.                       | Water.                                     |              | Solution.                                                            | Water.  |
| 0   | 64.18                           | 179.2                                      | 40           | 70 . 42                                                              | 238 . I |
| 5   | 64.87                           | 184.7                                      | 45           | 71.32                                                                | 248.7   |
| IO  | 65.58                           | 190.5                                      | 50           | 72.25                                                                | 260.4   |
| 15  | 66.33                           | 197.0                                      | 60           | 74 . 18                                                              | 287.3   |
| 20  | 67.09                           | 203.9                                      | 70           | 76.22                                                                | 320.4   |
| 25  | 67.89                           | 211.4                                      | 80           | 78.36                                                                | 362.1   |
| 30  | 68.70                           | 219.5                                      | 90           | 80.61                                                                | 415.7   |
| 35  | 69.55                           | 228.4                                      | 100          | 82.97                                                                | 487.2   |

Bp. Gr. of sat. solution at 15° = 1.329; at 25° = 1.340.

Solubility of Sugar in Aqueous Salt Solutions at 30°, 50°, and 70°.

Interpolated from original results.

(Schukow - Z. Ver. Zuckerind. 50, 313, '00.)

| £°. | Gms. Salt per              | Gms. C13H22O11 per 100 grams H2O in Aq. Solution of: |       |       |               |                     |  |
|-----|----------------------------|------------------------------------------------------|-------|-------|---------------|---------------------|--|
|     | 100 Gms. H <sub>2</sub> O. | KCI.                                                 | KBr.  | KNO3. | NaCl.         | CaCl <sub>2</sub> . |  |
| 30  | 0                          | 219.5                                                | 219.5 | 219.5 | 219.5         | 219.5               |  |
| 66  | IO                         | 216                                                  | 218   | 217   | 210           | 197                 |  |
| ×6  | 20                         | 22I                                                  | 220   | 216   | 211           | 189                 |  |
| "   | 30                         | 228                                                  | 224   | 216   | 219           | 192                 |  |
|     | 40                         | 237                                                  | 228   | 217   | 233           | 200                 |  |
| "   | 50                         |                                                      | • • • | 218   | 250           | 218                 |  |
| "   | 60                         | •••                                                  | •••   | •••   | 269           | 243                 |  |
| 50  | o                          | 260.4                                                | 260.4 | 260.4 | 260.4         | 260.4               |  |
| ""  | IO                         | 261                                                  | 262   | 260   | 255           | 239                 |  |
| "   | 20                         | 266                                                  | 266   | 261   | 260           | 228                 |  |
| "   | 30                         | 274                                                  | 272   | 262   | 269           | 228                 |  |
| \$6 | 40                         | 284                                                  | 276   | 262   | 284           | 236                 |  |
| :6  | 50                         | 296                                                  | 280   | 263   | 302           | 253                 |  |
| "   | 60                         | •••                                                  | •••   | •••   | •••           | 276                 |  |
| 70  | o                          | 320.5                                                | 320.5 | 320.5 | 320. <b>5</b> | 320. <b>5</b>       |  |
| ••  | 10                         | 326                                                  | 324   | 321   | 323           | 295                 |  |
| ••  | 20                         | 334                                                  | 328   | 324   | 330           | 286                 |  |
| 61  | 30                         | 345                                                  | 334   | 327   | 344           | 286                 |  |
| 14  | 40                         | 357                                                  | 341   | 331   | 361           | 295                 |  |
| 66  | 50                         | 370                                                  | 349   | 334   | 384           | 308                 |  |
| "   | δo                         | 384                                                  | 357   | 337   | 406           | 327                 |  |

### SOLUBILITY OF CANE SUGAR IN SATURATED AQUEOUS SALT SOLUTIONS AT 31.25°. (Köhler – Z. Ver. Zuckerind. 47, 447, '97.)

| Salt.                                                 | Gms. Sugar | per 100 Gms. | Salt.                           | Gms. Sugar per 100 Gms- |        |
|-------------------------------------------------------|------------|--------------|---------------------------------|-------------------------|--------|
|                                                       | Solution.  | Water.       | Sait.                           | Solution.               | Water. |
| CH <sub>3</sub> COOK                                  |            | 324.8        | Na <sub>2</sub> CO <sub>3</sub> | 64.73 .                 | 229.2  |
| C3H7COOK                                              | 49.19      | 306.1        | KNO3                            | 61.36                   | 224.7  |
| C <sub>3</sub> H <sub>4</sub> .OH.(COOK) <sub>3</sub> | 50.30      | 303.9        | K2SO                            | 66.74                   | 219.0  |
| K <sub>2</sub> CO,                                    | 56.0       | 265.4        | CH <sub>3</sub> COOCa           | 60.12                   | 190.0  |
| KCl                                                   | 62.28      | 246.5        | Na <sub>2</sub> SO <sub>4</sub> | 52.20                   | 183.7  |
| CH <sub>3</sub> COONa                                 | 59.93      | 237.6        | CaCl,                           | 42.84                   | 135.1  |
| NaCl                                                  | 62.17      | 236.3        | MgSO4                           | 46.52                   | 119.6  |

SOLUBILITY OF CANE SUGAR IN AQUEOUS ALCOHOL SOLUTIONS. (Scheibler -- Ber. 5, 343, '72; correction Ber. 24, 434, '91.)

| Results at o°. |                    |           |                    |                          | Results<br>at 40°.         |             |       |            |
|----------------|--------------------|-----------|--------------------|--------------------------|----------------------------|-------------|-------|------------|
|                | Per cent           | Sp. Gr.   | lution per 100 cc. | Sp. Gr.                  | Gms. per 100 cc. Solution. |             |       | Gms. Sugar |
|                | Alcohol<br>by Vol. | al 17.5°. |                    | of Solution<br>at 17.5°. | Sugar.                     | C2H5OH. H2C |       | Solution.  |
|                | 0                  | 1.325     | 85.8               | 1.326                    | 87.5                       | 0           | 45.10 |            |
|                | IO                 | 1.200     | 80.7               | I.300                    | 81.5                       | 3.91        | 44.82 | 95.4       |
|                | 20                 | 1.236     | 74.2               | 1.266                    | 74.5                       | 8.52        | 43.83 | 90.0       |
|                | 30                 | 1.220     | 65.5               | 1.233                    | 67.9                       | 13.74       | 41.87 | 82.2       |
|                | 40                 | 1.182     | 56.7               | 1.185                    | 58.0                       | 20.24       | 40.38 | 74.9       |
|                | 50                 | 1.129     | 45.9               | 1.131                    | 47 · I                     | 28.13       | 38.02 | 63.4       |
|                | 60                 | 1.050     | 32.9               | 1.058                    | 33.9                       | 37.64       | 34.47 | 49.9       |
|                | 70                 | 0.972     | 18.2               | 0.975                    | 18.81                      | 46.28       | 29.57 | 31.4       |
|                | 80                 | 0.893     | 6.4                | 0.895                    | 6.6                        | 61.15       | 21.95 | 13.3       |
|                | 90                 | 0.837     | 0.7                | 0.838                    | 0.9                        | 71.18       | 12.83 | 2.3        |
|                | 97.4               | 0.806     | 0.08               | 0.808                    | 0.36                       | 77.39       | 3.28  | 0.5        |
|                |                    |           |                    |                          |                            |             |       |            |

SOLUBILITY OF CANE SUGAR IN AQUEOUS ALCOHOL SOLUTIONS AT 14°. (Schrefeld – Z. Ver. Zuckerind. 44, '071 '04.)

|                             | Locus                     |                                                                | and date A                  | 1                         |                                                                |
|-----------------------------|---------------------------|----------------------------------------------------------------|-----------------------------|---------------------------|----------------------------------------------------------------|
| Wt.<br>per cent<br>Alcohol. | Wt.<br>per cent<br>Sugar. | Gms. Sugar per 100<br>cc. Alcohol-H <sub>2</sub> O<br>Mixture. | Wt.<br>per cent<br>Alcohol. | Wt.<br>per cent<br>Sugar. | Gms. Sugar per 100<br>cc. Alcohol-H <sub>2</sub> O<br>Mixture. |
| 0                           | 66.2                      | 195.8                                                          | 50                          | 38.55                     | 62.7                                                           |
| 5                           | 64.25                     | 179-7                                                          | 60                          | 26.70                     | 36.4                                                           |
| IO                          | 62.20                     | 164.5                                                          | 70                          | 12.25                     | 13.9                                                           |
| 20                          | 58.55                     | 141.2                                                          | 80                          | 4.05                      | 4.2                                                            |
| 30                          | 54.05                     | 117.8                                                          | 90                          | 0.95                      | 0.9                                                            |
| 40                          | 47.75                     | 91.3                                                           | 100                         | 0.00                      | 0.0                                                            |
|                             |                           |                                                                |                             |                           |                                                                |

100 gms. absolute methyl alcohol dissolve 1.18 gms. sugar at 19°. (de Bruyn – Z. physik. Chem. 10, 784, '92.)

#### SOLUBILITY OF SUGARS IN PYRIDINE AT 26°. (Holty - J. Physic. Chem. 9, 764, '04.)

| Sugar.      | Formula.      | Gms. Sugar per<br>100 Gms. Solution. | Sp. Gr. of<br>Solutions. |
|-------------|---------------|--------------------------------------|--------------------------|
| Cane Sugar  | C12H22O11     | 6.45                                 | 7.8.4                    |
| Milk Sugar  | C12H22O11.H2O | 2.18                                 | 0.9811                   |
| Grape Sugar | C6H12O6.H2O   | 7.62                                 | 1.0521                   |

#### SOLUBILITY OF CANE SUGAR IN AQUEOUS ACETONE AT 25°. (Herz and Knoch - Z. anorg. Chem. 41, 322, '04.)

| Sp. Gr. of<br>Solutions. | cc. Acetone             | Gms. Sugar               | Gms. per 100 cc. Solution. |                                     |            |  |  |
|--------------------------|-------------------------|--------------------------|----------------------------|-------------------------------------|------------|--|--|
| Solutions.               | per 100 cc.<br>Solvent. | per 100 cc.<br>Solution. | н <b>.</b> о.              | (CH <sub>2</sub> ) <sub>3</sub> CO. | C12H22O11. |  |  |
| 1.3306                   | 0.0                     | 89.8                     | <b>4</b> 3 · 3             | 0.0                                 | 89.8       |  |  |
| 1.2796                   | 20.0                    | 76.7                     | 42.9                       | 8.4                                 | 76.7       |  |  |
| 1.2491                   | 30.0                    | 72 . I                   | 39.5                       | 13.4                                | 72.1       |  |  |
| I . 2002                 | 40.0                    | 59·3                     | 39.8                       | 20.9                                | 59 · 3     |  |  |
| 1.1613                   | 45.0                    | 52.5                     | 39.0                       | 24.6                                | 52.5       |  |  |

Above 45 cc. acetone per 100 cc. solvent the solution begins to separate into two layers. The lower of these contains 51 gms. sugar per 100 cc. and has Sp. Gr. 1.1522. The upper layer contains so little sugar that the amount could not be determined by the method employed. 100 cc. evaporated in a vacuum desiccator left a residue of 3.68 gms. Above the concentration of 80 cc. acetone per 100 cc. solvent the two layers unite. In pure acetone 100 cc. solution give a residue of 0.18 gram sugar.

SOLUBILITY OF GRAPE SUGAR IN WATER AND IN AQ. ALCOHOL.

100 gms. H<sub>2</sub>O dissolve 81.68 gms. C<sub>4</sub>H<sub>12</sub>O<sub>4</sub> or 97.85 gms. C<sub>4</sub>H<sub>12</sub>O<sub>4</sub>.H<sub>2</sub>O at 15°.

100 gms. aq. alcohol of 0.837 Sp. Gr. = 85 wt. per cent dissolve 1.95 gms. C<sub>6</sub>H<sub>12</sub>O<sub>6</sub> at 17.5°.

100 gms. aq. alcohol of 0.880 Sp. Gr. = 66 wt. per cent dissolve 8.10 gms.  $C_6H_{12}O_6$  at 17.5°.

100 gms. ag. alcohol of 0.910 Sp. Gr. = 53 wt. per cent dissolve 16.01 gms. C<sub>6</sub>H<sub>12</sub>O<sub>6</sub> at 17.5°. 100 gms. ag. alcohol of 0.915 Sp. Gr. = 51 wt. per cent dissolve

32.50 gms. C.H 12O6 at 17.5°.

#### SOLUBILITY OF MILK SUGAR IN WATER AND IN ABSOLUTE METHYL ALCOHOL.

100 gms. H<sub>2</sub>O dissolve 17.03 gms.  $C_{12}H_{22}O_{11}$ . H<sub>2</sub>O at 10°, 20.8 gms. at 25° (U. S. P.), 40 gms. at 100°, and 100 gms. at b. pt.

100 gms. abs. methyl alcohol dissolve 0.084 gm. at 19.5°

(de Bruyn - Z. physik. Chem. 10, 784, '92.)

## SULPHANILIC ACID NH2.C6HSO3H.

#### SOLUBILITY IN WATER. (Dolinski - Ber. 38, 1836, '05.)

| t°. | Gms. Acid per 100 Gms. |        | t°.         | Gms. Acid per 100 Gms. |        |  |
|-----|------------------------|--------|-------------|------------------------|--------|--|
| ι.  | Solution.              | Water. | <b>U</b> -, | Solution.              | Water. |  |
| 0   | o.64                   | 0.64   | 60          | 3.01                   | 3 . 10 |  |
| 10  | o.83                   | o.84   | 70          | 3.65                   | 3.78   |  |
| 20  | I .07                  | 1.08   | 8o          | 4.32                   | 4.51   |  |
| 30  | I.47                   | I.49   | 90          | 5.25                   | 5.54   |  |
| 40  | I.94                   | 1.97   | 100         | 6.26                   | 6.67   |  |
| 50  | 2.44                   | 2.51   |             |                        |        |  |

## SULPHUR S.

|            |                                  | SOLUB           | ILITY IN:  |                                    |                 |
|------------|----------------------------------|-----------------|------------|------------------------------------|-----------------|
| (Gerardi   | Tin Tetra C<br>n - Ann. chim. ph |                 |            | Amyl Alcoh<br>(Gerardin.)          | 101.            |
| t°.        | Gms. S<br>per 100 Gms.<br>SnCl4. | Solid<br>Phase. | \$°.       | Gms. S<br>per 100 Gms.<br>CsH11OH. | Solid<br>Phase. |
| 99         | 5.8                              | Solid S         | 95         | 1.5                                | Solid S         |
| 101<br>110 | 0.2<br>8.7-9.1                   | **              | 110<br>112 | 2.1-2.2<br>2.6-2.7                 | Liquid S        |
| 112        | 9.4-9.9                          | Liquid S        | 120        | 3.0                                |                 |
| 121        | 17.0                             |                 | 131        | 5.3                                |                 |

SOLUBILITY OF SULPHUR IN ETHYL AND METHYL ALCOHOLS.

| t°.        | Alcohol.    | Gms.<br>per 100 Gms.<br>Alcohol. | Authority.                                  |
|------------|-------------|----------------------------------|---------------------------------------------|
| 15         | Abs. Ethyl  | 0.051                            | (Pohl.)                                     |
| 15<br>18.5 | "           | 0.053                            | (de Bruyn - Z. physik. Chem. 10, 781, '92.) |
| b. pt.     | "           | 0.42                             | (Payen - Compt. rend. 34, 356, '52.)        |
| 18.5       | Abs. Methyl | 0.028                            | (de Bruyn.)                                 |

### SOLUBILITY OF SULPHUR IN AQUEOUS ACETONE AT 25°. (Herz and Knoch – Z. anorg. Chem. 45, 263, '05.)

| Wt. per cent<br>Acetone | Sulphur p<br>Solu | er 100 cc. | Sp. Gr.   |
|-------------------------|-------------------|------------|-----------|
| in Solvent.             | Millimols.        | Grams.     | Solution. |
| 100                     | 65.0              | 2.084      | 0.7854    |
| 95.36                   | 45.0              | I.442      | 0.7911    |
| 90.62                   | 33.0              | 1.058      | 0.8165    |
| 85.38                   | 25.3              | 0.811      | 0.8295    |

## SOLUBILITY OF SULPHUR IN BENZENE AND IN ETHYLENE DI BROMIDE.

(Etard - Ann. chim. phys. [7] 2, 571, '94; see also Cossa - Ber. 1, 139, '68.)

|        | In (                              | C.H. |                                     | In C <sub>2</sub> H <sub>4</sub> Br <sub>2</sub> . |                                     |     |                                    |  |
|--------|-----------------------------------|------|-------------------------------------|----------------------------------------------------|-------------------------------------|-----|------------------------------------|--|
| to. pr | Gms. S<br>r 100 Gms.<br>Solution. | t°.  | Gms. S<br>per 100 Gms.<br>Solution. | t°.                                                | Gms. S<br>per 100 Gms.<br>Solution. | t°. | Gms. S<br>per 100 Gms<br>Solution. |  |
| 0      | I.0                               | 70   | 8.0                                 | 0                                                  | 1.2                                 | 50  | 6.4                                |  |
| IO     | 1.3                               | 80   | 10.5                                | IO                                                 | 1.7                                 | 60  | 8.4                                |  |
| 20     | 1.7                               | 90   | 13.8                                | 20                                                 | 2.3                                 | 70  | 11.4                               |  |
| 25     | 2.I                               | 100  | 17.5                                | 25                                                 | 2.8                                 | 80  | 16.5                               |  |
| 30     | 2.4                               | IIO  | 23.0                                | 30                                                 | 3.3                                 | 90  | 24.0                               |  |
| 40     | 3.2                               | 120  | 29.0                                | 40                                                 | 4.4                                 | 100 | 36.5                               |  |
| 50     | 4.3                               | 130  | 36.0                                |                                                    |                                     |     |                                    |  |
| 60     | 6.0                               |      |                                     |                                                    |                                     |     |                                    |  |

100 gms. sat. solution of S in benzoyl chloride,  $C_7H_7Cl$ , contain 1 gram S at  $0^\circ$  and 55.8 gms. at 134°.

(Bogousky - J. Soc. Phys. Chim. R. 37, 92, '05.)

#### SOLUBILITY OF SULPHUR IN CARBON BISULPHIDE. (Etard — Ann. chim. phys. [7] 2, 571, '94; Cossa — Ber. 1, 138, '65; at 10°, Retgers — Z. anorg. Chem 3, 347, '93; below — 77°, Arctowaki — Ibid. 11, 274, '95'-96.)

|              |                        |                   |             | •••                    | -                  |      |                         |                    |
|--------------|------------------------|-------------------|-------------|------------------------|--------------------|------|-------------------------|--------------------|
| <b>\$°</b> . | Gms. S pe<br>Solution. | r 100 Gms.<br>CS2 | <b>t°</b> . | Gms. S pe<br>Solution. | r 100 Gms.<br>CS2. | \$°. | Gms. S per<br>Solution. | T 100 Gms.<br>CSg. |
| -110         | 3.0                    | 3.1               | - 10        | 13.5                   | 15.6               | 50   | 59.0                    | 143.9              |
| - 100        | 3.5                    | 3.6               | 0           | 0.81                   | 22.0               | 60   | 66.O                    | 194.1              |
| - 80         | 4.0                    | 4.2               | 10          | 23.0 <b>*</b>          | 29.9               | 70   | 72.0                    | 257.1              |
| - 60         | 3.5                    | 3.6               | 20          | 29.5                   | 41.8               | 8o   | 79.0                    | 376.1              |
| - 40         | 6.0                    | 6.4               | 25          | 33.5                   | 50.4               | 90   | 86.o                    | 614.1              |
| - 20         | 10.5                   | 11.7              | 30          | 38.0                   | 61.3               | 100  | 92.0                    | 1150. <b>0</b>     |
|              |                        |                   | 40          | 50.0                   | 100.0              |      |                         | -                  |
|              |                        |                   |             | <b>* 26.4</b> ]        | R.                 |      |                         |                    |

Sp. Gr. of solution saturated at 15° containing 26 gms. S per 100 gms. solution = 1.372.

## SOLUBILITY OF SULPHUR IN HEXANE (C<sub>4</sub>H<sub>14</sub>).

|      | (Ethild.)                        |            |                                  |     |                                  |  |  |  |  |  |
|------|----------------------------------|------------|----------------------------------|-----|----------------------------------|--|--|--|--|--|
| t°.  | Gms. S per<br>100 Gms. Solution. | t°.        | Gms. S per<br>100 Gms. Solution. | t°. | Gms. S per<br>100 Gms. Solution. |  |  |  |  |  |
| - 20 | <b>o</b> .07                     | 60         | I.O                              | 130 | 5.2                              |  |  |  |  |  |
| 0    | 0.16                             | <b>8</b> 0 | I.7                              | 140 | 6.o                              |  |  |  |  |  |
| 20   | 0.25                             | 100        | 2.8                              | 160 | 7.2                              |  |  |  |  |  |
| 40   | 0.55                             | 120        | 4.4                              | 180 | 8.2                              |  |  |  |  |  |

SOLUBILITY OF SULPHUR IN SEVERAL SOLVENTS.

(Cossa - Ber. 1, 139, '68; Retgers; Cap and Garot - J. pharm. chim. [3] 26, 81 '54; Kleven - Chem.

| Solvent.                                      | t°. 10 | Gms. Sper<br>o Gms. Solvent. | Solvent.                                        | t°.    | Gms. S per<br>100 Gms. Solvent. |  |  |  |
|-----------------------------------------------|--------|------------------------------|-------------------------------------------------|--------|---------------------------------|--|--|--|
| C <sub>0</sub> H <sub>5</sub> NH <sub>2</sub> | 130    | 85.3                         | C <sub>6</sub> H <sub>5</sub> CH <sub>5</sub>   | 230    | 1.48                            |  |  |  |
| CHCl,                                         | 22     | I.2I                         | $CH_2I_2$                                       | IO     | IO.O (R.)                       |  |  |  |
| $(C_2H_5)_2O$                                 | 23.5   | o.97                         | $C_{10}H_{4}N_{2}*$                             | 100    | 10 - 58                         |  |  |  |
| C <sub>€</sub> H₅OH                           | 174    | 16.35                        | C <sub>5</sub> H <sub>3</sub> (OH) <sub>3</sub> | ord. t | . 0.05-0.1 (C.and G.)           |  |  |  |
|                                               |        |                              |                                                 |        |                                 |  |  |  |

\* Nicotine.

## Solubility of Sulphur in Coal Tar Oil, Linseed Oil and in Olive Oil.

(Pelouze -- Compt. rend. 68, 1179, '69; 69, 56, '69; Pohl.)

|          | Grams S per 100 Grams Coal Tar Oil of: |                   |                     |                     |                    |                    |                    | 100 Gms.                      |
|----------|----------------------------------------|-------------------|---------------------|---------------------|--------------------|--------------------|--------------------|-------------------------------|
| ŧ°.      | Sp.Gr.: 0.87<br>b.pt.: 80°-100°.       | 0.88<br>85°-120°. | 0.882<br>120°-220°. | 0.885<br>150°-200°. | 1.01<br>210°-300°. | 1.02<br>220°-300°. | Linseed<br>Oil. o  | Olive<br>Oil of<br>885 Sp. Gr |
| 15       | 2 · I                                  | 2.3               | 2.5                 | 2.6                 | 6.o                | 7.0                | 0.4                | 2.3                           |
| 30       | 3.0                                    | 4.0               | 5.3                 | 5.8                 | 8.5                | 8.5                | 0.6                | 4.3                           |
| 50<br>80 | 5.2                                    | б. 1              | 8.3                 | 8.7                 | IO.O               | 12.0               | I.2                | 9.0                           |
| 80       | 11.8                                   | 13.7              | 15.2                | 21.0                | 37.0               | 41.0               | 2.2                | 18.0                          |
| 100      | 15.2                                   | 18.7              | 23.0                | 26.4                | 52.5               | 54.0               | 3.0                | 25.0                          |
| 110      |                                        | 23.0              | 26.2                | 31.0                | 105.0              | 115.0              | 3.5                | 30.0                          |
| I 20     | • • •                                  | 27.0              | 32.0                | 38.o                | 8                  | 00                 | 4.2                | 37.0                          |
| 130      |                                        | •••               | 38.7                | 43.8                | œ                  | ∞<br>(160°)        | <b>5.0</b><br>10.0 | 43.0                          |

100 ) 10.0 100 gms. oil of turpentine dissolve 1.35 gms. S at 16°, and 16.2 gms. at b. pt. (Payen - Compt. rend. 34, 356, '52)

.

## SULPHUR DIOXIDE SO.

## SOLUBILITY IN WATER.

329

(Schönfeld - Liebig's Ann. 95, 5, '55; Sims - Ibid. 118, 340, '61; Roozeboom - Rec. trav. chim. 3, 46, '84.)

|    | Schönfeld.                                                |       |                                                                                       | Sims. |                               |                                | Roozeboom. |                                                                                    |  |
|----|-----------------------------------------------------------|-------|---------------------------------------------------------------------------------------|-------|-------------------------------|--------------------------------|------------|------------------------------------------------------------------------------------|--|
|    | Vols. SO <sub>2</sub><br>760 mm.)<br>Sat. SO <sub>2</sub> |       | Gms. SO <sub>2</sub> per<br>100 Gms. H <sub>2</sub> O<br>at total pressure<br>760 mm. | t°.   | SO <sub>2</sub> per 1<br>Gms. | Gm. H <sub>2</sub> O.<br>Vols. | s°.        | SO <sub>2</sub> Dissolved<br>per 1 pt. H <sub>2</sub> O<br>at 760 mm.<br>pressure. |  |
| 0  | + Aq.<br>68.86                                            | 79.79 | 22.83                                                                                 | 8     | 0.168                         | 58.7                           | 0          | 0.236                                                                              |  |
| 5  | 59.82                                                     | 67.48 | 19.31                                                                                 | IO    | 0.154                         | 53.9                           | - 2        | 0.218                                                                              |  |
| IO | 51.38                                                     | 56.65 | 16.21                                                                                 | 14    | 0.130                         | 45.6                           | 4          | 0.201                                                                              |  |
| 15 | 43.56                                                     | 47.28 | 13.54                                                                                 | 20    | 0.104                         | 36.4                           | 6          | 0.184                                                                              |  |
| 20 | 36.21                                                     | 39.37 | 11.29                                                                                 | 26    | 0.087                         | 30.5                           | 7          | 0.176                                                                              |  |
| 25 | 30.77                                                     | 32.79 | 9.41                                                                                  | 30    | 0.078                         | 27.3                           | 8          | 0.168                                                                              |  |
| 30 | 25.82                                                     | 27.16 | 7.81                                                                                  | 36    | 0.065                         | 22.8                           | IO         | 0.154                                                                              |  |
| 35 | 21.23                                                     | 22.49 |                                                                                       | 40    | 0.058                         | 20.4                           |            |                                                                                    |  |
| 40 | 17.01                                                     | 18.77 | 5.41                                                                                  | 46    | 0.050                         | 17.4                           | 12         | 0.142                                                                              |  |
|    |                                                           |       |                                                                                       | FO    | 0.045                         | 15.6                           |            |                                                                                    |  |

50 0.045 15.6 Sp. Gr. of sat. solution at  $0^{\circ} = 1.061$ ; at  $10^{\circ}$ , 1.055; at  $20^{\circ} = 1.024$ . I gm. H<sub>2</sub>O dissolves 0.0909 gm. SO<sub>2</sub> = 34.73 cc. (measured at 25°) at 25° and 748 mm. pressure.

(Walden and Centnerszwer - Z. physik. Chem. 42, 462, '01-'02.

## SOLUBILITY OF SULPHUR DIOXIDE IN SULPHURIC ACID OF 1.84 SP. GR.

Interpolated from original results.

(Dunn - Chem. News, 45, 272, '82.)

| t°. | Sp. Gr.<br>of Sat.<br>Solution. | Coefficient<br>of Absorp-<br>tion (760 mm.). | t°. | Sp. Gr.<br>of Sat.<br>Solution. | Coefficient<br>of Absorp-<br>tion (760 mm.) |
|-----|---------------------------------|----------------------------------------------|-----|---------------------------------|---------------------------------------------|
| 0   |                                 | 53.0                                         | 50  | 1.8186                          | 9.5                                         |
| IO  | 1.8232                          | 35.0                                         | 60  | 1.8165                          | 7.0                                         |
| 20  | 1.8225                          | 25.0                                         | 70  | 1.8140                          | 5.5                                         |
| 25  | 1.8221                          | 21.0                                         | 80  | 1.8112                          | 4.5                                         |
| 30  | 1.8216                          | 18.0                                         | 90  | 1.8080                          | 4.0                                         |
| 40  | 1.8205                          | 13.0                                         |     |                                 |                                             |

#### SOLUBILITY OF SULPHUR DIOXIDE IN AQUEOUS SULPHURIC ACID SOLUTIONS.

(Dunn: see also Kolb - Bull, soc. ind. Mulhouse - 222, '72.)

| \$°. | Sp. Gr. of | Approximate<br>Per cent<br>H <sub>2</sub> SO <sub>4</sub> . | Coefficient<br>of<br>Absorption. | t°.  | Sp. Gr. of<br>H <sub>2</sub> SO <sub>4</sub><br>Solution. | Approximate<br>per cent<br>H <sub>2</sub> SO <sub>4</sub> . | Coefficient<br>of<br>Absorption |
|------|------------|-------------------------------------------------------------|----------------------------------|------|-----------------------------------------------------------|-------------------------------------------------------------|---------------------------------|
| 6.9  | 1.139      | 20                                                          | 48.67                            | 15.2 | 1.173                                                     | 25                                                          | 31.82                           |
| 6.9  | 1.300      | 40                                                          | 45.38                            | 16.8 | 1.151                                                     | 21                                                          | 31.56                           |
| 8.6  | 1.482      | 58                                                          | 39.91                            | 14.8 | 1.277                                                     | 36                                                          | 30.41                           |
| 9.8  | I.703      | 78                                                          | 29.03                            | 15.1 | 1.458                                                     | 56                                                          | 29.87                           |
| 5.5  | 1.067      | IO                                                          | 36.78                            | 15.6 | 1.609                                                     | 70                                                          | 25.17                           |
| 6.0  | 1.102      | 15                                                          | 3,408                            | 15.0 | 1.739                                                     | 81                                                          | 20.83                           |

For Coefficient of Absorption, see Ethane page 133.

## SULPHUR DIOXIDE

.

### 330

## SOLUBILITY OF SULPHUR DIOXIDE IN AQUBOUS SALT SOLUTIONS. (Fox - Z. physik. Chem. 41, 461, '02.)

Pesults in terms of the Ostwald Solubility Expression. See page 105.

| Aqueous<br>Salt Solution.       | Solubility Coef               | licient / of S | 502 in aq. 5    | Solutions of   | Concentra | tions:         |
|---------------------------------|-------------------------------|----------------|-----------------|----------------|-----------|----------------|
|                                 | o.5 Normal                    | 1.0 N.         | 1.5 N.          | 2.0 N.         | 2.5 N.    | 3.0 N.         |
| NH <sub>4</sub> Cl              | $l_{25} = 34.58$              | 36.37          | 38.06           | 39.76          | 41.37     | 42 . 78        |
| NH₄Br                           | <i>l</i> <sub>25</sub> =36.25 | 39.46          | 42 . 78         | 46.06          | 49 . 17   | 52.25          |
| NH CNS                          | <b>l<sub>25</sub></b> =37.78  | 42 . 74        | 47 . 26         | 52 . 26        | 57.01     | 61 . <b>46</b> |
| NH <sub>4</sub> NO <sub>3</sub> | $l_{25} = 33.96$              | 35.07          | 36.28           | 37 · 27        | 38.01     | 39 . 14        |
| NH <sub>4</sub> NO <sub>3</sub> | $l_{35} = 23.35$              | 24.23          | 24 . 78         | 25 · 57        | 26.66     | 27.43          |
| $(NH_4)_2SO_4$                  | $l_{25} = 33.35$              | 33.82          | 34 · 33         | 34 . 95        | 35 · 47   | 35.96          |
| $(NH_4)_2SO_4$                  | $l_{35} = 22.91$              | 23.14          | 23 . 49         | 23.93          | 24 . 23   | 24.60          |
| CdCl <sub>2</sub>               | $l_{25} = 31.66$              | 30.55          | 29 . 46         | <b>28</b> .16  | 27.09     | 26.06          |
| CdCl,                           | $l_{35} = 21.73$              | 21.23          | 20.55           | 20.02          | 19.23     | 18.68          |
| CdBr <sub>2</sub>               | $l_{25} = 31.91$              | 31.01          | 30.17           | 29.27          | 28.15     | 27.46          |
| CdBr <sub>2</sub>               | $l_{35} = 21.88$              | 21.46          | 20 . 81         | 20.60          | 19.70     | 19.17          |
| CdI <sub>2</sub>                | $l_{25} = 33.27$              | 33.76          | 34 . 16         | 34 · 74        | 34 . 98   | 35 · 77        |
| CdI <sub>2</sub>                | $l_{35} = 22.75$              | 23.06          | 23.36           | 23.71          | 23.99     | 24.30          |
| CdSO4                           | $l_{25} = 31.11$              | 29.7I          | 28 . 24         | 26.58          | 25.14     | 23.76          |
| CdSO4                           | $l_{85} = 21.45$              | 20.43          | 19.42           | 18.31          | 17.41     | 16.25          |
| KCl                             | $l_{25} = 34.42$              | 36. <b>05</b>  | 37.76           | 39 . 32        | 40.96     | 42 · <b>27</b> |
| KCl                             | $l_{85} = 23.74$              | 25.15          | 26.54           | <b>27</b> · 94 | 28.93     | 30.02          |
| KBr                             | $l_{25} = 35.94$              | 39.11          | 42 · 41         | 44 . 96        | 48.87     | 52.26          |
| KBr                             | $l_{35} = 24.83$              | 27 . 49        | 29.64           | 31.93          | 34.12     | 36.14          |
| KCNS                            | $l_{35} = 37.57$              | 42.38          | 47 .02          | 51.81          | 55.87     | 61.26          |
| KCNS                            | $l_{35} = 25.63$              | 28.79          | 32.03           | 35.05          | 38.13     | 42 . 94        |
| KI                              | $l_{25} = 38.66$              | 44 . 76        | 50.58           | 56.75          | 62.63     | 68. <b>36</b>  |
| KI                              | $l_{35} = 26.30$              | 30.25          | 34.64           | 38.04          | 41.87     | 45 · 43        |
| KNO3                            | $l_{25} = 33.80$              | 34 · 79        | 35 · 77         | 36.66          | 37 · 57   | 38.52          |
| KNO3                            | $l_{35} = 23.27$              | 24.03          | <b>2</b> 4 · 79 | 25.72          | 26.54     | 27 . 33        |
| K <sub>2</sub> SO <sub>4</sub>  | $l_{25} = 33.20$              | 33.61          | • • •           | • • •          | • • •     | • • •          |
| NaBr                            | <i>l</i> <sub>25</sub> =33.76 | 34 · 54        | 35 . 27         | 36.26          | 36.84     | 37 · 74        |
| NaCl                            | $l_{25} = 32.46$              | 32.25          | 31.96           | 31.76          | 31.51     | 31.36          |
| NaCNS                           | $l_{25} = 35.44$              | 38.24          | 40.78           | 43 · 37        | 45.86     | 48.34          |
| Na <sub>2</sub> SO <sub>4</sub> | $l_{25} = 31.96$              | 31 . 14        | 30.45           | 29 - 51        | 28.66     | 28.44          |
| Na <sub>2</sub> SO <sub>4</sub> | $l_{35} = 21.88$              | 21.35          | 20.81           | 20 · 2 I       | 19.75     | 19.27          |

## Solubility of Sulphur Dioxide in Alcohols and in Other Solvents.

(de Bruyn - Rec. trav. chim. 11, 128, '92; Schulze - J. pr. Chem. [2] 24, 168, '81.)

| Ir   |      | Alcoho mm. |              | o mm.              | In Seve<br>at o° and               |                      |       |
|------|------|------------|--------------|--------------------|------------------------------------|----------------------|-------|
| t°.  |      | per 100 G  |              | 100 Gms.<br>CH3OH. | Solvent. S                         | O2 per 1 G<br>Grams. | Wols. |
| 0    | 53.5 | 115.0      | 71.I         | 246.0              | Camphor                            | o.88o                | 308   |
| 7    | 45.0 | 81.0       | 59.9         | 149.4              | CH,COOH                            | 0.961                | 318   |
| 12.3 | 39.9 | 66 . 4     | 52.2         | 109.2              | HCOOH                              | 0.821                | 351   |
| 18.2 | 32.8 | 48.8       | (17.8°) 44.0 | 78.6               | (CH <sub>3</sub> ) <sub>2</sub> CO | 2.07                 | 589   |
| 26.0 | 24.4 | 32.3       | 31.7         | 46.4               | SO <sub>2</sub> Cl <sub>2</sub>    | 0.323                | 189   |

### SULPHUR DIOXIDE

#### DISTRIBUTION OF SULPHUR DIOXIDE AT 20° BETWEEN: (McCrae and Wilson - Z. anorg. Chem. 35, 11, '03.)

| 1                                                                                       | Water an                    | d Chloro      | form.           | Aq. HCl and Chloroform.                                                         |               |                             |               |                 |  |
|-----------------------------------------------------------------------------------------|-----------------------------|---------------|-----------------|---------------------------------------------------------------------------------|---------------|-----------------------------|---------------|-----------------|--|
| Gms. SO <sub>2</sub> per Gm. Equiv. <u>1</u> SO <sub>2</sub><br>Liter in: per Liter in: |                             |               | Conc.           | Gms. SO <sub>2</sub> per Gm. Equiv. $\frac{1}{2}$ SO<br>Liter in: per Liter in: |               |                             |               |                 |  |
| Aq.<br>Layer.                                                                           | CHCl <sub>3</sub><br>Layer. | Aq.<br>Layer. | CHCla<br>Layer. | of<br>HCl.                                                                      | Aq.<br>Layer. | CHCl <sub>3</sub><br>Layer. | Aq.<br>Layer. | CHCla<br>Layer. |  |
| 1.738                                                                                   | 1.123                       | 0.0543        | 0.0351          | 0.05                                                                            | 1.86          | 1.46                        | 0.0581        | 0.0456          |  |
| 1.753                                                                                   | I.122                       | 0.0547        | 0.0350          | **                                                                              | 3.07          | 2.83                        | 0.0960        | 0.0884          |  |
| 2.346                                                                                   | 1.703                       | 0.0732        | 0.0532          | **                                                                              | 4.28          | 4.07                        | 0.1336        | 0.1271          |  |
| 2.628                                                                                   | 1.897                       | 0.0821        | 0.0592          | **                                                                              | 5.34          | 5.42                        | 0.1667        | 0.1692          |  |
| 3.058                                                                                   | 2.385                       | 0.0955        | 0.0745          | 0.10                                                                            | 1.25          | 1.41                        | 0.039         | 0.044           |  |
| 3.735                                                                                   | 3.062                       | 0.1166        | 0.0956          | "                                                                               | 2.78          | 3.08                        | 0.0868        | 0.0962          |  |
| 4.226                                                                                   | 3.626                       | 0.1319        | 0.1132          | **                                                                              | 3.86          | 4.08                        | 0.1199        | 0.1275          |  |
| 5.269                                                                                   | 4.798                       | 0.1645        | 0.1498          | **                                                                              | 5.161         | 5.72                        | 0.1612        | 0.1784          |  |
| 6.588                                                                                   | 6.183                       | 0.2057        | 0.1930          | 0.2                                                                             | 1.268         | 1.51                        | 0.0396        | 0.0471          |  |
| 31.92                                                                                   | 33.84                       | 0.9968        | 1.056           | **                                                                              | 1.914         | 2.27                        | 0.0597        | 0.0710          |  |
| 33.26                                                                                   | 37.25                       | 1.038         | 1.163           | "                                                                               | 2.464         | 3.04                        | 0.0769        | 0.0949          |  |
|                                                                                         |                             |               |                 | "                                                                               | 3.967         | 4.90                        | 0.1239        | 0.1530          |  |
|                                                                                         |                             |               |                 | 0.4                                                                             | I.202         | 1.61                        | 0.038         | 0.0504          |  |
|                                                                                         |                             |               |                 | "                                                                               | 1.894         | 2.26                        | 0.059         | 0.0706          |  |
|                                                                                         |                             |               |                 |                                                                                 |               |                             |               |                 |  |

## TANNIC ACID C1,H,O,COOH.

100 gms. H<sub>2</sub>O dissolve about 294 gms. at 25°; 100 gms. alcohol dissolve about 439 gms. at 25°. (U.S.P.)

## TARTARIC ACID C2H2(OH)2(COOH)2.

#### SOLUBILITY IN WATER. (Leidie - Compt. read. 95, 87, '82.)

| t°. | Grams Tartaric Acid per 100 Gms. H2O. |                              |                             | tº. | Gms. Tartaric Acid per 100 Gms. H2O. |                              |                            |  |
|-----|---------------------------------------|------------------------------|-----------------------------|-----|--------------------------------------|------------------------------|----------------------------|--|
|     | Dextro<br>and Laevo<br>Acids.         | Racemic<br>Ac.<br>Anhydrous. | Racemic<br>Ac.<br>Hydrated. |     | Dextro<br>and Laevo<br>Acids.        | Racemic<br>Ac.<br>Anhydrous. | Racemic<br>Ac.<br>Hydrated |  |
| 0   | 115.04                                | 8.16                         | 9.23                        | 50  | 195.0                                | 50.0                         | 59.54                      |  |
| IO  | 125.72                                | 12.32                        | 14.00                       | 60  | 217.55                               | 64.52                        | 78.33                      |  |
| 20  | 139.44                                | 18.0                         | 20.60                       | 70  | 243.66                               | 80.56                        | 99.88                      |  |
| 25  | 147.44                                | 21.4                         | 24.61                       | 80  | 273.33                               | 98.12                        | 124.56                     |  |
| 30  | 156.2                                 | 25.2                         | 29.10                       | 90  | 306.56                               | 117.20                       | 152.74                     |  |
| 40  | 176.0                                 | 37.0                         | 43.32                       | 100 | 343.35                               | 137.80                       | 184.91                     |  |

## SOLUBILITY OF TARTARIC ACID IN ALCOHOL AND IN ETHER

AT 15°.

|                  | chim. phys. [5] 13, 405<br>Gms. Tartaric Acid |          |
|------------------|-----------------------------------------------|----------|
| Solvent.         | Sat. Solution.                                | Solvent. |
| Absolute Alcohol | 20.385                                        | 41-135   |
| 90% Alcohol      | 29.146                                        | 25.604   |
| Absolute Ether   | 0.389                                         | 0.40     |

## TELLURIUM Te.

100 gms. methylene iodide CH<sub>2</sub>I<sub>2</sub> dissolve 0.1 gm. Te at 12°. (Retgers – Z. anorg. Chem. 3, 340, '93.)

331

## TELLURIO AOID H<sub>2</sub>TeO<sub>4</sub>.2H<sub>2</sub>O.

### SOLUBILITY IN WATER. (Mylius - Ber. 34, 2008, '01.)

| <b>t°</b> . | Grus.<br>HaTeOa<br>per 100<br>Grus. Sol. | Mols<br>HgTeO4 per<br>100 Mols.<br>HgO. | Solid<br>Phase. | <b>\$°</b> . | Gms.<br>HsTeOs<br>per 100<br>Gms. Sol. | Mois.<br>H <sub>3</sub> TeO <sub>4</sub> per<br>100 Mois.<br>H <sub>3</sub> O. | Solid<br>Phase. |
|-------------|------------------------------------------|-----------------------------------------|-----------------|--------------|----------------------------------------|--------------------------------------------------------------------------------|-----------------|
| 0           | 13.92                                    | I.51 Ha                                 | OrHo. OoT       | 30           | 33.36                                  | 4.67 Ha                                                                        | CeHt. Oa        |
| 5           | 17.84                                    | 2.03                                    | 4               | 40           | 36.38                                  | 5.33                                                                           | 64              |
| 10          | 26.21                                    | 3.31                                    | 66              | 60           | 43.67                                  | 7.04                                                                           | *               |
| 15          | 32.79                                    | 4.41                                    | 66              | 8o           | 51.55                                  | 9.9 <b>3</b>                                                                   | **              |
| 10          | 25.29                                    | 3.15 Ha                                 | CeO4.2HgO       | 100          | 60 <b>. 84</b>                         | 14.52                                                                          | *               |
| 18          | 28.90                                    | 3.82                                    | 64              | 110          | 67.0                                   | 19.0                                                                           | •               |

## TELLURIUM DOUBLE SALTS

#### SOLUBILITY OF TELLURIUM DOUBLE BROMIDES AND CHLORIDES IN AQUEOUS HYDROCHLORIC AND HYDROBROMIC ACIDS AT 22°.

## (Wheeler — Z. anorg. Chem. 3, 432, '03.)

|                        | (                        |          | y3./                                    |                 |  |
|------------------------|--------------------------|----------|-----------------------------------------|-----------------|--|
| Tellurium Double Salt. | Formula.                 | Solvent. | Gms. Double Salt per 100<br>Gms. Solvem |                 |  |
|                        |                          |          | of 1.49 Sp. Gr.                         | of 1.08 Sp. Gr. |  |
| Te Caesium Bromide     | TeBr <sub>4</sub> .2CsBr | Aq. HBr  | 0.02                                    | 0.13            |  |
| Te Potassium Bromide   | TeBr <sub>4</sub> .2KBr  | - "      | 6.57                                    | 62.00           |  |
| Te Rubidium Bromide    | TeBr. 2RbBi              |          | 0.25                                    | 3.88            |  |
| Te Caesium Chloride    | TeCl4.2CsCl              | Aq. HCl* | 0.05                                    | 0.78            |  |
| Te Rubidium Chloride   | TeCl <sub>4</sub> .2RbCl |          | 0.34                                    | 13.09           |  |

• Sp. Gr. of Aq. HCl solutions 1.2 and 1.05 respectively.

THALLIUM ALUMS

SOLUBILITY IN WATER AT 25° (Locke — Am. Ch. J. 26, 174, '01.)

|                                                                          | Salt per 100 Grams H2O.                                                                                                       |                                       |                                         |                                      |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|--------------------------------------|
| Alum.                                                                    | Formula.                                                                                                                      | Gms.<br>Anhydrous.                    | Gms.<br>Hydrated.                       | Gm.<br>Mols.                         |
| Tl Aluminum Alum<br>Tl Vanadium Alum<br>Tl Chromium Alum<br>Tl Iron Alum | $\begin{array}{c} TlAl(SO_4)_{2}.12H_2O\\ TlV(SO_4)_{2}.12H_2O\\ TlCr(SO_4)_{2}.12H_2O\\ TlFe(SO_4)_{2}.12H_2O\\ \end{array}$ | 7 · 5<br>25 · 6<br>10 · 48<br>36 · 15 | 11 - 78<br>43 - 31<br>16 - 38<br>64 - 6 | 0.0177<br>0.0573<br>0.0212<br>0.0799 |

#### THALLIUM BROMATE TIBrO,

One liter saturated aqueous solution contains 3.463 gms. TlBrO<sub>3</sub> at  $19.96^{\circ}$  (B.), and 7.355 gms. at  $39.75^{\circ}$  (N. and A.).

(Böttger - Z. physik. Chem. 46, 602, '03; Noyes and Abbott - Ibid. 16, 132, '95.)

#### THALLIUM BROMIDE TIBr

One liter saturated aqueous solution contains 0.42 gm. TlBr at 18°, 0.476 gm. at 20°, 0.57 gm. at 25°, and 2.467 gms. at 68.5°.

(Kohlrausch - Z. physik. Chem. 50, 356, '04; Noyes - Ibid. 6, 248, '90; Bottger.)

SOLUBILITY OF TIBR IN AQ. SOLUTIONS OF TINO, AT 68.5°. (Noyes.) Gram Molecules per Liter. Grams per Liter.

|              | •            |             |            |
|--------------|--------------|-------------|------------|
|              |              |             |            |
| 0.0163 TlNO. | 0.00410 TlBr | 4.336 TINO3 | 1.164 TlBr |
| 0.0294 ''    | 0.00289 "    | 7.820 "     | 0.821 "    |
| 0.0955 "     | 0.00148 "    | 25.400 "    | 0.420 ''   |

## THALLIUM CHLORATE

#### 333 THALLIUM CARBONATE AND THALLIUM (Per) CHLORATE. (See p. 338.) THALLIUM CHLORATE TICIO,.

#### SOLUBILITY IN WATER. (Muir - I. Chem. Soc. 20, 817, 176.)

| t°                                                    | 00   | 200  | 50°   | 80°   | 1000  |
|-------------------------------------------------------|------|------|-------|-------|-------|
| Gms. TlClO <sub>3</sub> per 100 gms. H <sub>2</sub> O | 2.80 | 3.92 | 12.67 | 36.65 | 57.31 |

## Solubility of Mixed Crystals of Thallium Chlorate and Potassium Chlorate in Water at 10°. (Roozeboom - Z. physik. Chem. 8, 532, '91.)

NOTE. - Solutions of the two salts were mixed in different proportions and allowed to crystallize, such amounts being taken that not more than one or two grams would separate from one liter.

| Grams per<br>Solut |        |         | per 1000 cc. | Sp. Gr.    | Mol. per cent<br>KClO <sub>3</sub> in Mixed |
|--------------------|--------|---------|--------------|------------|---------------------------------------------|
| TICIO3.            | KClO3. | TICIOa. | KClO3.       | Solutions. | Crystals.                                   |
| 25.637             |        | 89.14   |              | I.0210     | 0                                           |
| 19.637             | 6.884  | 68.27   | 56.15        | I.0222     | 2.0                                         |
| 12.001             | 26.100 | 41.73   | 212.89       | 1.0278     | 12.61                                       |
| 9.036              | 40.064 | 31.42   | 326.79       | 1.0338     | 25.01                                       |
| 7.885              | 46.497 | 27.42   | 379.26       | I.0359     | 2 26 20-02 02                               |
| 7.935              | 46.535 | 27.60   | 379.57       | 1.0360     | } 36.30-97.93                               |
| 6.706              | 46.410 | 23.32   | 378.55       | 1.0357     | 99.28                                       |
| 6.729              | 47.109 | 23.37   | 384.25       | 1.0363     | 99.60                                       |
| 4.858              | 47.312 | 16.89   | 385.91       | I.0345     | 99.62                                       |
| 2.769              | 47.134 | 9.63    | 384.46       | 1.0330     | 99.67                                       |
|                    | 49.925 |         | 407.22       | 1.0330     | 100.001                                     |
|                    |        |         |              |            |                                             |

## SOLUBILITY OF MIXED CRYSTALS OF THALLIUM CHLORATE AND POTASSIUM CHLORATE IN WATER AT DIFFERENT TEMPERATURES.

(Quoted by Rabe - Z. anorg. Chem. 31, 156, 'oz.)

100 gms. H<sub>2</sub>O dissolve 2.8 gms. TlClO<sub>3</sub> + 3.3 gms. KClO<sub>3</sub> at o°. 100 gms. H<sub>2</sub>O dissolve 10.0 gms. TlClO<sub>3</sub> + 3.3 gms. KClO<sub>3</sub> at 5°. 100 gms. H<sub>2</sub>O dissolve 12.67 gms. TlClO<sub>3</sub> + 16.2 gms. KClO<sub>3</sub> at 5°. 100 gms. H<sub>2</sub>O dissolve 12.67 gms. TlClO<sub>3</sub> + 16.2 gms. KClO<sub>3</sub> at 5°. 100 gms. H<sub>2</sub>O dissolve 57.3 gms. TlClO<sub>4</sub> + 48.2 gms. KClO<sub>4</sub> at 10°.

## THALLIUM CHLORIDE TICI.

#### SOLUBILITY IN WATER.

(Average curve from results of Noyes – Z. physik. Chem. 9, 609, '02; Böttger – Ibid. 46, 602, '03; Kohl-rausch – Ibid. 50, 350, '04; Hebberling; Crookes; Lamy – The results of Berkeley – Trans. Roy. Soc. (Lond.) 203 A, 208, '04 are also given.)

| t°. | Gms. TIC<br>Liter. | per    | t°.    | Gms. T | ICI per<br>ter. | t°. |      | TICI per<br>Liter. | 1       |
|-----|--------------------|--------|--------|--------|-----------------|-----|------|--------------------|---------|
| 0   | 2.1 (av.)          | 1.7 (H | 3.) 25 | 3.86   | 4.0             | бо  | 8.0  | 10.2               |         |
| IO  | 2.5                | 2.4    | 30     | 4.2    | 4.6             | 80  | 12.0 | 16.0               |         |
| 20  | 3.3                | 3.4    | 40     | 5.2    | 6.0             | 100 | 18.0 | 24.I               | (99.3°) |
|     |                    |        | 50     | 6.3    | 8.0             |     |      |                    |         |

## THALLIUM CHLORIDE

THALLIUM CHLORIDE TICI.

## SOLUBILITY IN WATER AND IN AQ. SALT SOLUTIONS AT 25°. (Noyes; Noyes and Abbott; Gefficken - Z. physik. Chem. 49, 296, '04.)

•

334

| (Noyes; Noyes and Abdox; Gencken - 2. paysik. Chem. 40, 200, 04.5<br>G. Mols. per Liter. Grams per Liter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                    |                        |                 |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|------------------------|-----------------|--|--|
| Aq. Salt Solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Salt.            | TICI.              | Salt.                  | TICI.           |  |  |
| Ammonium Nitrate NH4NO8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0              | 0.01612            | 0.0                    | 3.861 (G.)      |  |  |
| 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5              | 0.02587            | 40.02                  | 6.209           |  |  |
| **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I.0              | 0.03121            | 80.05                  | 7.473           |  |  |
| **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0              | 0.03966            | 160.10                 | 9.497           |  |  |
| Barium Chloride BaCla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0283           | 0.00857            | 5.895                  | 2.052 (N.)      |  |  |
| 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1468           | 0.00323            | 30.59                  | 0.773           |  |  |
| Cadmium Sulphate CdSO <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.030            | 0.0200             | 6.255                  | 4.933 (N.)      |  |  |
| 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0787           | 0.0254             | 16.41                  | 6.081           |  |  |
| 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1574           | 0.0300             | 32.82                  | 7 · 399         |  |  |
| Hydrochloric Acid HCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0283           | 0.00836            | 1.032                  | 2.002 (N.)      |  |  |
| 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0560           | 0.00565            | 2.043                  | 1.353           |  |  |
| **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1468           | 0.00316            | 5.357                  | 0.757           |  |  |
| Lithium Nitrate LiNOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5              | 0.02542            | 34.53                  | 6.085 (G.)      |  |  |
| 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I.0              | 0.03035            | 69.07                  | 7.266           |  |  |
| 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0              | 0.03785            | 138.14                 | 9.063           |  |  |
| 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.0              | 0.04438            | 207.21                 | 10.630          |  |  |
| Potassium Chlorate KClO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5              | 0.0237             | 61.28                  | 5.674 (G.)      |  |  |
| Potassium Nitrate KNO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.015            | 0.0170             | 1.517                  | 4.070 (N.)      |  |  |
| 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.030            | 0.0170             | 3.033                  | 4.286           |  |  |
| 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0787           | 0.0192             | 7.775                  | 4.597           |  |  |
| **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1574           | 0.0212             | 15.920                 | 5.076           |  |  |
| **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5              | 0.0257             | 50.55                  | 6.153 (G.)      |  |  |
| 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I.O              | 0.0308             | 101.11                 | 7.375           |  |  |
| 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0              | 0.0390             | 202.22                 | 9·340           |  |  |
| Sodium Acetate CHaCOONa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.015            | 0.0168             | 1.231                  | 4.023 (N.)      |  |  |
| "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.030            | 0.0172             | 2.462                  | 4.118           |  |  |
| 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0787           | 0.0185             | 6.46                   | 4.430           |  |  |
| 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1574           | 0.0105             | 12.92                  | 4.693           |  |  |
| Sodium Nitrate NaNOa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5              | 0.0190             | 42.50                  | 6.139 (G.)      |  |  |
| a and a second | I.0              | 0.02504            | 85.01                  | •••••           |  |  |
| **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0              | 0.03851            | 170.02                 | 7.313<br>9.221  |  |  |
| **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                    | •                      | 10.88           |  |  |
| **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.0              | 0.04544            | 255.03<br>340.12       | 12.28           |  |  |
| Sodium Chlorate NaClOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.0              | 0.05128<br>0.02320 | 53.25                  |                 |  |  |
| "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5<br>I.0       | 0.02320<br>0.02687 | 53·25<br>106.5         | 5.555 (G.)      |  |  |
| **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                    | •                      | 6.433           |  |  |
| 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0              | 0.03060            | 213.0                  | 7.326           |  |  |
| 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.0              | 0.03303            | 319.5                  | 7.909           |  |  |
| Thallium Bromate TIBrOs (at 39.75°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.0              | 0.03850            | <b>42</b> 6.0<br>5 201 | 9.215           |  |  |
| Thallium Nitrate TINOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | 0.01959            |                        | 4.690 (N.andA.) |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0283           | 0.0083             | 7.518                  | 1.987 (N.)      |  |  |
| "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0560           | 0.00571            | 14.89                  | 1.368           |  |  |
| Thallium Sulphate Tl <sub>2</sub> SO <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | o.1468<br>o.0283 | 0.00332            | 39.05                  | 0.795           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | 0.00886            | 14.27                  | 2.121 (N.)      |  |  |
| Thallium Sulphocyanide TISCN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0560<br>Sat    | 0.00624            | 28.23<br>Sat           | I.494           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sat.             | 0.0119             | Sat.                   | 2.849 (N.)      |  |  |
| (ar 39.75°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.02149          | 0.01807            | 5.504                  | 4.326 (N.andA.) |  |  |

### THALLIUM CHLORIDE

#### Solubility of Thallium Chloride in Aqueous Solutions of Salts at 25°.

335

(Noyes - Z. physik. Chem. 9, 609, '92.)

| Ag. Salt              | Gra   | m. Equiv. per             | Liter.  | Gra    | ms. per           | Liter. | Gra   | ms per l          | Liter. |
|-----------------------|-------|---------------------------|---------|--------|-------------------|--------|-------|-------------------|--------|
| Aq. Salt<br>Solution. | Salt. |                           | TICI.   | Salt.  |                   | TICI.  | Salt. |                   | TICI.  |
| NH <sub>4</sub> Cl    | 0.0   | NH <sub>4</sub> Cl or HCl | 0.01612 | 0.00   | NHACI             | 3.861  | 0.00  | HCI               | 3.861  |
| and also              | 0.025 |                           | 0.00873 | 1.338  | **                | 2. 101 | o.886 |                   | 2.0    |
| HCl                   | 0.05  |                           | 0.00589 | 2.676  | **                | 1.421  | 1.772 |                   | 1.402  |
|                       | 0.10  | **                        | 0.00384 |        |                   |        | 3.545 | **                | 0.920  |
|                       | 0.20  |                           | 0.00262 | 10.704 |                   | 0.649  | 7.090 | **                | 0.608  |
| CuCl <sub>2</sub>     | 0.025 | CuCl2 or CaCl             | 0.00002 | 3.36   | CuCl <sub>2</sub> | 2.161  | 3.77  | CaCl <sub>2</sub> | 2.161  |
| and also              | 0.05  |                           | 0.00619 | 6.72   |                   | 1.483  | 7.55  |                   | 1.483  |
| CaCl <sub>2</sub>     | 0.10  |                           | 0.00419 | 13.45  | **                | 1.003  | 15.11 | **                | 1.003  |
|                       | 0.20  | "                         | 0.00287 | 26.90  |                   | 0.688  | 30.22 |                   | 0.687  |
| MgCl <sub>2</sub>     | 0.025 | MgCl2 or MnCl             | 10000.0 | 2.381  | MgCl <sub>2</sub> | 2.158  | 3.147 | MnCl <sub>2</sub> | 2.158  |
| and also              | 0.05  | **                        | 0.00618 | 4.763  |                   | 1.480  | 6.295 | **                | 1.480  |
| MnCl <sub>2</sub>     | 0.10  | "                         | 0.00412 | 9.526  | **                | 0.987  | 12.59 |                   | 0.987  |
|                       | 0.20  |                           | 0.00278 | 19.052 | "                 | 0.666  | 25.18 |                   | 0.666  |
| KC1                   |       | KCl or NaCl               | 0.00871 | 1.86   | KCI               | 2.086  | 1.46  | NaCl              | 2.086  |
| and also              | 0.05  |                           | 0.00592 | 3.73   |                   | 1.418  | 2.925 |                   | 1.418  |
| NaCl                  | 0.10  |                           | 0.00397 | 7.46   | **                | 0.951  | 5.85  |                   | 0.951  |
|                       | 0.20  |                           | 0.00268 | 14.92  | "                 | 0.642  | 11.70 |                   | 0.642  |
| TICIO,                |       | TICIO <sub>gor</sub> TINO | 0.00889 | 5.276  | TICIO             | 2.129  | 4.74  | TINO              | 2.129  |
| and also              | 0.05  |                           | 0.00626 |        |                   |        | 9.48  | **                | 1.500  |
| TINO,                 | 0.10  | **                        | 0.00423 |        |                   |        | 18.96 |                   | 1.014  |
| ZnCl <sub>2</sub>     | 0.025 | ZnCl <sub>2</sub>         | 0.00899 | 3.41   | ZnCla             | 2.153  |       |                   |        |
|                       | 0.05  | **                        | 0.00627 | 6.81   | **                | 1.502  |       |                   |        |
|                       | 0.10  |                           | 0.00412 | 13.63  |                   | 0.987  |       |                   |        |
|                       | 0.20  |                           | 0.00281 | 27.26  |                   | 0.673  |       |                   |        |
| CdCl <sub>2</sub>     | 0.025 |                           | 0.0104  | 4.53   | CdCl <sub>2</sub> | 2.491  |       |                   |        |
|                       | 0.05  |                           | 0.0078  | 9.16   | **                | 1.868  |       |                   |        |
|                       | 0.10  |                           | 0.00578 | 18.33  |                   | 1.385  |       |                   |        |
|                       | 0.20  |                           | 0.00427 | 36.66  | **                | 1.029  |       |                   |        |

One liter of water dissolves 2.7 gms. thallo thallic chloride  $3TICI.TICI_{*}$  at  $15^{\circ}-17^{\circ}$ , and 35.0 grams at  $100^{\circ}$ .

(Crookes; Lamy; Hebberling.)

## THALLOUS CHROMATE TI,CrO.

100 gms. H<sub>2</sub>O dissolve 0.03 gm. Tl<sub>2</sub>CrO<sub>4</sub> at 60°, and 0.2 gm. at 100°. (Browning and Hutchins – Z. anorg. Chem. 22, 380, '00.)

One liter of aq. 31 per cent KOH solution dissolves 18 grams Tl<sub>2</sub>CrO<sub>4</sub>. (Lepierre and Lachand - Compt. rend. 113, 196, '91.)

One liter of  $H_2O$  dissolves 0.35 gram Thallous Tri Chromate  $Tl_2Cr_3O_{10}$  at 15°, and 2.27 grams at 100°.

(Crookes.)

#### THALLOUS OYANIDE TICN and Double Cyanides.

SOLUBILITY IN WATER.

(Froamüller - Ber. 11, 92, '78.)

| Cyanide.           | Formula.               | Gms. Salt per 100 Gms. HgO.                                                          |
|--------------------|------------------------|--------------------------------------------------------------------------------------|
| Tl Cyanide         | TICN                   | at 28.5°, 16.8                                                                       |
| Tl Cobalti Cyanide | Tl <sub>2</sub> Co(CN) | at 0°, 3.6; at 9.5°, 5.86; at 19.5°, 10.04<br>at 0°, 8.7; at 14°, 15.2; at 31°, 29.6 |
| Tl Zinc Cyanide    | 2TICN.Zn(CN)           | at 0°, 8.7; at 14°, 15.2; at 31°, 29.6                                               |
| Tl Ferro Cyanide   | $Tl_4Fe(CN)_{4,2}H_2O$ | at 18°, 0.37 at 101°, 3.93.                                                          |
|                    |                        | (Lamy.)                                                                              |

### THALLOUS FLUORIDE TIF.

100 gms. H<sub>2</sub>O dissolve 80 gms. TlF at 15°. (Buchner - Sitzb. K. Akad. Wiss. (Wein) 52, 2, 644, '65.)

## THALLIUM IODATE THO.

One liter aq. solution contains 0.578 gram TIIO, at 20°. (Böttger - Z. physik. Chem. 46, 602, '03.)

## THALLIUM IODIDE TH.

SOLUBILITY IN WATER. (Average results from Böttger; Kohlrausch; Werther; Crookes; Lamy; Hebberling.) t°. °°. 20°. 40°. 60°. 80°. 100°. Gms. Tll per liter 0.02 0.06 0.15 0.35 0.70 I.20

One liter of 21 per cent aq. ammonia dissolves 0.761 gm. TICl. One liter of 61 per cent aq. ammonia dissolves 0.758 gm. TlCl. One liter of 90 per cent alcohol dissolves 0.0038 gm. TlCl. One liter of 50 per cent alcohol dissolves 0.027 gm. TlCl. (Long - J. Anal. Ch. 2, 243, '88.)

## THALLIUM NITRATE TINO,

SOLUBILITY IN WATER. (Berkeley — Trans. Roy. Soc. (Lond.) 203 A, 213, '04; see also Etard — Ann. chim. phys. [7] 2, 527, '94; Crookes; Lamy.)

| <b>t</b> °. | Gms. TINO3 per 100 Gms. |        | t°. | Gms. TINO <sub>3</sub> per 100 Gms. |         |  |
|-------------|-------------------------|--------|-----|-------------------------------------|---------|--|
| • • ~       | Solution.               | Water. | ι.  | Solution.                           | Water.  |  |
| 0           | 3.76                    | 3.91   | 60  | 31.55                               | 46.2    |  |
| 10          | 5.86                    | 6.22   | 70  | <b>41</b> .01                       | 69.5    |  |
| 20          | 8.72                    | 9.55   | 80  | 52.6                                | 111.0   |  |
| 30          | 12.51                   | 14.3   | 90  | 66.6 <b>6</b>                       | 200.0   |  |
| 40          | 17.33                   | 20.9   | 100 | 80.54                               | 414.0   |  |
| 50          | 23.33                   | 30.4   | 105 | 85.59                               | 594 · O |  |

Solid phase. TINO, rhombic.

100 gms. H<sub>2</sub>O dissolve 43.5 gms. TINO<sub>2</sub> + 104.2 gms. KNO<sub>2</sub> at 58°. (Rabe - Z. anorg. Chem. 31, 156, '02.)

### THALLIUM OXALATE T1,C,O.

One liter of saturated aqueous solution contains 15.77 grams Tl<sub>2</sub>C<sub>2</sub>O<sub>4</sub> at 20°, and 18.69 gms. at 25°.

(Böttger - Z. physik. Chem. 46, 602, '03; Abegg and Spencer - Z. anorg. Chem. 46, 406, '05.)

## 337 SOLUBILITY OF THALLIUM OXALATE AT 25° IN AQ. SOLUTIONS OF:

| (Abegg and Spencer.)                 |                     |                |                                                          | Potassium Oxalate.<br>(A. and S.)                          |                                                           |           |                                                          |
|--------------------------------------|---------------------|----------------|----------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|-----------|----------------------------------------------------------|
| Mol. Concentration. Grams per Liter. |                     |                | Mol. Concentration. Grams per Liter                      |                                                            |                                                           | er Liter. |                                                          |
| TINO3.<br>0.0                        | T12C2O4.<br>0.03768 | TINO3.<br>0.00 | TI <sub>2</sub> C <sub>2</sub> O <sub>4</sub> .<br>18.60 | K <sub>2</sub> C <sub>2</sub> O <sub>4</sub> .<br>0 · 0408 | Tl <sub>2</sub> C <sub>2</sub> O <sub>4</sub> .<br>0.035I | K2C2O4.   | Tl <sub>2</sub> C <sub>2</sub> O <sub>4</sub> .<br>17.42 |
| 0.04114                              | 0.03700             | 10.95          | 13.10                                                    |                                                            | 0.03565                                                   | 16.57     | 17.60                                                    |
| 0.0799                               | 0.0195              | 21.20          | 9.68                                                     | 0.2467                                                     | 0.0390                                                    | 41.02     | 19.36                                                    |
| 0 · 1 <b>597</b>                     | 0.01235             | 42.51          | 6.128                                                    |                                                            | 0.04506<br>0.0553 <b>6</b>                                | •         | 22.37<br>27.48                                           |

## THALLOUS PHOSPHATE (ortho) T1,PO,.

One liter of sat. aqueous solution contains 4.97 gms. Tl<sub>2</sub>PO<sub>4</sub> at 15° and 6.71 gms. at 100°. (Crookes.)

## THALLIUM PIORATE TIOC, H, (NO2),

## SOLUBILITY IN WATER. (Rabe – Z. physic. Chem. 38, 179, '01.)

| <b>t°</b> . | Gms.<br>TIOC <sub>6</sub> H <sub>2</sub> (NO <sub>2</sub> ) <sub>3</sub><br>per 100<br>Gms. H <sub>2</sub> O. | Solid<br>Phase. | t°. | Gms.<br>TIOC <sub>6</sub> H <sub>2</sub> (NO;<br>per 100<br>Gms. HO <sub>2</sub> . | )s Solid<br>Phase. |
|-------------|---------------------------------------------------------------------------------------------------------------|-----------------|-----|------------------------------------------------------------------------------------|--------------------|
| ο           | 0.135                                                                                                         | Monoclinic Red  | 45  | I .04                                                                              | Triclinic Yellow   |
| 18          | 0.36                                                                                                          | **              | 47  | I · IO                                                                             | **                 |
| 30          | 0.575                                                                                                         | 64              | 50  | I . 205                                                                            | **                 |
| 40          | 0.825                                                                                                         | 14              | 60  | I.73                                                                               | ••                 |
| 45          | IOI                                                                                                           | 46              | 70  | 2.43                                                                               | **                 |
| 47          | I · I4                                                                                                        | "               |     |                                                                                    |                    |

Too gms. H<sub>2</sub>O dissolve 0.132 gm.  $C_0H_3(NO_3)_3OT1 + 0.36$  gram  $C_0H_4(NO_3)_3OK$  at 0°. Too gms. H<sub>2</sub>O dissolve 0.352 gm.  $C_0H_2(NO_3)_3OT1 + 0.44$  gram  $C_0H_4(NO_3)_3OK$  at 15°. Too gms. H<sub>2</sub>O dissolve 0.38 gm.  $C_0H_3(NO_3)_3OT1 + 0.23$  gram  $C_0H_4(NO_3)_3OK$  at 20°. (Rabe)

(Rabe.)

## SOLUBILITY OF THALLIUM PICRATE IN METHYL ALCOHOL.

(Rabe.)

| t°. | Gms.<br>TIOC <sub>6</sub> H <sub>3</sub> (NO <sub>3</sub> )<br>per 100<br>Gms. CH <sub>2</sub> OH | Phase.                 | ť°. | Gms.<br>TIOC_Hs(NOs)s<br>per 100<br>Gms. CHsOH. | Solid<br>Phase.          |
|-----|---------------------------------------------------------------------------------------------------|------------------------|-----|-------------------------------------------------|--------------------------|
| 0   | 0.39                                                                                              | Red Form (monoclinic). | 45  | 1.195                                           | Yellow Form (triclinic). |
| 18  | 0.59                                                                                              | "                      | 48  | 1.265                                           | "                        |
| 25  | 0.70                                                                                              | "                      | 50  | 1.325                                           | "                        |
| 30  | 0. 795                                                                                            | 4                      | 53  | 1.41                                            | "                        |
| 35  | 0.90                                                                                              | **                     | 57  | I.54                                            | *                        |
| 40  | I. 02                                                                                             | *                      | 60  | 1.65                                            |                          |
| 45  | 1.17                                                                                              | •                      | 65  | 1.84                                            | 14                       |
| 47  | 1.265                                                                                             | **                     | -   |                                                 |                          |

## THALLIUM SULPHATE338THALLIUM SULPHATE TLSO,.

## SOLUBILITY IN WATER.

(Berkeley - Trans. Roy. Soc. (Lond.) 203 A 211, '04; see also Crookes; Lamy.)

| <b>t*</b> . | Gms. Tl <sub>S</sub> SO <sub>4</sub> per 100<br>Gms. |        | <b>t°</b> . | Gms. Tl <sub>2</sub> SO <sub>4</sub> per 100<br>Gms. |        |  |
|-------------|------------------------------------------------------|--------|-------------|------------------------------------------------------|--------|--|
|             | Solution.                                            | Water. |             | Solution.                                            | Water. |  |
| 0           | 2.63                                                 | 2.70   | бо          | 9.89                                                 | 10.92  |  |
| 10          | 3 · 57                                               | 3.70   | 70          | 11.31                                                | 12.74  |  |
| 20          | 4.64                                                 | 4.87   | 80          | 12.77                                                | 14.61  |  |
| 30          | 5.80                                                 | 6.16   | 90          | 14.19                                                | 16.53  |  |
| 50          | 8.44                                                 | 9.21   | 99.7        | 15.57                                                | 18.45  |  |

100 gms.  $H_2O$  dissolve 4.74 gms.  $Tl_3O_4 + 10.3$  gms.  $K_2O_4$  at  $15^{\circ}$ . 100 gms.  $H_2O$  dissolve 11.5 gms.  $Tl_3O_4 + 16.4$  gms.  $K_3O_4$  at  $62^{\circ}$ . 100 gms.  $H_2O$  dissolve 18.52 gms.  $Tl_3O_4 + 26.2$  gms.  $K_3O_4$  at 100°. (Rabe - Z. anorg. Ch. 31, 156, '02)

### THALLIUM SULPHIDE TI,S.

One liter of sat. aqueous solution contains 0.215 gm. Tl<sub>2</sub>S at 20°. (Böttger - Z. physic. Chem. 46, 602, '03)

## THALLIUM DOUBLE SULPHATES

SOLUBILITY IN WATER AT 25°. (Locke – Am. Ch. J. 27, 450, '01.)

| Double Sulphate.   | (Locae - Jam. Cir. J. 27, 459, 01.) | Salt per 100 cc. H <sub>2</sub> O. |                |  |
|--------------------|-------------------------------------|------------------------------------|----------------|--|
| -                  | Formula.                            | Gms. Anhydrous.                    | Gram Mols.     |  |
| Tl Copper Sulphate | $Tl_2Cu(SO_4)_2.6H_2O$              | 8.1                                | 0.0122         |  |
| Tl Nickel Sulphate | $Tl_2Ni(SO_4)_2.6H_2O$              | 4.61                               | 0.007          |  |
| Tl Zinc Sulphate   | $Tl_2Zn(SO_4)_2.6H_2O$              | 8.6                                | 0.0I2 <b>9</b> |  |

### THALLIUM SULPHOCYANIDE TISCN.

SOLUBILITY IN WATER AND IN AQUEOUS SALT SOLUTIONS.

(Böttger; Noyes; Noyes and Abbott.)

One liter sat. aq. solution contains 3.154 gms. TISCN at 20°, 3.905 gms. at 25°, and 7.269 gms. at 39.75°.

| Aq. Salt Solution.                 | t°.   | Gm. Mols. per Liter. |         | Grams p | er Liter.        |
|------------------------------------|-------|----------------------|---------|---------|------------------|
| riq. bale bolación.                | • ·   | Salt.                | TISCN.  | Salt.   | TISCN.           |
| Thallium Chloride TICl             | 25    | sat.                 | 0.0107  | sat.    | 2.805 (N.)       |
| Thallium Bromate TlBrOa            | 39.75 | <b>0</b> .01496      |         | 4.966   | 5.793 (N.and A.) |
| Thallium Nitrate TINO <sub>3</sub> | 25    | 0.0227               | 0.00852 | 6.04    | 2.233 (N.)       |
| **                                 | 25    | 0.0822               | 0.00406 | 21.88   | 1.064            |
| Potassium Sulphocyanide, KSCN      | 25    | 0.0227               | 0.0083  | 2 . 208 | 2.176 (N.)       |

## THALLIUM CARBONATE T1<sub>2</sub>CO<sub>3</sub>.

SOLUBILITY IN WATER. (Crookes: Lamy.)

| (crook(s, Lamy))                    |          |      |       |            |        |  |  |  |  |
|-------------------------------------|----------|------|-------|------------|--------|--|--|--|--|
| t°                                  | 15.5°    | 18°  | 62°   | 1000       | 100.8° |  |  |  |  |
| Gms. $Tl_2CO_3$ per 100 gms. $H_2O$ | 4.2 (Č.) | 5.23 | 12.85 | 27 . 2 (C. | ) 22.4 |  |  |  |  |

### THALLIUM (Per) CHLORATE TICIO.

100 grams H<sub>2</sub>O dissolve 10 gms. TlClO<sub>4</sub> at 15°, and 166.6 gms. at 100°. (Roscoe – J. Chem. Soc. 19, 504, '66.)

## THALLIUM SULPHITE TI,SO.

100 gms. H<sub>2</sub>O dissolve 3.34 gms. Tl<sub>2</sub>SO<sub>2</sub> at 15.5°. (Seubert and Elken - Z. anorg. Chem. 2 434, '92.)

339

#### THALLIUM VANADATES.

SOLUBILITY IN WATER.

(Carnelly - J. Chem. Soc. [2] 11, 323, '73; Liebig's Ann. 116, 155, '60.)

| Vanadate.         | Formula.                                                            | Gms. Vanadate per 100 Gms. HgO. |          |  |
|-------------------|---------------------------------------------------------------------|---------------------------------|----------|--|
| vanadate.         | romus.                                                              | At 15°.                         | At 100°. |  |
| Tl. meta Vanadate | TIVO <sub>3</sub>                                                   | 0.087 (11 <sup>0</sup> )        | 0.21     |  |
| " ortho Vanadate  | TLVO,                                                               | I.O                             | I.74     |  |
| " pyro Vanadate   | Tl <sub>4</sub> V <sub>2</sub> O <sub>7</sub>                       | 0.20 (14 <sup>0</sup> )         | 0.26     |  |
| " Vanadate        | $\mathrm{Tl}_{12}^{\dagger}\mathrm{V}_{8}\mathrm{O}_{26}^{\dagger}$ | 0.107                           | 0.29     |  |

## **THEOBROMINE** C<sub>4</sub>H<sub>2</sub>(CH<sub>3</sub>)<sub>2</sub>N<sub>4</sub>O<sub>3</sub>.

100 gms. carbon tetra chloride dissolve 0.0212 gm. at b. pt. 100 gms. ether dissolve 0.032 gm. at b. pt.

(Göckel — Chem. Centralb. ü, 401, '97.) 80 cc. H<sub>2</sub>O containing 14.8 gms. tri sodium phosphate dissolve 3.5 gms. theobromine at 15°.

(Brisse-Moret - J. pharm. chim. [6] 7, 176, '98.)

### THORIUM SELENATE Th(SeO<sub>4</sub>)<sub>4</sub>.9H<sub>2</sub>O.

100 gms. H<sub>2</sub>O dissolve 0.498 gm. Th(SeO<sub>4</sub>)<sub>4</sub> at  $0^{\circ}$  and 1.972 gms. at 100°.

(Cleve - Bull. Soc. chim. [2] 43, 166, '85.)

## THORIUM SULPHATE Th(SO4).

SOLUBILITY IN WATER. (Roozeboom - 2. physic. Chem. 5, 201, '90; Demarcay - Compt. rend. 96, 1860, '83.)

| <b>t°</b> . | Gms. Th(SC |         | Solid<br>Phase. | <b>t°</b> . | Gms. Th(S<br>100 Gms. |              | Solid<br>Phase.                                      |
|-------------|------------|---------|-----------------|-------------|-----------------------|--------------|------------------------------------------------------|
| ο           | o .74 (R)  | o.88(D) | Th(SO4)2-9H2O   | ο           | I.5                   | o(R)         | Th(SO4)2.6HeO                                        |
| IO          | o.98       | I .02   | 44              | 15          | I.Ó                   |              | 64                                                   |
| 20          | 1.38       | I.25    | **              | 30          | 2.4                   | 5            | 44                                                   |
| 30          | I.995      | 1.85    | **              | 45          | 3.8                   | 5            |                                                      |
| 40          | 2.998      | 2.83    | 64              | 60          | 6.6                   | 4            | *                                                    |
| 50          | 5 22(51°)  | 4.86    | ••              | 17          | 9.4                   |              | Th(SO <sub>4</sub> ) <sub>8-4</sub> H <sub>6</sub> O |
| 55          | 6.76       | 6.5±    | **              | 40          | 4.04(R                | )4.5 (35°D)  |                                                      |
| 0           | I.O        |         | Th(SO4)2.8H2    | 50          | 2 · 54                | 1 .94 (55°)  | -                                                    |
| 15          | 1 · 38     |         |                 | 60          | 1.63                  | •••          | *                                                    |
| 25          | 1.85       |         | 4               | 70          | I .09                 | 1 . 32 (75°) | -                                                    |
| 44          | 3.71       |         |                 | <b>9</b> 5  | •••                   | 0.71         | -                                                    |

#### 340

#### TIN OHLORIDE (Stannous) SnCl,.

100 gms. H<sub>2</sub>O dissolve 83.9 gms. SnCl, at 0° and 269.8 gms. at 15°, Sp. Gr. of Solutions 1.532 and 1.827 respectively.

(Engel - Ann. chim. phys. [6] 17, 347, '89; Michel and Krafft - Ibid. [3] 41, 478,' 51.)

#### SOLUBILITY OF STANNOUS CHLORIDE IN AQUEOUS SOLUTIONS OF HYDROCHLORID ACID AT 0°.

(Engel.)

|                                         |                      | (mager.)      |                   |                                |  |  |
|-----------------------------------------|----------------------|---------------|-------------------|--------------------------------|--|--|
| Milligram Mols. per 10 cc.<br>Solution. |                      | Sp. Gr.<br>of | Grams pe<br>Solut | Grams per 100 cc.<br>Solution. |  |  |
| HCI.                                    | JSnCl <sub>2</sub> . | Solution.     | HCl.              | SnCl <sub>9</sub> .            |  |  |
| 0                                       | 74.0                 | I . 532       | 0.0               | 70.26                          |  |  |
| 6.6                                     | 66.7                 | I.489         | 2 . 405           | 63.33                          |  |  |
| 13.54                                   | 63.75                | I . 472       | 4.935             | 60.52                          |  |  |
| 24.8                                    | 68.4                 | I.524         | 9.04              | 64.95                          |  |  |
| 34.9                                    | 81.2                 | 1.625         | 12.72             | 77.11                          |  |  |
| 40.0                                    | 94.2                 | I.724         | 14.58             | 89.45                          |  |  |
| 44.0                                    | 117.6                | I.883         | 16.04             | 111.7                          |  |  |
| <b>4</b> 9 · 4                          | 147.6                | 2.114         | 18.01             | 138.6                          |  |  |
| 66.0                                    | 156.4                | 2.190         | 24.05             | 148.5                          |  |  |
| 78.o                                    | 157.0                | 2.199         | 28.43             | 149.0                          |  |  |
|                                         |                      |               |                   |                                |  |  |

100 gms. acetone dissolve 55.6 gms. SnCl<sub>2</sub> at 18°.

(Naumann - Ber. 37, 4332, '04.)

100 gms. ether dissolve 11.4 gms. SnCl<sub>2</sub>.2H<sub>2</sub>O at o°-35.5°. 100 gms. ethyl acetate dissolve 31.2 gms.  $SnCl_2.2H_3O$  at  $-2^\circ$ , 35.53 gms. at  $+22^\circ$  and 73.44 gms. at  $82^\circ$ . (von Laszcynski – Ber. 27, 2285, '94.)

### TIN HYDROXIDE Sn(OH)2.

## SOLUBILITY IN AQUEOUS SODIUM HYDROXIDE SOLUTIONS. MOIST TIN HYDROXIDE USED, ORDINARY TEMPERATURE.

(Rubenbauer — Z. anorg. Chem. 30, 335, '02.)

| Gms. per 20 cc.<br>Solution. |        | Mol.<br>Dilution of the | Gms. pe<br>Solut | Mol.<br>Dilution of the |       |
|------------------------------|--------|-------------------------|------------------|-------------------------|-------|
| Na.                          | Sn.    | NaOH.                   | Na.              | Sn.                     | NaOH. |
| 0.2480                       | 0.1904 | 1.86                    | 0.8326           | 0.5560                  | 0.55  |
| 0.3680                       | 0.2614 | 1.25                    | 0.9661           | 0.7849                  | 0.48  |
| 0.6394                       | 0.4304 | 0.72                    | 2 . 1 2 3 4      | 1.8934                  | 0.23  |

#### TIN IODIDE (Stannous) SnI,.

Solubility in Water and in Aqueous Hydriodic Acid. (Young - J. Am. Chem. Soc. 19, 851, '97.)

| t°. | Gms. SnI2 per 100 Gms. Aqueous HI Solutions of: |        |        |        |         |        |        |         |  |
|-----|-------------------------------------------------|--------|--------|--------|---------|--------|--------|---------|--|
|     | $0\% = H_2O.$                                   | 5.83%. | 9.60%. | 15.2%. | 20.44%. | 24.8%. | 30.4%. | 36.82%. |  |
| 20  | o.98                                            | O · 20 | 0.23   | 0.60   | 1.81    | 4 · 20 | 10.86  | 25.31   |  |
| 30  | 1.16                                            | 0.23   | 0.23   | o.64   | 1.81    | 4.06   | 10.28  | 23.46   |  |
| 40  | I . 40                                          | 0.33   | o . 28 | 0.71   | 1.90    | 4.12   | 10.06  | 23.15   |  |
| 50  | 1.69                                            | o.46   | o.38   | 0.82   | 2.I2    | 4.34   | 10.35  | 23.76   |  |
| 60  | 2.07                                            | o.66   | 0.55   | 1.11   | 2.51    | 4.78   | 11.03  | 24.64   |  |
| 70  | 2 . 48                                          | 0.91   | o . 80 | I.37   | 2.92    | 5 43   | 11.97  | 25.72   |  |
| 80  | 2.95                                            | 1.23   | 1.13   | 1.83   | 3.70    | 6.38   | 13.30  | 27.23   |  |
| 90  | 3.46                                            | 1.65   | 1.52   | 2.40   | 4.58    | 7.82   | 15.52  | 29.84   |  |
| Iœ  | 4.03                                            | 2.23   | 2.04   | 3.63   | 5.82    | 9.60   |        | 34.05   |  |

TIN IODIDE (Stannic) SnI4.

#### SOLUBILITY IN CARBON BISULPHIDE.

(Sneider - Pogg. Ann. 127, 624, '66; Arctowski - Z. anorg. Chem. 11, 374, '95.)

t°. -114°.5 -94° -89° -84° -58° ard. temp.

Gms. SnI<sub>4</sub> per 100 gms. Solution 9.41 10.65 9.68 10.22 16.27 59.2(S.)

100 gms. methylene iodide, CH<sub>2</sub>I<sub>2</sub>, dissolve 22.9 gms. SnI<sub>4</sub> at 10°. Sp. Gr. of Solution 3.481.

(Retgers - Z. anorg. Chem. 3, 343, '93.)

### TIN SULPHATE (Stannous) SnSO4.

100 gms. H<sub>2</sub>O dissolve 18.8 gms. SnSO<sub>4</sub> at 19° and 18.1 gms. at 100°. (Marignac.)

## TOLUENE C.H.CH.

Solubility in Sulphur.

Figures read from curve, synthetic method used, see Note, page 9. (Alexejew – Ann. Physik. Ch. 28, 305, '86.)

| <b>t °</b> . | Gms. C4H4CH4 per 100 Gms. |                   |             | Gms. CeHaCH2 per 100 Gms |                   |  |
|--------------|---------------------------|-------------------|-------------|--------------------------|-------------------|--|
|              | S<br>Layer.               | Toluene<br>Layer. | <b>t</b> °. | S<br>Layer.              | Toluene<br>Layer. |  |
| 100          | 3                         | 73                | 150         | 12.5                     | 59                |  |
| 110          | 4                         | 71                | 160         | 16                       | 53                |  |
| 120          | 5                         | 68                | 170         | 22                       | 47                |  |
| 130          | 7                         | 66                | 175         | 25                       | 43                |  |
| 140          | 9.5                       | 63                | 178 CI      | rit. temp.               | 34                |  |

### TOLUIC ACIDS (Monomethyl Benzoic Acids) CH<sub>2</sub>, C<sub>6</sub>H<sub>4</sub>, COOH.

SOLUBILITY IN WATER AT 25°. (Paul – Z. physik. Chem. 14, 111, '94.)

|                   | CH <sub>8</sub> .C <sub>6</sub> H <sub>4</sub> .COOH per Liter Solution. |            |  |  |  |
|-------------------|--------------------------------------------------------------------------|------------|--|--|--|
| Acid.             | Grams.                                                                   | Millimols. |  |  |  |
| Meta Toluic Acid  | 0.9801                                                                   | 7.207      |  |  |  |
| Ortho Toluic Acid | 1.1816                                                                   | 8.683      |  |  |  |
| Para Toluic Acid  | 0.3454                                                                   | 2.540      |  |  |  |

## TOLUIDINE C.H.CH.NH.

#### SOLUBILITY IN WATER.

(Vaubel - ]. pr. Chem. [2] 52, 72, '95; Lowenherz - Z. physik. Chem. 25, 410, '98.)

| <b>t *</b> . | Gms.<br>C4H4CH2.NH2<br>per 1000<br>Gms. H2O. | Solid<br>Phase. | <b>t *</b> . | Gms.<br>CeH4CH3NH2<br>per 1000<br>Gms. H2O. | Solid<br>Phase. |
|--------------|----------------------------------------------|-----------------|--------------|---------------------------------------------|-----------------|
| 20           | 16.26                                        | Liquid ortho T. | 20.8         | 7.39                                        | Para T.         |
| 20           | 0.15                                         | Ortho T.        | 26.7         | 9.50                                        | 44              |
| 20           | 6.54                                         | Para T.         | 31.7         | 11.42                                       | ••              |

.

342

## SOLUBILITY OF PARA TOLUIDINE IN ETHYL ALCOHOL.

(Interpolated from original results of Speyers - Am. J. Sci. [4] 14, 295, '02.)

| <b>t*</b> . | Wt.<br>of 1 cc.<br>Solution. | Mols. per<br>100 Mols.<br>C2H5OH. | Gms. per<br>100 Gms.<br>C <sub>s</sub> H <sub>5</sub> OH. | <b>t</b> •. | Wt.<br>of 1 cc.<br>Solution. | Mols. per<br>100 Mols.<br>C <sub>2</sub> H <sub>5</sub> OH. | Gms. per<br>100 Gms.<br>C <sub>2</sub> H <sub>5</sub> OH. |
|-------------|------------------------------|-----------------------------------|-----------------------------------------------------------|-------------|------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|
| 0           | o.8885                       | 20.72                             | 48 . I                                                    | 20          | 0.9265                       | 47.0                                                        | 110.0                                                     |
| 5           | 0.8982                       | 26.0                              | 60.0                                                      | 25          | 0.9360                       | 56.0                                                        | 132.0                                                     |
| IO          | 0.9080                       | 32.0                              | 74.0                                                      | 30          | 0.9460                       | 66.0                                                        | 156.0                                                     |
| 15          | 0.9180                       | 38.6                              | 90.0                                                      | -           | -                            |                                                             | -                                                         |

- Distribution of para Toluidine between water and carbon tetra chloride. (Vaubel – J. pr. Chem. [2] 67, 478, '03.)

| Gms. # Toluidin<br>Used. | Volumes of Solvents.                                                  | Gms. CeH4(CH2)NH2 p in: |             |  |  |
|--------------------------|-----------------------------------------------------------------------|-------------------------|-------------|--|--|
|                          | volumes of Solvents.                                                  | H <sub>2</sub> O Layer. | CCl, Layer. |  |  |
| Ι.Ο                      | $200 \text{ cc. } \text{H}_2\text{O} + 100 \text{ cc. } \text{CCl}_4$ | 0.1406                  | 0.8594      |  |  |
| Ι.Ο                      | $200 \text{ cc. } H_2O + 200 \text{ cc. } CCl_4$                      | 0.0666                  | 0.9334      |  |  |

## URANYL CHLORIDE UO,Cl,.3H,O.

100 gms. H<sub>2</sub>O dissolve 320 gms. UO<sub>2</sub>Cl<sub>2</sub> at 18°. (Mylius and Dietz – Ber. 34, 2774, '01.)

.

#### URANYL DOUBLE CHLORIDES.

SOLUBILITY OF URANYL AMMONIUM CHLORIDE, U. TETRA METHYL Ammonium Chloride, U. Tetra Ethyl Ammonium Chloride, U. CAESIUM CHLORIDE, U. RUBIDIUM CHLORIDE, AND U. POTAS-SIUM CHLORIDE IN WATER.

| (Rimbach | - Ber. | 37. | 463, | '04.) |
|----------|--------|-----|------|-------|
|----------|--------|-----|------|-------|

| Formula of<br>Double Salt.                                                                                                                  | t°.                                                                               | Gms. per                                 | 100 Gms. St                              | at. Solution.                                           | Atomic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Relation in S              | ol. Solid<br>Phase.                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------|
| UO3Cl3.2NH4Cl.2H3O<br>UO3Cl3.2N(CH3)4Cl<br>UO3Cl3.2N(CH3)4Cl<br>UO3Cl3.2N(C2H3)4Cl<br>UO3Cl3.2CsCl<br>UO3Cl3.2RbCl.2H3O<br>UO3Cl3.2KCl.2H3O | 1 5<br>29.8<br>27.1<br>80.7<br>24.8<br>0.8<br>14-9<br>17.5<br>250<br>71.5<br>78.5 | 10.85 "<br>20.23 "<br>15.02 "<br>15.12 " | $+ 7.81 Cl_2$<br>+ 7.78Cl_2<br>+ 22.5 Cs | = 41.24 * = 4.91 * = 37.15 + = 37.23 + = 56.04 + 13.8Cl | 1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2:<br>1UO2: | 3-98Cl<br>3-97Cl<br>3-94Cl | "<br>The double sait<br>is decomposed<br>by water at<br>temperatures<br>below 60°. |
| * UO <sub>2</sub> Cl <sub>2</sub> .<br>§ = :                                                                                                |                                                                                   |                                          | † UO2<br>2.2RbCl2,                       | Cl2.N(C2H4                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t UO2Cl2.2<br>UO2Cl2.2RbC  |                                                                                    |

#### URANYL SODIUM CHROMATE

## URANYL SODIUM CHROMATE 2(UO2)CrO4.Na2CrO4.10H2O.

100 gms. sat. aqueous solution contains 52.52 gms.  $(2UO_2)$ . CrO<sub>4</sub>. Na<sub>2</sub>CrO<sub>4</sub> at 20°. (Rimbach.)

343

#### URANYL POTASSIUM BUTYRATE UO2(C4H7O2)2.KC4H7O2.

The double salt is decomposed by water at ordinary temperatures and the solution gets richer in 'uranyl butyrate. The solubility at  $29.4^{\circ}$  in water containing KC<sub>4</sub>H<sub>7</sub>O<sub>2</sub> is 2.10 gms. UO<sub>2</sub>(C<sub>4</sub>H<sub>7</sub>O<sub>2</sub>) + 0.38 gms. KC<sub>4</sub>H<sub>7</sub>O<sub>2</sub> per 100 gms. solution. The atomic relation being 1: 0.64. (Rimbach.)

#### URANYL NITRATE UO2(NO3)2.6H2O.

SOLUBILITY IN WATER, ETC. (Bucholz; de Coninck - Compt. rend. 130, 1304, '00.)

100 gms. cold water dissolve 200 gms.  $UO_2(NO_3)_2.6H_2O$ . 100 gms. abs. alcohol dissolve 333 gms.  $UO_2(NO_3)_2.6H_2O$ . 100 gms. 85% alcohol dissolve 3.3 gms.  $UO_2(NO_3)_2.6H_2O$  at 12° (de C.) 100 gms. ether dissolve 25 gms.  $UO_2(NO_3)_2.6H_2O$ . 100 gms. abs. acetone dissolve 1.5 gms.  $UO_2(NO_3)_2.6H_2O$  at 12° (de C.) 100 gms. abs. acetone dissolve 1.5 gms.  $UO_2(NO_3)_2.6H_2O$  at 12° (de C.)

100 gms. abs. acetone dissolve 1.5 gms.  $UO_2(NO_3)_2.6H_2O$  at 12° (de C.) For densities of Uranium nitrate solutions in water and other solvents see de Coninck — Compt. rend. **131**, 1219, '00.)

#### URANYL DOUBLE NITRATES.

SOLUBILITY OF URANYL AMMONIUM NITRATE, U. CAESIUM NITRATE, U. POTASSIUM NITRATE, AND U. RUBIDIUM NITRATE IN WATER.

(Rimbach.)

| Formula of t°.        | Gms. per 100 Gms. Sat. Solution<br>UO2. Total Salt. | . Atomic Relation<br>in Solution. |
|-----------------------|-----------------------------------------------------|-----------------------------------|
| UO2(NO3)2.NH4NO3 0.5  | 29.71 + 2.92NH =                                    | 1UO2: 1.47NH4: 3.47NO3            |
| " 24.0                | $36.46 \pm 3.54$ " = 68.05                          | " :1.46 " :3.46 "                 |
| " 59.0                | 44.37 + 2.90 " =                                    | " :0.98 " :2.98 "                 |
| " 80.7                | 44.95 + 2.98 " = 78.95                              | " :1.00 " :3.00 "                 |
| UO2(NO3)2.CsNO, 16.0  | $31.39 \pm 6.59 \text{ Cs} = 55.4$                  | " :0.44 Cs                        |
| UO2(NO2)2.KNO2 0.5    | 31.98 + 1.72 K =                                    | " :2.37NOs:0.37 K                 |
| " 13.0                | 33.40 + 2.72 " =                                    | " : 2.57 " :0.57 "                |
| " 25.0                | 37.07 + 4.01 "*= 64.82                              | " :1.60 " :0.76 "                 |
| " 45.0                | 42.18 + 5.16 " =                                    | " :2.84 " :0.84 "                 |
| " 59.0                | 41.65 + 6.03 " =                                    | " :3.00 " :1.00 "                 |
| " 80.6                | 43.71 + 6.38 " =                                    | " :3.01 " :1.01 "                 |
| UOg.(NOg)2.RbNOg 25.0 | 35.41 + 4.65Rb = 59.60                              | " : 1.40 " :0.45Rb                |
|                       | 34.66 +11.01 " = 69.49                              | " :3.00 " :1.01 "                 |
| • + 23.               | sNO <sub>2</sub> . † -                              | + 19.74NO3                        |

**URANYL AMMONIUM PROPIONATE** 2UO<sub>2</sub>(C<sub>3</sub>H<sub>8</sub>O<sub>2</sub>)<sub>2</sub>.NH<sub>4</sub>C<sub>3</sub>H<sub>8</sub>O<sub>2</sub>. 2H<sub>2</sub>O and Uranyl Potassium Propionate 2UO<sub>2</sub>(C<sub>3</sub>H<sub>8</sub>O<sub>2</sub>)<sub>2</sub>.KC<sub>3</sub>H<sub>8</sub>O<sub>3</sub>.

(Rimbach.)

100 gms. aq. solution contain 16.48 gms.  $2UO_2(C_3H_8O_2)_2$ .NH $_4C_3H_8O_2$  at 29.8°.

100 gms. aq. solution contain 2.362 gms.  $UO_2(C_3H_3O_2)_2 + 0.82$  gm.  $KC_2H_3O_2$  at 29.4°, atomic relation, 1:1.29.

#### URANYL SULPHATE 344

## URANYL SULPHATE (UO),SO4.3H,O.

SOLUBILITY IN WATER, ETC. (Buchols; de Coninck — Bull. Acad. Roy. Belgique, 350, '01.)

100 gms. H<sub>2</sub>O dissolve 16.6 gms. UO<sub>3</sub>(SO<sub>4</sub>).3H<sub>2</sub>O at 13.2°, 17.4 gms. at 15.5°, and 22.2 gms. at b. pt.

100 gms. abs. alcohol dissolve 4.0 gms. UO<sub>2</sub>(SO<sub>4</sub>).3H<sub>2</sub>O at 18.2° and 5.0 gms. at b. pt.

100 gms. 85% alcohol dissolve 2.6 gms.  $UO_1(SO_4).3H_2O$  at 16°. 100 gms. 16.2% alcohol dissolve 12.3 gms.  $UO_1(SO_4).3H_2O$  at 10°.

#### URANYL POTASSIUM SULPHATE UO.SO, K.SO, 2H.O

100 gms. sat. aq. solution contain 10.41 gms. UO<sub>2</sub>SO<sub>4</sub>.K<sub>2</sub>SO<sub>4</sub> at 25° and 23.13 gms. at 70.5°. (Rimbach.)

| SOLUBILITY OF | UO,SO, | 2K <b>,</b> SO₄.2H | <b>,0+U0,S</b> 0 | .K,SO | .2H,O IN | WATER. |
|---------------|--------|--------------------|------------------|-------|----------|--------|
|---------------|--------|--------------------|------------------|-------|----------|--------|

| ŧ°. | Gms. pe           | Gms. per 100 Gms. Solution. |       |                   | Relatio | n in Sol. | Mol. % in Solid Phase. |          |
|-----|-------------------|-----------------------------|-------|-------------------|---------|-----------|------------------------|----------|
|     | UO <sub>3</sub> . | К.                          | SO₄.  | UO <sub>2</sub> . | К.      | SO4.      | Mono Salt.             | Di Salt. |
| 14  | 0.85              | 4 . 19                      | 5·71  | 1:3               | 5.75    | 18.88     | 29                     | 71       |
|     | 6.70              | 8.15                        | 12.37 | I :               | 5.20 :  | 8.40      | 76                     | 24       |
| 80  | 14.29             | 8.54                        | 15.53 | I:                | 4.13 :  | 3.06      | 12                     | 88       |

## UREA CO(NH<sub>2</sub>)<sub>2</sub>.

SOLUBILITY IN WATER AND IN ALCOHOLS.

(Campetti - Abstract, Z. physic. Chem. 41, 109, '02; Speyers - Am. J. Sci. [4] 14, 259, '02.)

NOTE. — Speyer's original results are in terms of Mols. CO(NH<sub>2</sub>)<sub>2</sub> per 100 Mols. H<sub>2</sub>O at irregular temperatures.

|              | In                        | Water.            | I                           | n Methyl                 | Alcohol.                                                                         | In Ethyl | Alcohol.                                                                                       |
|--------------|---------------------------|-------------------|-----------------------------|--------------------------|----------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------|
| <b>t °</b> . | Wt. of 1 cc.<br>Solution. | Gms. CO<br>100 Gi | $(NH_2)_2$ per ns. $H_2O$ . | Wt. of rcc.<br>Solution. | Gms.<br>CO(NH <sub>2</sub> ) <sub>2</sub><br>per 100 Gms.<br>CH <sub>3</sub> OH. |          | Gms.<br>CO(NH <sub>2</sub> ) <sub>2</sub><br>per 100 Gms<br>.C <sub>2</sub> H <sub>5</sub> OH. |
| 0            | 1.121                     | 55.9              |                             | <b>o</b> .861            | 13.8                                                                             | 0.8213   |                                                                                                |
| 10           | 1.134                     | 66 . o            | 85.0 (C)                    | o.863                    | 16.0.                                                                            | 0.814    | 3.5                                                                                            |
| 20           | 1.146                     | 79.0              | 108.2 (C)                   | o.869                    | 20.0                                                                             | o.809    | 5.0                                                                                            |
| 30           | 1.156                     | 93.0              |                             | <b>o</b> .876            | 24.0                                                                             | o.806    | 6.5                                                                                            |
| <b>4</b> 0   | 1.165                     | 106.0             |                             | 0.890                    | 30.0                                                                             | o.804    | 8.5                                                                                            |
| 50           | 1.173                     | I 20 · O          | · · ·                       | <b>o</b> .908            | 37.0                                                                             | 0.803    | 10.5                                                                                           |
| 60           | 1 . 180                   | 132.0             |                             | 0.928                    | 47.0                                                                             |          | 13.0                                                                                           |
| 70           | 1 . 187                   | 145.0             |                             |                          | • • •                                                                            |          | 17.5                                                                                           |

100 gms. abs. methyl alcohol dissolve 21.8 gms.  $CO(NH_2)_2$  at 19.5°. 100 gms. abs. ethyl alcohol dissolve 5.06 gms. CO(NH<sub>2</sub>)<sub>2</sub> at 19.5°. (de Bruyn – Z. physic. Chem. 10, 784, '92.) 100 gms. glycerine dissolve 50 gms. urea at 15.5°.

Phenyl Thio UREA (Phenyl thio carbamide) CS.NH<sub>2</sub>.NHC<sub>6</sub>H<sub>5</sub>.

SOLUBILITY IN WATER.

(Rothmund – Z. physic. Ch. 33, 406, '00; Biltz – Ibid. 43, 42, '03; Holeman and Antusch – Rec. trav. chim. 13, 200, '94; Bogdan – Ann. Scien. L'Univ. Jassy 2, 43, '02.'03.)

One liter aq. solution contains 2.12 gms. CS(NH<sub>2</sub>).NHC<sub>6</sub>H<sub>8</sub> at 20° (B.), (R.) and 2.4 gms. at 25°. (H. and A.). Bogdan gives 2.547 gms at 25°.

345 Phenyl Thio UREA

## SOLUBILITY OF PHENYL THIO UREA IN AQUEOUS SALT SOLUTIONS AT 20°.

## (Biltz; Rothmund.)

## Millimols and also Gms. CS(NH2)NHC6H5 Dissolved per Liter of Aqueous Salt Solution of Concentration:

|                                                  |                      |                | Dan Don                | LION OF      |                      |      |                      |              |
|--------------------------------------------------|----------------------|----------------|------------------------|--------------|----------------------|------|----------------------|--------------|
| Salt<br>Solution.                                | 0.125 N<br>Millimols | formal<br>Gms. | o.25 Not<br>Millimols. | rmal<br>Gms. | o.5 No<br>Millimols. | Gms. | I.O No<br>Millimols. | rmal<br>Gms. |
| AICI,                                            | 12.05                | 1.97           | 12.82                  | 1.96         |                      | 1.83 | 10.60                | 1.61         |
| NH,NO,                                           | 14.17                | 2.15           | 14.4                   | 2.21         | 14.53                | 2.22 | 14.91                | 2.27         |
| 1(NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> | 13.51                | 2.05           | 12.84                  | 1.96         | 11.78                | 1.79 | 9.98                 | 1.52         |
| BaCl                                             | 13.12                | 1.99           | 12.92                  | 1.97         | 12.22                | 1.86 | 10.44                | 1.59         |
| Ba(NO <sub>3</sub> ) <sub>2</sub>                | 13.98                | 2.13           | 13.98                  | 2.13         | 13.90                | 2.12 |                      |              |
| CsNO <sub>a</sub>                                | 14.53                | 2.21           | 14.90                  | 2.27         | 15.23                | 2.33 |                      |              |
| LiNO                                             | 13.96                | 2.13           | 13.96                  | 2.13         | 13.93                | 2.12 | 13.73                | 2.10         |
| MgSO4                                            | 13.40                | 2.04           | 12.78                  | 1.95         | 11.54                | 1.75 | 9.43                 | I.43         |
| KC2H3O2                                          | 13.40                | 2.04           | 12.95                  | 1.97         | 12.14                | 1.85 | 10.74                | 1.62         |
| KBr                                              | 13.50                | 2.05           | 13.35                  | 2.04         | 12.80                | 1.95 | 11.76                | 1.79         |
| KClO <sub>3</sub>                                | 13.86                | 2.11           | 13.60                  | 2.06         | 13.12                | 1.99 |                      |              |
| KCl                                              | 13.40                | 2.04           | 12.73                  | 1.94         | 12.10                | 1.85 | 10.54                | 1.60         |
| KI                                               | 14.12                | 2.15           | 14.48                  | 2.21         | 14.31                | 2.18 | 14.60                | 2.23         |
| KNO <sub>8</sub>                                 | 13.89                | 2.12           | 13.85                  | 2.11         | 13.52                | 2.05 | 12.82                | 1.96         |
| KNO,                                             | 14.52                | 2.21           | 14.65                  | 2.23         | 13.80                | 2.11 | 12.51                | 1.92         |
| KSO.                                             | 13.25                | 2.03           | 12.49                  | 1.91         | 11.11                | 1.60 | 8.73                 | 1.33         |
| RbNO <sub>a</sub>                                | 14.22                | 2.16           | 14.44                  | 2.10         | 14.39                | 2.18 | 14.22                | 2.17         |
| 1Na,CO3                                          | 13.29                | 2.04           | 12.52                  | 1.91         | 11.05                | 1.68 | 8.58                 | 1.32         |
| NaClO,                                           | 13.75                | 2.00           | 13.65                  | 2.08         | 13.07                | 1.98 | 12.21                | 1.86         |
| NaClO                                            | 14.15                | 2.15           | 14.05                  | 2.14         | 13.58                | 2.06 | 12.56                | 1.92         |
| NaCl                                             | 13.28                | 2.02           | 12.83                  | 1.95         | 11.00                | 1.81 | 10.02                | 1.52         |
| NaI                                              | 13.98                | 2.13           | 14.07                  | 2.14         | 14.20                | 2.18 | 13.96                | 2.13         |
| NaNO <sub>3</sub>                                | 13.94                | 2.12           | 13.77                  | 2.10         | 13.32                | 2.04 | 12.57                | 1.92         |
| NaNO <sub>2</sub>                                | 13.94                | 2.18           | 13.82                  | 2.11         | 13.06                | 1.98 | 11.52                | 1.75         |
| 1Na2SO                                           |                      | 2.00           | -                      | 1.87         | 10.85                | 1.63 | 8.30                 |              |
| 11102004                                         | 13.19                | 2.00           | 12.35                  | 1.01         | 10.05                | 1.03 | 0.30                 | 1.27         |

## Solubility of Phenyl Thio Urea at 25° in Aqueous Solutions of.

## Potassium Nitrate. (Bogdan.)

Sodium Nitrate. (Bogdan.)

|                                | (Doguan.)       |                                                            | (noguan.)                      |                                         |                                                            |  |  |
|--------------------------------|-----------------|------------------------------------------------------------|--------------------------------|-----------------------------------------|------------------------------------------------------------|--|--|
| Gms. Mols.<br>KNO2 per         | Gms.<br>1000 Gm | per<br>s. H <sub>2</sub> O.                                | Gms. Mols.<br>NaNOa per        | Gms. per<br>1000 Gms. H <sub>2</sub> O. |                                                            |  |  |
| 1000 Gms.<br>H <sub>2</sub> O. | KNO3.           | CS(NH <sub>2</sub> )<br>.NHC <sub>6</sub> H <sub>6</sub> . | 1000 Gms.<br>H <sub>2</sub> O. | NaNO3.                                  | CS(NH <sub>2</sub> )<br>.NHC <sub>6</sub> H <sub>5</sub> , |  |  |
| 1.045                          | 105.7           | 2.38                                                       | 1.024                          | 87.14                                   | 2.26                                                       |  |  |
| 0.5123                         | 51.84           | 2.48                                                       | 0.5065                         | 43.10                                   | 2.46                                                       |  |  |
| 0.2026                         | 20.50           | 2.54                                                       | 0.2031                         | 17.28                                   | 2.51                                                       |  |  |
| 0.1007                         | 10.19           | 2.56                                                       | 0.0086                         | 8.39                                    | 2.53                                                       |  |  |
| 0.0503                         | 5.09            | 2.55                                                       | 0.0540                         | 4.59                                    | 2.54                                                       |  |  |
| 0.0333                         | 3.36            | 2.55                                                       | 0.0335                         | 2.84                                    | 2.54                                                       |  |  |
|                                |                 |                                                            |                                |                                         |                                                            |  |  |

# SOLUBILITY OF PHENYL THIO UREA IN MIXTURES OF ETHYL Alcohol and Water at 25°. (Holleman and Antusch – Rec. trav. chim. 13, 290, '94.)

| Vol.<br>per cent<br>Alcohol. | Gms.<br>CS(NH <sub>9</sub> )<br>NHC <sub>6</sub> H <sub>5</sub><br>per 100 Gms.<br>Solvent. | Sp. Gr.<br>of<br>Solutions. | Vol.<br>per cent<br>Alcohol. | Gms.<br>CS(NH <sub>2</sub> )<br>NHC <sub>6</sub> H <sub>5</sub><br>per 100 Gms.<br>Solvent. | Sp. Gr.<br>of<br>Solutions. |
|------------------------------|---------------------------------------------------------------------------------------------|-----------------------------|------------------------------|---------------------------------------------------------------------------------------------|-----------------------------|
| 100                          | 3.59                                                                                        | •••                         | 65                           | 3.40                                                                                        | 0.9018                      |
| 95                           | 4.44                                                                                        | 0.8200                      | 60                           | 2.80                                                                                        | 0.9128                      |
| 90                           | 4.69                                                                                        | 0.8389                      | 50                           | 1.87                                                                                        | 0.9317                      |
| 85                           | 4.99                                                                                        | 0.8544                      | 40                           | 1.13                                                                                        | 0.9486                      |
| 80                           | 4.70                                                                                        | o.8679                      | 25                           | 0.56                                                                                        | 0.9679                      |
| 75                           | 4 · 45                                                                                      | 0.8810                      | 15                           | 0.38                                                                                        | o.9788                      |
| 70                           | 3.92                                                                                        | 0.8915                      | Ō                            | 0.24                                                                                        | o.9979                      |

## SOLUBILITY OF PHENYL THIO UREA IN AQUEOUS SOLUTIONS OF PROPYL AND OF ETHYL ALCOHOL AT 25°. (Bagdan.) In Propyl Alcohol

|                                                 |                                                      | (Deg                                                      |                                                                                    |                                          |                                                           |  |  |
|-------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------|--|--|
| In P                                            | ropyl Alcol                                          | hol.                                                      | In Ethyl Alcohol.                                                                  |                                          |                                                           |  |  |
| G. Mols.<br>CeH7OH per<br>1000 Gms.<br>H2O.     | Gms. per 100<br>C <sub>8</sub> H <sub>7</sub> OH.    | CS(NH <sub>2</sub> )<br>NHC <sub>6</sub> H <sub>5</sub> . | G. Mols.<br>C <sub>2</sub> H <sub>5</sub> OH per<br>1000 Gms.<br>H <sub>3</sub> O. | Gms. per 100<br>C2HgOH.                  | CS(NH <sub>2</sub> )<br>NHC <sub>6</sub> H <sub>8</sub> . |  |  |
| 1.035<br>0.5448<br>0.1059<br>0.05526<br>0.04854 | 62 · 10<br>32 · 688<br>6 · 354<br>3 · 316<br>2 · 912 | 3 · 587<br>3 · 124<br>2 · 643<br>2 · 599<br>2 · 586       | 1 · 1010<br>0 · 5355<br>0 · 1094<br>0 · 05018<br>0 · 03271                         | 49.60<br>24.12<br>4.932<br>2.26<br>1.473 | 3 · 193<br>2 · 931<br>2 · 629<br>2 · 589<br>2 · 577       |  |  |
| In Pro                                          | pyl Alcohol                                          | l at o°.                                                  |                                                                                    |                                          |                                                           |  |  |
| I .000<br>0 .100                                | 00.00<br>10.0                                        | 1 · 21<br>I ·047                                          |                                                                                    |                                          |                                                           |  |  |

## Solubility of Phenyl Thio Urea in Aqueous Solutions of Acetone, Mannite, Cane Sugar, Dextrose, and Urea. (Bagdan.) .

| Aqueous<br>Non Electro-                         | <b>t°</b> .             | Gms. per 1000 Gms.<br>HzO |                                                            | Aqueous<br>Non Electro-                       |     |                       | Gms. per 1000 Gms.<br>H <sub>1</sub> O.                   |  |
|-------------------------------------------------|-------------------------|---------------------------|------------------------------------------------------------|-----------------------------------------------|-----|-----------------------|-----------------------------------------------------------|--|
| lyte.                                           | <b>t</b> <sup>2</sup> . | Non Elec-<br>trolyte.     | CS(NH <sub>2</sub> )<br>NH.C <sub>6</sub> H <sub>5</sub> . | lyte.                                         | t°. | Non Elec-<br>trolyte. | CS(NH <sub>2</sub> )<br>NHC <sub>6</sub> H <sub>5</sub> . |  |
| (CH <sub>3</sub> ) <sub>2</sub> CO              | 25                      | 7 . 478                   | 2.667                                                      | C <sub>6</sub> H <sub>12</sub> O <sub>6</sub> | 25  | 180 40                | 3. <b>042</b>                                             |  |
|                                                 | "                       | 2.513                     | 2 579                                                      |                                               | ıï. | 90.46                 | 2.83                                                      |  |
| "                                               | "                       | 1.908                     | 2.573                                                      | "                                             | "   | 29.29                 | 2.69                                                      |  |
| C <sub>6</sub> H <sub>8</sub> (OH) <sub>6</sub> | "                       | 182.11                    | 3.04                                                       | "                                             | "'  | 18.01                 | 2.654                                                     |  |
| "                                               | "                       | 91.05                     | 2.78                                                       | "                                             | "   | 9.554                 | 2.603                                                     |  |
| C <sub>12</sub> H <sub>22</sub> O <sub>11</sub> | 25                      | 338.6                     | 3 457                                                      | $CO(NH_2)_2$                                  | "   | 63.08                 | 3.300                                                     |  |
|                                                 | ű                       | 170.4                     | 3 015                                                      |                                               | "   | 29.93                 | 2.892                                                     |  |
| "                                               | "                       | 34.36                     | 2.634                                                      | "                                             | "   | 6.132                 | 2.618                                                     |  |
| "                                               | "                       | 18.28                     | 2.596                                                      | "                                             | "   | 4.942                 | 2.605                                                     |  |
| "                                               | "                       | 10.00                     | 2.572                                                      | "                                             | "   | 2.000                 | 2.572                                                     |  |
| "                                               | 0                       | 342 . 18                  | 1.420                                                      | . "'                                          | ο   | 60.11                 | 1.310                                                     |  |
| "                                               | "                       | 34.22                     | 1.044                                                      | "                                             | "   | 6.01                  | 1.048                                                     |  |

## **URETHANE** CO(NH<sub>2</sub>)OC<sub>2</sub>H<sub>5</sub>. SOLUBILITY IN SEVERAL SOLVENTS. (Speyers — Am. J. Sci. [4] 14, 294, '02.) See also Ethyl Carbamate, p. 138.

Interpolated and calculated from the original results which are given in terms of molecules Urethane per 100 Mols. solvent.

|      | Solubility in Water.                                                                                    |                                                                                                                       |                                                                                                                     | Solubili                                                                                             | Solubility in Methyl Alcohol.                                                                           |                                                                                                                     |  |
|------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|
| t°.  | Wt. of<br>I cc.<br>Solu-<br>tion.                                                                       | Mols.<br>CO(NH <sub>2</sub> )<br>OC <sub>2</sub> H <sub>5</sub> per<br>100 Mols.<br>H <sub>2</sub> O.                 | Gms<br>CO(NH <sub>2</sub> )<br>OC <sub>2</sub> H <sub>6</sub> pe<br>100 Gms.<br>H <sub>2</sub> O.                   | r Solu-                                                                                              | Mols.<br>CO(NH <sub>2</sub> )<br>OC <sub>2</sub> H <sub>5</sub> per<br>100 Mols.<br>CH <sub>3</sub> OH. | Cms.<br>CO(NH <sub>2</sub> )<br>OC <sub>2</sub> H <sub>6</sub> per<br>100 Gms.<br>CH <sub>3</sub> OH.               |  |
| 0    | 1.023                                                                                                   | 3.61                                                                                                                  | 17.8                                                                                                                | . 0.956                                                                                              | 31.18                                                                                                   | 86.76                                                                                                               |  |
| IO   | I.033                                                                                                   | 6.0                                                                                                                   | 29.7                                                                                                                | 0.977                                                                                                | 41.0                                                                                                    | 114.1                                                                                                               |  |
| 15   | 1-042                                                                                                   | 15.0                                                                                                                  | 74.2                                                                                                                | 0.989                                                                                                | 47.5                                                                                                    | 132.1                                                                                                               |  |
| 20   | 1.060                                                                                                   | 31.0                                                                                                                  | 153.3                                                                                                               | I.000                                                                                                | 54.5                                                                                                    | 151.7                                                                                                               |  |
| 25   | 1.073                                                                                                   | 50.0                                                                                                                  | 247.3                                                                                                               | I.013                                                                                                | 62.5                                                                                                    | 173.9                                                                                                               |  |
| 30   | 1.078                                                                                                   | 65.0                                                                                                                  | 321.4                                                                                                               | 1.024                                                                                                | 72.0                                                                                                    | 200.3                                                                                                               |  |
| 40   | 1.065                                                                                                   | 77.0                                                                                                                  | 380.7                                                                                                               | 1.045                                                                                                | 89.0                                                                                                    | 247.7                                                                                                               |  |
|      | Solubility in Ethyl Alcohol.                                                                            |                                                                                                                       |                                                                                                                     | Solubilit                                                                                            | Solubility in Propyl Alcohol.                                                                           |                                                                                                                     |  |
| t°.  | Wt. of<br>I cc.<br>Solu-<br>tion.                                                                       | Mols.<br>CO(NH <sub>2</sub> )<br>OC <sub>2</sub> H <sub>6</sub> per<br>roo Mols.<br>C <sub>2</sub> H <sub>5</sub> OH. | Gms.<br>CO(NH <sub>2</sub> )<br>OC <sub>2</sub> H <sub>5</sub> per<br>100 Gms.<br>C <sub>2</sub> H <sub>5</sub> OH. | Wt. of<br>r cc.<br>Solu-<br>tion.                                                                    | Mols.<br>CO(NH2)<br>OC2H5 per<br>100 Mols.<br>C3H7OH.                                                   | Gms.<br>CO(NH <sub>2</sub> )<br>OC <sub>2</sub> H <sub>5</sub> per<br>100 Gms.<br>C <sub>3</sub> H <sub>7</sub> OH. |  |
| 0    | 0.8914                                                                                                  | 23.91                                                                                                                 | 46.26                                                                                                               | 0.880                                                                                                | 19.48                                                                                                   | 28.9                                                                                                                |  |
| 10   | 0.930                                                                                                   | 36.0                                                                                                                  | 69.6                                                                                                                | 0.906                                                                                                | 31.0                                                                                                    | 46.0                                                                                                                |  |
| 15   | 0.950                                                                                                   | 43.0                                                                                                                  | 89.2                                                                                                                | 0.923                                                                                                | 40.0                                                                                                    | 59-3                                                                                                                |  |
| 20   | 0.968                                                                                                   | 50.0                                                                                                                  | 96.7                                                                                                                | 0.942                                                                                                | 51.0                                                                                                    | 75.7                                                                                                                |  |
| 25   | 0.985                                                                                                   | 59.0                                                                                                                  | 114.1                                                                                                               | 0.963                                                                                                | 60.0                                                                                                    | 89.0                                                                                                                |  |
| 30   | I.OOI                                                                                                   | 70.0                                                                                                                  | 135.4                                                                                                               | 0.983                                                                                                | 68.0                                                                                                    | 100.0                                                                                                               |  |
| 40   | 1.035                                                                                                   | 88.0                                                                                                                  | 170.2                                                                                                               | 1.025                                                                                                | 85.0                                                                                                    | 126.1                                                                                                               |  |
|      | Solubili                                                                                                | ty in Chlo                                                                                                            | oroform.                                                                                                            | Solu                                                                                                 | Solubility in Toluene.                                                                                  |                                                                                                                     |  |
| t    | Wt. of<br>1 cc.<br>Solu-<br>tion.                                                                       | Mols.<br>CO(NH2)<br>OC2H5 per<br>100 Mols.<br>CHCl2.                                                                  | Gms.<br>CO(NH <sub>2</sub> )<br>OC <sub>2</sub> H <sub>5</sub> per<br>100 Gms.<br>CHCl <sub>2</sub> .               | Wt. of<br>1 cc.<br>Solu-<br>tion.                                                                    | Mols.<br>CO(NH2)<br>OC2H8 per<br>100 Mols.<br>C8H8CH3.                                                  | Gms.<br>CO(NH2)<br>OC2H per<br>100 Gms.<br>C6H3CH3.                                                                 |  |
| 0    | 1.404                                                                                                   | 27.56                                                                                                                 | 20.6                                                                                                                | 0.887                                                                                                | 1.77                                                                                                    | 1.71                                                                                                                |  |
| IO   | 1.340                                                                                                   | 41                                                                                                                    | 30.6                                                                                                                | 0.874                                                                                                | 5.0                                                                                                     | 4.84                                                                                                                |  |
| 15   | 1.310                                                                                                   | 46                                                                                                                    | 34.4                                                                                                                | 0.875                                                                                                | 10.0                                                                                                    | 9.68                                                                                                                |  |
| 20   | 1.280                                                                                                   | 53                                                                                                                    | 39.6                                                                                                                | 0.883                                                                                                | 16.0                                                                                                    | 15.48                                                                                                               |  |
| 25   | 1.240                                                                                                   | 60                                                                                                                    | 44.8                                                                                                                | 0.902                                                                                                | 25.0                                                                                                    | 24.18                                                                                                               |  |
| 30   | 1.203                                                                                                   | 67                                                                                                                    | 50.0                                                                                                                | 0.927                                                                                                | 44.0                                                                                                    | 42.58                                                                                                               |  |
| 40   | 1.125                                                                                                   | 80                                                                                                                    | 59.7                                                                                                                | 0.995                                                                                                | 85.0                                                                                                    | 82.24                                                                                                               |  |
| URIC | ACID C                                                                                                  | HANO.                                                                                                                 |                                                                                                                     | ITY IN WATER                                                                                         |                                                                                                         |                                                                                                                     |  |
| (BL  | arez and Deni                                                                                           | ges - Compt.                                                                                                          | rend. 104, 18<br>483                                                                                                | 47. '87; at 15° Magni<br>, '75.)                                                                     | er — Bull. Soc                                                                                          | . chim. [2] 23.                                                                                                     |  |
| 8°.  | Gms. C <sub>3</sub> H <sub>4</sub> N <sub>4</sub> O <sub>3</sub> .<br>per 100 Gms.<br>H <sub>2</sub> O. |                                                                                                                       | G                                                                                                                   | ms. C <sub>8</sub> H <sub>4</sub> N <sub>4</sub> O <sub>3</sub><br>per 100 Gms.<br>H <sub>2</sub> O. | t°.                                                                                                     | Gms. C <sub>8</sub> H <sub>4</sub> N <sub>4</sub> O<br>per 100 Gms.<br>H <sub>2</sub> O.                            |  |
| 0    | 0.0                                                                                                     |                                                                                                                       | 30                                                                                                                  | 0.0088                                                                                               | 70                                                                                                      | 0.0305                                                                                                              |  |
|      |                                                                                                         |                                                                                                                       |                                                                                                                     |                                                                                                      | 80                                                                                                      | 0.0                                                                                                                 |  |

0.0122

0.0170

0.0230

80

90

100

0.0390

0.0498

0.0625

40

50

IO

15 20

0.0037

0.0053

0.006

#### VALERIANIC ACID

**VALERIANIC** ACID *n* CH<sub>3</sub>(CH<sub>2</sub>)<sub>3</sub>COOH (*n* Propyl acetic acid — Pentane acid) when shaken with water at 16° two layers are formed.

348

100 gms. of the aqueous layer contains 3.4 gms. CH<sub>2</sub>(CH<sub>2</sub>)<sub>2</sub>COOH. 100 gms. of the acid layer contains 90.4 gms. CH<sub>3</sub>(CH<sub>2</sub>)<sub>2</sub>COOH. (Lieben and Rossi — Liebig's Ann. 159, 60, '71.)

#### **YTTRIUM IODATE** Y(IO<sub>2</sub>)<sub>2.3</sub>H<sub>2</sub>O.

100 gms. H<sub>2</sub>O dissolve 0.53 gm. yttrium iodate.

(Berlin.)

#### YTTRIUM SULPHATE Y<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>.

100 gms.  $H_3O$  dissolve 15.2 gms.  $Y_2(SO_4)_3$  at ord. temperature. 9.3 gms.  $Y_2(SO_4)_3.8H_2O$  at ord. temp. and 4.8 gms.  $Y_2(SO_4)_3.8HO_2$  at 100°. (Cleve – Bull. soc. chim. [2] 31, 344, '74.)

### YTTERBIUM SULPHATE Yb<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>.8H<sub>2</sub>O.

SOLUBILITY IN WATER.

(Cleve - Z. anorg. Chem. 32, 143, '02.)

| <b>t*</b> . | Gms. Yb <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub><br>per 100 gms.<br>H <sub>2</sub> O. | t°. | Gms. Yb <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub><br>per 100 Gms.<br>H <sub>2</sub> O. | t°. | Gms. Yb <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub><br>per 100 Gms.<br>H <sub>2</sub> O. |
|-------------|-------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------|
| ο           | 44 . 2                                                                                    | 55  | 11.5                                                                                      | 80  | 6.92                                                                                      |
| 15.5        | 34.6                                                                                      | 60  | 10.4                                                                                      | 90  | 5.83                                                                                      |
| 35          | 19.1                                                                                      | 70  | 7.22                                                                                      | 100 | 4.67                                                                                      |

#### ZINC ACETATE Zn(CH,COO),.2H,O.

100 gms.  $H_2O$  dissolve 40 gms. at 25° and 66.6 gms. at b. pt. 100 gms. alcohol dissolve 2.8 gms. at 25° and 166.0 gms. at b.pt. (U. S. F)

#### ZINC BENZOATE Zn(C,H,O2)2.

SOLUBILITY IN WATER.

(Paietta - Gazz. chim. ital. 36, II, 67, '06.)

| <b>t</b> °.                | 15.9° | 17°  | 27 . 8° | 31.3° | $37 \cdot 5^{\circ}$ | 49.8° | 59°  |
|----------------------------|-------|------|---------|-------|----------------------|-------|------|
| Gms. $Zn(C_7H_5O_2)_2$ per |       |      |         |       |                      |       |      |
| 100 gms. aq. solution      | 2.55  | 2.49 | 2.41    | 2.05  | 1.87                 | 1.62  | I.45 |

#### ZINC BROMIDE ZnBr.,

SOLUBILITY IN WATER.

(Dietz - Wiss. Abh. p. t. Reizhanstalt 3, 431, '00; see also Etard - Ann. chim. phys. [7] 2, 536, '0.-

| <b>t°</b> . | Gms. ZnBr <sub>2</sub><br>per 100 Gms.<br>Solution. | Mols. ZnBr <sub>2</sub><br>per 100<br>Mols. H <sub>2</sub> O. | Solid<br>Phase. | t°. | Gms. ZnBr <sub>2</sub><br>per 100 Gms.<br>Solution. | Mols. ZnBr <sub>2</sub><br>per 100<br>Mols.H <sub>2</sub> O. | Solid<br>Phase. |
|-------------|-----------------------------------------------------|---------------------------------------------------------------|-----------------|-----|-----------------------------------------------------|--------------------------------------------------------------|-----------------|
| -15         | 77.13                                               | 27.0                                                          | ZnBr2.3H2O      | 25  | 82 . 46                                             | 37.6                                                         | ZnBr2.2H2O      |
| - 10        | 78.45                                               | 29.I                                                          | **              | 30  | 84.08                                               | 42.3                                                         | **              |
| - 5         | 80.64                                               | 33.3                                                          | **              | 37  | 86.20                                               | 50.0                                                         | **              |
| - Š         | 79.06                                               | 30.2                                                          | ZnBr2.2H2O      | 35  | 85.45                                               | 46.9                                                         | ZnBr            |
| 0           | 79.55                                               | 31.1                                                          | **              | 40  | 85.53                                               | 47 · 4                                                       | **              |
| +13         | 80.76                                               | 33.5                                                          | "               | 60  | 86.08                                               | 49 · 5                                                       | **              |
| 18          | 81.46                                               | 35.1                                                          | "               | 80  | 86.57                                               | 51.5                                                         | 44              |
|             |                                                     |                                                               |                 | 100 | 87.05                                               | 53.8                                                         | •               |

### ZINC CARBONATE ZnCO,.

One liter H<sub>2</sub>O dissolves o.or gm. at 15°.

One liter aq. 5.85 per cent NaCl solution dissolves 0.0586 gm. at 14°.

One liter aq. 7.45 per cent NaCl solutions dissolves 0.0477 gm. at 14°. (Cantoni and Passamanik — Ann. chim. anal. appl. 10, 258, '05.)

#### ZINC CHLORATE ZnClO.

#### SOLUBILITY IN WATER.

 (Meusser - Ber. 35, 1417, '02; at 18°; Mylius and Funk - Ber. 30, 1718, '97.)

 Gms.
 Mols.

 to.
 Zn(ClO<sub>2</sub>)2

 Zn(ClO<sub>2</sub>)2
 Solid

 to.
 Zn(ClO<sub>2</sub>)2

 Ev. part norms
 Phase

 to.
 Data (ClO<sub>2</sub>)2

 Construction
 Phase

| e., | per 100 gms.<br>Solution. | per 100<br>Mols. HgO | Phase.                      | 1.    | per 100 Gms.<br>Solution. | per 100<br>Mols. H <sub>2</sub> O. | Phase.         |
|-----|---------------------------|----------------------|-----------------------------|-------|---------------------------|------------------------------------|----------------|
| -18 | \$ 55.62                  | 9.70                 | Zn(ClO <sub>3</sub> )2.6H2O | 30    | 76.66                     | 16.20                              | Zn(ClO3)2-4H2O |
| (   | 59.19                     | 11.08                |                             | 40    | 69.06                     | 17.29                              |                |
| 8   | 8 60.20                   | 11.72                | . 44                        | 55    | 75.44                     | 24.00                              |                |
| I   |                           | 15.96                |                             |       | Ice curve                 |                                    |                |
| 18  | 3 66.52                   | 15.39                | Zn(ClO3)2-4H2O              | -13   | 30.27                     | 3.36                               | Ice            |
|     |                           |                      |                             | - 9   | 26.54                     | 2.80                               |                |
| S   | D Gr of                   | solution             | saturated at                | 18° = | = 1.016.                  |                                    |                |

Sp. Gr. of solution saturated at  $18^\circ = 1.910$ .

# ZINC CHLORIDE ZnCl.

#### SOLUBILITY IN WATER.

(Mylius and Dietz - Z. anorg. Chem. 44, 217, '05; see also Dietz - Wiss. Abh. p. t. Reichanstalt 3, 429, '00; Etard - Ann. chim. phys. [7] 2, 536, '94.)

| t°. | Gms, ZnCl2 per 100 Gms. |           | ns. Solid                                   | +0 (        | Gms.ZnC | 12 per 100 ( |                   |
|-----|-------------------------|-----------|---------------------------------------------|-------------|---------|--------------|-------------------|
|     | Water.                  | Solution. | Phase.                                      | ase. Water. |         | Solution.    | Phase.            |
| - 5 | 14                      | 12.3      | Ice                                         | 9           | 360     | 78.3         | .21H2O + .H2O     |
| -10 | 25                      | 20.0      | **                                          | 6           | 385     | 79.4         | ZnCl2.22H2O       |
| -40 | 83                      | 45.3      |                                             | 6           | 298     | 74.9         | ZnCl2.1H2O        |
| -62 | 104                     | 51.0      | Ice + ZnCl2-4H2O                            | IO          | 330     | 76.8         |                   |
| -50 | 113                     | 53.0      | ZnCl2-4H2O                                  | 20          | 368     | 78.6         |                   |
| -40 | 127                     | 55.9      | **                                          | 26          | 423     | 80.9         | .IH2O+ZnCl2H2O    |
| -30 | 160                     | 61.5      | $_{4H_{2}O} + _{3H_{2}O}$                   | 26.3        | 433     | 81.2         | .11H2O + ZnCl2    |
| -10 | 189                     | 65.4      | ZnCl2.3H2O                                  | 0           | 342     | 77 - 4       | ZnCl2.H2O         |
| 0   | 208                     | 67.5      |                                             | IO          | 364     | 78.4         | **                |
| + 5 | 230                     | 69.7      |                                             | 20          | 396     | 79.8         |                   |
| 6.  | 5 252.4                 | \$ 71.6   |                                             | 28          | 436     | 81.3         | ZnCl2.H2O + ZnCl2 |
| 5   | 282                     | 73.8      |                                             | 31          | 477     | 82.7         | ZnCl2.H2O         |
| 0   | 309                     | 75-5      | O2Hf1. + O2Hf2.                             | 25          | 432     | 81.2         | ZnCl <sub>2</sub> |
| 0   | 235                     | 70.I      | ZnCl2.23H2O                                 | 40          | 452     | 81.9         | "                 |
| 6.  | 5 252                   | 71.6      | .21H2O+.3H2O                                | 60          | 488     | 83.0         |                   |
| IO  | 272                     | 73.I      | ZnCl2.32H2O                                 | 80          | 543     | 84.4         |                   |
| 12. | 5 303                   | 75.2      |                                             | 100         | 615     | 86.0         |                   |
| II. |                         | 77.0      | $O_2H_{2}^{\ell}\tau.+O_2H_{2}^{\ell}\tau.$ | 262         | 00      | 100.0        |                   |

### ZINC CYANIDE Zn(CN) ..

100 cc. concentrated  $Zn(C_2H_2O_2)_2 + Aq$ . dissolve 0.4 gm.  $Zn(CN)_2$ . 100 cc. concentrated  $ZnSO_4 + Aq$ . dissolves 0.2 gm. (Joannis.)

349

#### ZING CHLORIDE

#### 350

# SOLUBILITY OF ZINC CHLORIDE, AMMONIUM CHLORIDE MIXTURES IN WATER. (Meerburg - Z. anorg. Chem. 37, 212, '03.)

|                     | (Meerburg Z. anorg. Chem. 37, 212, '03.) |                        |                     |                     |                        |                     |                     |                   |  |  |  |
|---------------------|------------------------------------------|------------------------|---------------------|---------------------|------------------------|---------------------|---------------------|-------------------|--|--|--|
| Iso                 | therm i                                  | for o°.                | Isot                | herm fo             | or 20°.                | Isot                | he <del>r</del> m f | or 30°.           |  |  |  |
| Sol                 | tion.                                    | Solid<br>Phase.        | Solu                | r 100 Gms<br>ution. | s. Solid<br>- Phase.   |                     | tion.               | . Solid<br>Phase. |  |  |  |
| ZnCl <sub>2</sub> . | NH <sub>4</sub> Cl.                      |                        | ZnCl <sub>2</sub> . | NH <sub>4</sub> Cl. |                        | ZnCl <sub>2</sub> . | NH₄Cl.              |                   |  |  |  |
| 0                   | 22.8                                     | NH <sub>4</sub> Cl     | 0.0                 | 26.9                | NH₄Cl                  | 0.0                 | 29.5                | NH₄Cl             |  |  |  |
| 3.5                 | 23.0                                     | **                     | 5 . I               | 27 . I              | 66                     | 9.2                 | 29.4                | 68                |  |  |  |
| 7.1                 | 23.5                                     | **                     | 9.5                 | 27 . 4              | 64                     | 16.0                | 29.7                | 66                |  |  |  |
| 10.2                | 23.9                                     |                        | 12.7                | 27.5                | 44                     | 20.2                | 30.1                | 46                |  |  |  |
| 15.1                | 24.7                                     | ••                     | 15.7                | 27.7                | **                     | 24 · 7              | 30.4                | •*                |  |  |  |
| 18.0                | 25.3                                     | **                     | 18.0                | 27.9                | 64                     | <b>2</b> 6.3        | 30.8                | NH₄Cl + ø         |  |  |  |
| 22.4                | 26.0                                     | ••                     | 23.5                | 29.0                | **                     | 27 . 2              | 30.2                | a                 |  |  |  |
| 24.2                | 26.1                                     | **                     | 26.0                | 29.5                | NH <sub>6</sub> Cl + a | 30.1                | 29.6                | ••                |  |  |  |
| 25.7                | 26.3                                     | NH <sub>4</sub> Cl + a | 29.5                | 28 . 1              | a                      | 36.8                | 28 . 2              | ••                |  |  |  |
| 27.5                | 26.4                                     | a                      | 32.3                | 27.7                | 65                     | 42 . 4              | 27.3                | **                |  |  |  |
| 30.7                | 25.7                                     | ••                     | 35.8                | 27.0                |                        | 43.8                | 27.3                | a+b               |  |  |  |
| 33.9                | 25.3                                     | ••                     | 38.7                | 26.9                | 44                     | 45 .0               | 24.4                | 5                 |  |  |  |
| 38.8                | 24 · 4                                   | ••                     | 40 - 2              | 26.6                | **                     | 51.2                | 17.6                | **                |  |  |  |
| 42.6                | 24.6                                     | a + b                  | 41.9                | 26.3                | 66                     | 61.9                | 10.4                | . **              |  |  |  |
| <b>44</b> · 3       | 21.3                                     | ь                      | 43 . 2              | 26.0                | a 🕂 b                  | 66.9                | 9.2                 | ZnCla+b           |  |  |  |
| 49 . 2              | 15.3                                     | **                     | 46.9                | 21.0                | ь                      | 75.6                | 6.1                 | ZnCla             |  |  |  |
| 52.6                | 11.9                                     | **                     | 53.2                | 14.5                | **                     | 70.3                | 7.6                 | **                |  |  |  |
| 55.4                | 10.0.                                    | · ••                   | 58.4                | 11.1                | **                     | 78.5                | 3.2                 | 44                |  |  |  |
| 59·3                | 7 · 5                                    | "                      | 62.7                | 8.7                 | **                     | 76.9                | 3.5                 | 44                |  |  |  |
| 62.1                | 6.8                                      | **                     | 66.6                | 7.9                 | **                     | 79.8                | 1.6                 | 44                |  |  |  |
|                     |                                          |                        |                     |                     |                        | 81.6                | 0.0                 | *                 |  |  |  |

 $a = ZnCl_{2.3}NHCl_{3.}$ ,  $b = ZnCl_{2.2}NH_4Cl$ .

100 gms. abs. acetone dissolve 43.5 gms. ZnCl<sub>2</sub> at 18°. (Naumann – Ber. 37, 4332, '04.) 100 gms. glycerine dissolve 50 gms. ZnCl<sub>2</sub> at 15.5°.

(Dietz.)

### ZINC FLUORIDE ZnF2.4H2O.

One liter of water dissolves 16 gms. at 18°.

#### ZINC HYDROXIDE Zn(OH)<sub>2</sub>.

One liter of water dissolves 0.0042 gm. ZnO at 18°, conductivity method. (Dupre and Bratas - Z. angew. Chem 16, 55, '03.)

Solubility of Zinc Hydroxide in one per cent Aqueous SALT SOLUTIONS AT 16°-20°. (Snyder – Ber. 11, 936, '78.)

The CO<sub>2</sub> free Zn(OH)<sub>2</sub> dissolved is calculated as milligrams Zn per liter of the given salt solution. Additional determinations are also given.

| Aq. Salt<br>Solution. | Mgs. Zn per<br>Liter Solution. | Aq. Salt<br>Solution.          | Mgs. Zn per<br>Liter Solution. | Aq. Salt<br>Solution.              | Mgs. Zn per<br>Liter Solution. |
|-----------------------|--------------------------------|--------------------------------|--------------------------------|------------------------------------|--------------------------------|
| NaCl                  | 51                             | K <sub>2</sub> SO <sub>4</sub> | 37.5                           | K <sub>2</sub> CO <sub>3</sub>     | 0                              |
| KCl                   | 43                             | MgSO4                          | 27                             | NH <sub>4</sub> Cl                 | 95                             |
| CaCl,                 | 57.5                           | KNO,                           | 17.5                           | NH4NO3                             |                                |
| MgCl <sub>2</sub>     | 65                             | $Ba(NO_{s})$                   | 2 25                           | (NH <sub>4</sub> ) <sub>2</sub> SC | D <b>4 88</b>                  |
| BaCl,                 | 38                             |                                |                                |                                    |                                |

#### ZINC HYDROXIDE

| SOLUBILITY O                           | F ZINC H              | TYDROXIDE               | IN | AQUEOUS     | SOLUTIO                                 | NS OF:                   |
|----------------------------------------|-----------------------|-------------------------|----|-------------|-----------------------------------------|--------------------------|
| Ammonia and at 17<br>(Herz – Z. anorg. | °-19°.                |                         |    | Or          | n Hydroxi<br>d. Temp.<br>er - Ibid. 30, | and and                  |
| Normality                              | Normality             | Gms. ZnO                |    | Gms. per 20 | cc. Solution                            | Mol.                     |
| the Base.                              | of Dis-<br>solved Zn. | per 20 cc.<br>Solution. |    | Na.         | Zn.                                     | Dilution of<br>the NaOH. |
| 0.0942NH3                              | 0.00II                | 0.00185                 |    | 0.1012      | 0.0040                                  | 4.50                     |
| 0.236 "                                | 0.0110                | 0.0180                  |    | 0.1978      | 0.0150                                  | 2.33                     |
| 0.707 "                                | 0.059                 | 0.0958                  |    | 0.4278      | 0.0442                                  | 1.06                     |
| 0.0944NH2CH3                           | 0.0005                | 8000.0                  |    | 0.6670      | 0.1771                                  | 0.70                     |
| 0.472 "                                | 0.0081                | 0.0132                  |    | 0.9660      | 0.9630                                  | 0.48                     |
| 0.944 "                                | 0.03                  | 0.0484                  |    | 1.4951      | 0.2481                                  | 0.31                     |
| 0.068 NH2C2H5                          | 0.0003                | 0.0005                  |    | 2.9901      | 0.3700                                  | 0.16                     |
| 0.51 "                                 | 0.0045                | 0.0074                  |    | Moist Zn    | (OH), us                                | ed. So-                  |
| 0.68 "                                 | 0.0098                | 0.0161                  |    | lutions     | shaken 5                                | hours.                   |

#### ZINC IODATE Zn(IO3)2.

100 gms. H<sub>2</sub>O dissolve 0.87 gm. Zn(IO<sub>3</sub>)<sub>2</sub> cold and 1.31 gms. hot. (Rammelsberg-Pogg. Ann. 43, 665, '38.)

### ZINC IODIDE ZnIg.

#### SOLUBILITY IN WATER.

(Dietz - Wiss. Abh. p. t. Reichanstalt 3, 432, '00; see also Etard - Ann. chim. phys. [7] 2, 526, '94.)

| t°. | Gms. ZnI2<br>per 100 Gms.<br>Solution. | Mols. ZnI2<br>per 100<br>Mols. H20 | Solid Phase. | t°. | Gms. ZnI2<br>per 100 Gms.<br>Solution. | Mols. ZnI2<br>per 100 Mols<br>H2O. | . Solid Phase. |
|-----|----------------------------------------|------------------------------------|--------------|-----|----------------------------------------|------------------------------------|----------------|
| -10 | 80.50                                  | 23.3                               | ZnI2.2H2O    | 0   | 81.11                                  | 24.2                               | ZnI2           |
| - 5 | 80.77                                  | 23.7                               | 44           | 18  | 81.20                                  | 24-4                               |                |
| 0   | 81.16                                  | 24.3                               |              | 40  | 81.66                                  | 25.I                               |                |
| +10 | 82.06                                  | 25.8                               | **           | 60  | 82.37                                  | 26.4                               | **             |
| 22  | 83.12                                  | 27.8                               |              | 80  | 83.05                                  | 27.5                               |                |
| 27  | 89.52                                  | 50.3                               | "            | 100 | 83.62                                  | 28.7                               |                |

Sp. Gr. of sat. solution of the anhydrous salt at  $18^{\circ} = 2.725$ . 100 gms. glycerine dissolve 40 gms. ZnI<sub>2</sub> at  $15.5^{\circ}$ .

#### ZINC NITRATE Zn(NO3)g.

### SOLUBILITY IN WATER.

(Funk - Wiss. Abh. p. t. Reichanstalt, 3, 438, 'oo.) Gms. Mols. Zn(NO<sub>3</sub>)<sub>2</sub> per ZnNO<sub>3</sub> per roo Gms. 100 Solution. Mols. H<sub>2</sub>O. Gms. Mols. Zn(NO<sub>2</sub>)<sub>2</sub> per Zn(NO<sub>3</sub>)<sub>2</sub> per roo Gms. roo Solution. Mols. H<sub>2</sub>O. Solid Phase. Solid Phase. tº. tº. 6.36 Zn(NO2)2-9H2O 18 40.12 -25 53.50 10.9 Zn(NO3)2.6H2O .. -22.5 40.75 6.54 25 55.90 12.0 -... 36.4 16.7 -44 6.89 63.63 -20 42.03 36 .. .. -18 64.63 17.4 7.34 43.59 7.67 Zn(NOa)2.6H2O 33.5 18.3 .. -18 44.63 65.83 .... 18.8 Zn(NO2)2.3H2O 7.86 66.38 45.26 -15 37 .. 67.42 --13 45.51 7.94 40 19.7 -68.21 .. -12 45.75 48.66 8.01 41 20.4 .. \*\* 10.Q 60.26 0 43 21.4 14 +12.5 52.0 10.3 -45.5 77.77 33-3

#### ZINC OXALATE

# . 352

## ZINC OXALATE ZnC<sub>2</sub>O<sub>4</sub>.2H<sub>2</sub>O.

One liter of water dissolve 0.83 Mg. equiv. -0.0064 gm.  $ZnC_2O_4$  at  $18^\circ$ .

(Kohlrausch - Z. physik. Chem. 50, 356, '04-'05.)

### ZINC SULPHATE ZnSO.

SOLUBILITY IN WATER.

(Cohen – Z. physik. Chem. 34, 189, '00; at 50°; Callender and Barnes – Proc. Roy. Soc. 62, 149, '97; Etard – Ann. chim. phys. [7] 2, 536, '94; Poggiale Ibid. [3] 8, 467, '43; Mulder.)

| t°. | Gms. ZnSO <sub>4</sub> per 100 Gms. Solid |        |            | ŧ°. | Gms. ZnSO4 p  |        |                                          |
|-----|-------------------------------------------|--------|------------|-----|---------------|--------|------------------------------------------|
| ••• | Solution.                                 | Water. | Phase.     | ••• | Solution.     | Water. | Phase.                                   |
| - 5 | 28.21                                     | 39.30  | ZnSO4.7H2O | 25  | 38.94         | 63.74  | ZnSO4.6H2O                               |
| 0.I | 29 · 54                                   | 41.93  | **         | 39  | 41.22         | 70.06  | .6H <sub>2</sub> O + .7H <sub>2</sub> O  |
| 9.1 | 32.01                                     | 47.09  | **         | 50  | 43 • 45       | 76.84  | ZnSO4.6H2O                               |
| 15  | 33.81                                     | 50.88  | **         | 70  | 47.5          | 88.7   | $O_{\mathbf{g}}H. + O_{\mathbf{g}}H_{0}$ |
| 25  | 36.67                                     | 57.90  |            | 8o  | 46.4          | 86.6   | ZnSO <sub>4</sub> .H <sub>2</sub> O      |
| 35  | 39.98                                     | 66.61  |            | 90  | 45 - 5        | 83.7   | 44                                       |
| 39  | 41.21                                     | 70.05  | "          | 100 | <b>44</b> · 7 | 80.8   | 44                                       |
| - 5 | 32.00                                     | 47 .08 | ZnSO4.6H2O | 120 | <b>41</b> .7  | 71.5   | 44                                       |
| OI  | 33.09                                     | 49.48  | ••         | 140 | 38.o          | 61.3   | 66                                       |
|     |                                           |        |            | 160 | 33.0          | 49 · 3 | 44                                       |

100 gms. abs. methyl alcohol dissolve 0.65 gm. ZnSO<sub>4</sub> at  $18^{\circ}$ , 5.90 gms. ZnSO<sub>4.7</sub>H<sub>2</sub>O at  $18^{\circ}$ .

100 gms. 50 per cent methyl alcohol dissolve 15.7 gms. ZnSO.7H<sub>2</sub>O at 18°.

(de Bruyn - Z. physik. Chem. 10, 783, '92.)

SOLUBILITY OF ZINC SULPHATE IN AQUEOUS ETHYL ALCOHOL. (Schiff — Liebig's Ann. 118, 365, '61.)

| Concentration of Alcohol                          | 10 per cent | 20 per cent | 40 per cent |
|---------------------------------------------------|-------------|-------------|-------------|
| Gms. ZnSO <sub>4</sub> .7H <sub>2</sub> O per 100 |             |             |             |
| Gms. Solution                                     | 51.1        | 39.0        | 3.45        |

100 gms. glycerine dissolve 35 gms. zinc sulphate at 15.5°.

#### SOLUBILITY OF ZINC SULPHATE - SODIUM SULPHATE MIXTURES IN WATER. (Koppel - Gumpery - Z. physik. Ch 'os.)

| (Koppel — Gumpery — Z. physik. Chem. 52, 409, ' | 05 |
|-------------------------------------------------|----|
|-------------------------------------------------|----|

| <b>* *</b> . | Gm<br>Gm<br>ZnSO4. | s. per 100<br>s. Solution.<br>Na2SO4. | G<br>ZnSC     | ms. per 100<br>Gms. H <sub>2</sub> O.<br>04. Na <sub>3</sub> SO <sub>4</sub> . | Ma<br>M<br>ZnSO4. | ls. per 100<br>ols. H2O.<br>Na2SO | Solid<br>Phase.                  |
|--------------|--------------------|---------------------------------------|---------------|--------------------------------------------------------------------------------|-------------------|-----------------------------------|----------------------------------|
| 0            | 27 . 19            | 5.33                                  | 40 . 30       | 7.90                                                                           | 4 . 50            | I .0I                             | ZnSO4.7H=0+                      |
| 5            | 27 .85             | 6.27                                  | 42 . 28       | 9.52                                                                           | 4.71              | I.2I                              | NasSO4.10HgO                     |
| 25           | 17 . 58            | 15.63                                 | 26.32         | 23.40                                                                          | 2.94              | 2.96                              | ZnNag(SO4)2-4H2O                 |
| 30           | 17.66              | 15.58                                 | 26.47         | 23 . 44                                                                        | 2.95              | 2.97                              | **                               |
| 35           | 17.59              | 15.70                                 | 26.36         | 23.52                                                                          | 2.94              | 2.98                              | 66                               |
| 40           | 17.75              | 15.72                                 | <b>26</b> .68 | 23.63                                                                          | 2.98              | 2.99                              | 44                               |
| 10           | 29.16              | 7 . 16                                | 45 · 79       | 11.24                                                                          | 5.11              | I.42                              | ו                                |
| 15           | 30.70              | 6.40                                  | 48.81         | 10.17                                                                          | 5.45              | I . 29                            | 1                                |
| 20           | 32.51              | 5.36                                  | 52.34         | 8.62                                                                           | 5.84              | 1.09                              | ZnNa2(SO)2-4H2O                  |
| 25           | 34.36              | 4.41                                  | 56.15         | 7.22                                                                           | 6.27              | 0.91                              | +ZnSO4.7HrO                      |
| 30           | 36.28              | 3.80                                  | 60.55         | 6.34                                                                           | 6.76              | 0.81                              |                                  |
| 35           | 38.18              | 3.30                                  | 65.25         | 5.64                                                                           | 7.28              | 0.71                              | )                                |
| 38           | 38.83              | 2.90                                  | 66.64         | 4.98                                                                           | 7.44              | 0.63                              | ZnNa2(SO4)2-4H2O                 |
| 40           | 38.26              | 2 . 78                                | 64.89         | 4.71                                                                           | 7.24              | 0.60                              | +ZnSO4.6HrO                      |
| 10           | 27 .91             | 7.92                                  | 43 . 50       | 12.34                                                                          | 4.85              | 1.565                             | )                                |
| 15           | 24 . 28            | 10. <b>90</b>                         | 36.92         | 16.71                                                                          | 4.12              | 2.12                              |                                  |
| 20           | 19.14              | 14.58                                 | 28.77         | 21.95                                                                          | 3.21              | 2.79                              | Zn Na2(SO4)2-4H2O+Na2SO4-10H2O   |
| 25           | 13.31              | 19.94                                 | 19.93         | 29.87                                                                          | 2.22              | 3.785                             |                                  |
| 30           | 6.96               | 27.75                                 | 10.67         | 42.51                                                                          | 1.19              | 5.39                              | J                                |
| 35           | 5.61               | 30.03                                 | 8.72          | 46.61                                                                          | 0.971             | 5.91                              | ) ZnNa2(SO4)2-4H2O               |
| 40           | 5.96               | 28.65                                 | 9.16          | 43.83                                                                          | I .02             | 5.555                             | +Na <sub>2</sub> SO <sub>4</sub> |

### ZINC SULPHITE ZnSO, 2H,O.

100 gms. H<sub>2</sub>O dissolve 0.16 gm. ZnSO<sub>4</sub>.2H<sub>2</sub>O. (Houston and Trichborne - Brit. Med. Jour. 1063, '90.

## ZINC TARTRATE C.H.O.Zn.2H2O.

#### SOLUBILITY IN WATER.

(Cantoni and Zachoder - Bull. Soc. chim. [3] 33, 751, 'o5.)

| <b>t*</b> . | Gms.<br>C4H4O4.Zn.2H2O<br>per 100 cc. Solution. | <b>t°</b> . | Gms.<br>C4H4ObZn.2H2O<br>per 100 cc. Solution. | <b>t °</b> . | Gms.<br>C4H4O6.Zn.2H2O<br>per 100 cc. Solution. |
|-------------|-------------------------------------------------|-------------|------------------------------------------------|--------------|-------------------------------------------------|
| 15          | 0.019                                           | 40          | 0.060                                          | 65           | 0 · I <b>00</b>                                 |
| 20          | 0.022                                           | 45          | 0.073                                          | 70           | o o88                                           |
| 25          | o.036                                           | 50          | o.087                                          | 75           | o.o78                                           |
| 30          | 0.041                                           | 55          | 0.116                                          | 80           | 0.050                                           |
| 35          | 0.055                                           | 60          | 0.104                                          | 85           | 0.041                                           |

## ZINC VALERATE (C,H,COO),Zn.2H2O.

100 gms. H<sub>2</sub>O dissolve 2 gms. (C<sub>4</sub>H<sub>4</sub>COO)<sub>3</sub>.Zn.2H<sub>3</sub>O at 25°. 100 gms. alcohol dissolve 2.8 gms. at 25°.

(U. S. P)

## ADDENDUM

The distribution results shown in the following table were obtained by agitating together equal volumes of olive oil and aqueous solutions of the several narcotics, and determining the dissolved substance present in the aqueous layer before and after the agitation. The sum of the amount of substance in the oil and aqueous layers, as shown in the table, is the amount originally in 100 cc. of each aqueous solution used.

The work was done for the purpose of testing the Overton-Meyer Theory of Narcosis, that the anesthetic action of certain groups of narcotics is proportional to their distribution between water and the fatty material occurring in the nervous system, and olive oil was selected as the solvent best fulfilling the analytical requirements and at the same time offering a fair resemblance to the fatty substance of the nervous system. The results are believed to be of interest both as solubility studies and on account of their connection with the Theory of Narcosis.

The author is indebted to Dr. Reid Hunt of the Hygienic Laboratory for calling his attention to the papers containing the distribution results here tabulated.

# DISTRIBUTION OF SEVERAL SUBSTANCES BETWEEN WATER AND OLIVE OIL.

(At ord. temp., Baum — Archiv. exp. Pathol. u. Pharmakol, 42, 130, '90; at 3°, 30° and 36°; Meyer — Ibid. 46, 344, '01; at 15°, Harrass — Archiv. internat. Pharmacodynamic et Therapie, 11, 458, '03.)

| 1046. 40, 344, '01; at 15", F             | Ibid. 40, 344, '01; at 15", Harrass - Archiv. internat. Pharmacodynamic et Therapie, 11, 458, '03.) |             |                      |                          |                |  |  |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------|----------------------|--------------------------|----------------|--|--|
| Name of Substance.                        | romuls.                                                                                             | <b>t°</b> . | Gms. Sul             | C(f.)                    |                |  |  |
|                                           |                                                                                                     | •••         | Water<br>layer (w.). | Olive Oil<br>layer (f.). | <u>C(w.)</u>   |  |  |
| Sulfonal                                  | (CHa)gC(SOg.CgHa)g                                                                                  | ord.        | 0.0700               | 0.0686                   | 0.979          |  |  |
| Trional                                   | (CHa)(CaHa)C(SOa.CaHa)a                                                                             | "           | 0.0404               | 0. 1646                  | 4.074          |  |  |
| Tetronal                                  | (CaHa)aC(SOa.CaHa)a                                                                                 | "           | 0.0462               | 0.1446                   | 3.756          |  |  |
| Di methyl sulphon                         |                                                                                                     |             |                      |                          |                |  |  |
| di methyl methane<br>Di ethyl sulphon me- | (CH <sub>a</sub> ) <sub>2</sub> C(SO <sub>2</sub> .CH <sub>a</sub> ) <sub>2</sub>                   | "           | 0.6072               | 0.0622                   | 0. 103         |  |  |
| thane                                     | CH2.(SO2.C2Ha)2                                                                                     | "           | 0.610                | 0.002                    | 0.151          |  |  |
| Ethyl urethane                            | NH2.CO2.C2H                                                                                         | "           | 4.52                 | 0.615                    | 0.136          |  |  |
| Methyl urethane                           | NH2.CO2.CH2                                                                                         | "           | 7.50                 | 0.275                    | 0.037          |  |  |
| Tertiary butyl alcohol                    |                                                                                                     | "           | 8.744                | 1.539                    | 0.176          |  |  |
| Amylene hydrate                           | (CH <sub>a</sub> ) <sub>2</sub> C(OH)CH <sub>2</sub> .CH <sub>3</sub>                               | "           | 6.605                | 6.605                    | 1.000          |  |  |
| Mono acetin                               | C <sub>2</sub> H <sub>2</sub> (OH) <sub>2</sub> (OC <sub>2</sub> H <sub>2</sub> O)                  | **          | 4.28                 | 0.254                    | 0.059          |  |  |
|                                           |                                                                                                     | 3           | 2.349                | 0.220                    | 0.000          |  |  |
| *6                                        | **                                                                                                  | 30          | 2.417                | 0. 161                   | 0.000          |  |  |
| Di acetin                                 | C <sub>2</sub> H <sub>5</sub> (OH)(OC <sub>2</sub> H <sub>3</sub> O) <sub>2</sub>                   | ord.        | 3.0                  | 0.7                      | 0.234          |  |  |
| Tri acetin                                | C <sub>2</sub> H <sub>4</sub> (OC <sub>2</sub> H <sub>2</sub> O) <sub>3</sub>                       | 44          | 2.72                 | 0.80                     | 0.295          |  |  |
| Bromal hydrate                            | CBr <sub>2</sub> CH(OH) <sub>2</sub>                                                                | "           | Q. 81                | 6.52                     | 0.665          |  |  |
| Butyl chloral hydrate                     | CaH4Cla.CH(OH)a                                                                                     | "           | 2.04                 | 3.24                     | 1.580          |  |  |
| Chloral hydrate                           | CCl CH(OH)                                                                                          | "           | 16.31                | 3.10                     | 0.190          |  |  |
|                                           |                                                                                                     | "           | 4.12                 | 0.91                     | 0.22           |  |  |
| "                                         | -                                                                                                   | 3           | 1.34                 | 0.08                     | 0.053          |  |  |
| **                                        | •                                                                                                   | 30          | 1.15                 | 0.27                     | 0.237          |  |  |
| Salicylamide                              | OH.C.H.CHaNHa                                                                                       | 3           | 0.056                | 0.126                    | 2.25           |  |  |
|                                           |                                                                                                     | 30          | 0.075                | 0.107                    | I.40           |  |  |
| Benzamide                                 | C7H2ONH2                                                                                            | 3           | 1.062                | 0.706                    | 0.66           |  |  |
| "                                         | 46                                                                                                  | 30          | 1.235                | 0.533                    | 0.43           |  |  |
| Ethyl alcohol                             | C <sub>2</sub> H <sub>6</sub> OH                                                                    | 3           | 2.60                 | 0.09 (                   |                |  |  |
| "                                         |                                                                                                     | 3           | 3.90                 | 0.07                     | 0. <b>02</b> 6 |  |  |
| 66                                        | ••                                                                                                  | 30          | 2.64                 | 0.14 (                   |                |  |  |
| **                                        | 84                                                                                                  | 30          | 3.82                 | 0.16                     | 0.047          |  |  |
| Acetone                                   | (СҢа)аСО                                                                                            | 3           | 3.07                 | 0.50)                    |                |  |  |
| **                                        | 44                                                                                                  | 3           | 4.14                 | 0.52                     | 0.146          |  |  |
| **                                        | ••                                                                                                  | 3           | 3.92                 | 0.01                     |                |  |  |
| "                                         | <b>64</b>                                                                                           | 30          | 2.73                 | 0.73)                    |                |  |  |
| **                                        | t+                                                                                                  | 30          | 3.86                 | 0.81                     | 0.235          |  |  |
| 66                                        | •                                                                                                   | 30          | 3.71                 | 0.87)                    |                |  |  |
| Valeryl di ethyl amide                    | CH_(CH_)_CON(C_H_)                                                                                  | 15          | 0.231                | 1.339                    | 5.797          |  |  |
| Valeryl di methyl amid                    | CH <sub>4</sub> (CH <sub>2</sub> ) <sub>2</sub> CON(CH <sub>2</sub> ) <sub>2</sub>                  | 15          | 0.911                | 0.379                    | 0.410          |  |  |
| Valeryl ethyl amide                       | CH <sub>2</sub> (CH <sub>2</sub> ) <sub>2</sub> CONH(C <sub>2</sub> H <sub>4</sub> )                | 15          | 1.020                | 0.201                    | 0.254          |  |  |
| Valer amide                               | CH_(CH_)_CONH                                                                                       | 15          | 0.769                | 0.241                    | 0.313          |  |  |
| Lactic acid di ethyl                      |                                                                                                     | - 5         |                      | J 43                     |                |  |  |
| amide                                     | CHa.CHOH.CON(CaHa)                                                                                  | 15          | 1.256                | 0.194                    | 0.154          |  |  |
| Sodium salicylate                         | CHLOH.COONS                                                                                         | 15          | I.444                | 0.156                    | 0.108          |  |  |
| •                                         |                                                                                                     | - 5         |                      | <b>.</b>                 |                |  |  |

•

.

•

Acenaphthene, 1. Acetamide, I. Acetanilide, 1. Acetic acid, 2–4. in aq. benzene, 55. Acetnaphthalide, 6. Acetone, 6-7, 355. in aq. benzene, 55. in aq. ethyl acetate, 136. in aq. potassium chlorate, 241. in aq. potassium chloride, 247. in aq. potassium nitrate, 258. in aq. sugar, 326. Acetphenetidine, 8. Acet-toluide, 8. Acetyl acetone, 9. Acetylene, 8. Aconitine, 9. Adipic acid, 9. Air, 10. Alanine, 10. Aldehyde, 11. propionic, 267. Alcohols, 11, 355. Alcohol in aq. benzene, 55. in aq. ether, 135. in aq. ethyl acetate, 136. in aq. ethyl butyrate, 136. in aq. ethyl propionate, 136. in aq. ethyl valerate, 137. in aq. methyl butyrate, 204. in aq. propyl acetate, 267 in aq. potassium carbonate, 239, in aq. potassium chlorate, 241. in aq. potassium nitrate, 258. in aq. sodium carbonate, 297. in aq. sodium nitrate, 308-9. in aq. sodium sulphate, 314. in aq. sugar, 325. Allyl isosulphocyanic ester, 205. Aluminum chloride, 12. rubidium alum, 271. sulphate, 12. sulphate + Lithium sulphate, 176. tellurium alum, 332. Alums, ammonium, potassium, etc., 13. caesium, 80. chromium, 116. iron ammonium, 33. rubidium, 271. tellurium, 332. Amalgam, 278. Amido benzoic acids, 6o, benzo sulphonic acids, 6o.

Amido brom benzo sulphonic acid, 57. nitro benzoic acids, 60. propionic acid, 10. phenols, 60. Amines, methyl, etc., 15-17. Ammonia, 17-19. lithium sulphate, water, 176. Ammonium acid formate, 26. acid oxalate, 30. alum, 13. arsenate, 20. benzoate, 20. bicarbonate, 21-22 bicarbonate + NaHCO<sub>3</sub>, 298. bichromate, 25. bromide, 20. bromide + KBr, 235. bromo platinate, 20. cadmium bromide, 20, 71. cadmium chloride, 73. cadmium iodides, 77. cadmium sulphate, 33. carbonate, 21. carbonate in acetone, 6. cerium nitrate, 111-112. cerium sulphate, 112. chloride, 22-23 chloride and CuCl2, 125-126. chloride and KCl, 242. chloride and NaCl, 299-300. chloride and ZnCl<sub>2</sub>, 350. chromates, 25. chromium sulphate, 33. cobalt chlorides, 120. cobalt sulphate, 33. copper sulphate, 33, 129, 262. fluo boride, 26. fluo silicate, 31. formate, 26. iodate, 26. iodide, 26–28. iridium sulphate, 34. iron sulphate, 33 lead cobalticyanide, 22. magnesium nitrate, 30. magnesium sulphate, 34. manganese molybdate, 30. manganese sulphate, 34. nickel sulphate, 34, 129. nitrate, 24, 28, 30. oxalate, 30-31. permanganate, 31. persulphate, 35. phosphite, 31. platinic chloride, 232-233.

Ammonium salicylate, 31. sodium sulphate, 34. sodium sulphite, 35. sulphate, 24, 31-33. sulphate + K,SO4, 261. sulphocyanide, 35. tetra chromate, 25. tri chromate, 25. tri nitrate, 29. uranyl carbonate, 22. uranyl chlorides, 342. uranyl nitrate, 343. uranyl propionate, 343. vanadium sulphate, 34. zinc sulphate, 34, 129. Amyl acetate, 35. alcohol, 11. butyrate, 35. formate, 35. malonic acid, 186. propionate, 35. Amylene hydrate, 355. Anethol, 35. in aq. acetone, 6. Anilin, 36–38. Anis acid, 38, 61. Anthracene, 39. Anthraquinone, 40. Antimony potassium tartrate, 41. tri chloride, 40-41. tri iodide, 41. Apo morphine hydrochloride, 205. Argon, 41. Arsenic iodide, 41. pentoxide, 41. tri iodide, 42. Asparagine, 42. Astrakanite, 312. Atropine, 42. Aurous, auric, see Gold. Azelaic acid, 43. Azo phenetol, 43. Barium acetate, 43. acid oxalate, 52. arsenate, 43. bromate, 44. bromide, 44. butyrate, 44. cadmium chloride, 74. caproate, 45. carbonate, 45. chlorate, 45. chloride, 24, 46-47. chloride + NaCl, 300. chromate, 47. citrate, 47. cyanide, 48. dibrom, etc., sulphonic acid, 57. ferrocyanide, 48. fluoride, 48. formate, 48, 165. hydroxide, 48. iodate, 49.

Barium iodide, 49. iodide + BaBr., 44. iodide + Hg(CN), 197. iso caproate, 45. iso succinate, 53. malate, 49. malonate, 49. molybdate, 49. nitrate, 24, 29, 50-51. nitrate + BaCl<sub>2</sub>, 46. nitrate + KNO<sub>3</sub>, 254. nitrite, 51. oxalate, 51. persulphate, 53. potassium ferrocyanide, 48. propionate, 52. succinate, 53. sulphate, 52-53. tartrate, 53-54. Benzamide, 54, 355. Benzaldehyde, 54. Benzene, 54-56. Benzine, 58. Benzoic acids, 58-62, 341. Benzoic sulphinide, 62. Benzophenone, 6, 63. Benzo sulphonic acids, 57, 60. Benzoyl phenyl hydrazine, 57. Benzyl carbamide, 104. Beryllium, see also Glucinium. Beryllium hydroxide, 63. salts, 140. sulphate, 63. Beta Naphthol, 208. Borax, 293. Boric acid, 65-67, 294. Boron tri-fluoride, 67 Bismuth, 64. and Pt alloys, 232. chloride, 64. iodide, 64. nitrate, 64. oxide, 64. Bromal hydrate, 355. Brom benzene (di), 56. benzoic acid, 60. benzo sulphonic acid, 57. cinnamic acid, 118. phenols, 226. Bromine, 67-69. Brucine, 69. Butane, 69. Butyl acetate, 69. alcohol, 12. alcohol tertiary, 355. chloral hydrate, 355. formate, 69-70. malonic acid, 186. Butyric acid (iso), 70. aldehyde, 60. Cadmium ammonium bromide, 20, 71. ammonium chloride, 73. ammonium iodides, 77.

Cadmium ammonium sulphate, 33. barium chloride, 74. bromide, 70-71. caesium sulphate, 84. chlorate, 72. cyanide, 76. fluoride, 77. hydroxide, 77. iodide, 77. magnesium chloride, 74. nitrate, 78. oxalate, 78. potassium bromide, 71. potassium chloride, 76. potassium iodide, 78. potassium sulphate, 79. rubidium bromide, 72. rubidium chloride, 75. rubidium sulphate, 274. sodium bromide, 72. sodium iodide, 78. sodium sulphate, 80. sulphate, 78-79. Caesium alums, 15, 80. cadmium sulphate, 84. carbonate, 81. chloraurate, 81. chloride, 81. chloride + FeCl<sub>3</sub>, 159. chlor tellurate, 82. chromium alum, 8o. cobalt sulphate, 84. copper sulphate, 84. fluoboride, 81. gold chloride, 141. iodate, 82. iodide, 82. indium alum, 80. iron alum, 80. iron sulphate, 84. magnesium sulphate, 84. manganese sulphate, 84. mercuric bromide, 81. nickel sulphate, 84. nitrate, 82. oxalate, 83. permanganate, 83. platinic chloride, 232. selenate, 83. sulphate, 83. tellurium halides, 332. thallium chloride, 82. uranyl chloride, 342. uranyl nitrate, 343. vanadium alum, 80. zinc sulphate, 84. Caffeine, 84. Calcium acetate, 84-85. bicarbonate, 87-88.

bitartrate, 103.

butyrate, 86.

bromide, 85. bromide + Hg(CN)<sub>2</sub>, 197.

Calcium caproate, 86. caprylate, 86. carbonate, 86. chlorate, 88. chloride, 88--89. chromate, go. citrate, 89. di ethyl acetate, 85. di propyl acetate, 85. fluoride, 90. formate, 90. heptoate, 91. hydroxide, 91. hydroxide + CaSO, 99. iodate, 94. iodide, 94. iso butyrate, 86. iso butyl acetate, 85. iso succinate, 97. iso valerate, 104. malate, 94. malonate, 94. methyl ethyl acetate, 85. methyl pentanate, 86. methyl propyl acetate, 85. nitrate, 95. nonate, 96. ōenanthate, 91. oxalate, 95. oxide, 91. pelargonate, 96. phosphates, 95-96. potassium ferrocyanide, go. potassium sulphate, 101. propionate, 96. selenate, 97. silicate, 97. succinate, 97. sulphate, 97-102. sulphide, 102. sulphite, 103. tartrate, 103. tri methyl acetate, 85. valerate, 104. Camphoric acid, 104. Cane sugar, 324-326. Caoutchouc, 104. Carbamides, 104. Carbazole, 104. Carbon bisulphide, 110. dioxide, 105-107. monoxide, 107-110. oxysulphide, 111. tetra chloride, 201. Carvoxime, 111. Cerium acetate, 111. ammonium nitrate, 111-112. ammonium sulphate, 112. butyrate, 111. formate, 111. iso butyrate, 111. propionate, 111. sulphate, 112. Chinin, 117. 350

Chinidin, 117. Chlor acetic acid, 5. Chloral hydrate, 113, 355. hydrate butyl, 355. Chlor benzene, 56. benzoic acid, 60. Chlorine, 113–114. monoxide, 115. tri oxide, 115. Chloroform, 115. Chlor phenois, 226. Chromic acid, 25, 116, 304. Chromium alums, 116. ammonium sulphate, 33. caesium alum, 80. chloride. 116. double salts, 116. potassium cyanide, 250. potassium molybdate, 116. rubidium alum, 271. sulphate, 116. tellurium alum, 332. tri oxide, 25, 116, 304. Chrysarobin, 116. Chrysen, 117. Cinchona alkaloids, 117. alkaloids salts, 117. Cinnamic acid, 118. Citric acid, 119. Cobalt ammonium chlorides, 120. ammonium sulphate, 33. bromide, 119 caesium sulphate, 84. chlorate, 119. chloride, 120-121. double salts, 119. Cobalticyanide of NH<sub>1</sub> + Pb, 22. Cobalt iodate, 121. iodide, 121. lead cyanide, 165. lead potassium cyanide, 165. nitrate, 121–122. potassium sulphate, 262. rubidium nitrite, 122. rubidium sulphate, 274. sulphate, 122-123. Cocaine, 12 hydrochloride, 123. Codeine, 123. salts, 123 Colchicine, 123. Collidin, 124. Copper and Pt alloys, 232. acetate, 124. ammonium chloride, 125-126. ammonium sulphate, 33, 129. bromide, 124 caesium sulphate, 84. chlorate, 124. chloride, 124-128. nitrate, 128. potassium chloride, 127. potassium sulphate, 131, 262.

Copper rubidium sulphate, 274. sodium sulphate, 131. sulphate, 32, 128-131. sulphate + CuCl, 126. sulphate + MnSO<sub>4</sub>, 188. sulphate + NiSO, 211. sulphide, 131. tartrate, 132. tellurium sulphate, 334. Cream of tartar, 265-266. Cresol, 131. Cumidin (pseudo), 132. Cuminic acid, 132. Cuprous, cupric, see Copper. Cyanogen, 132. Dextrose in aq. acetone, 7. Di acetin, 355. Di brom benzene, 56. Di chlor acetic acid, 6. Didymium potassium sulphate, 133. sulphate, 133. Di ethyl amine, 16. ethyl ketone, 137. ethyl sulphone, 355. Di methyl sulphone, 355. Di nitro benzenes, 56-57. nitro phenols, 226. Di phenyl, 227. phenyl amine, 17. Erbium sulphate, 133. Erythrite, 133. Ethane, 133. Ether, 134-135. in anthraquinone, 40. Ethyl acetate, 135-136. alcohol, see Alcohol. amines, 16. ammonium bromide, 20. ammonium chloride, 25. ammonium iodide, 27. bromide, 137. butyrate, 136. carbamate, 138. Ethylene, 138. chloride, 137. cvanide, 323. Ethyl formate, 136. Ethylidine chloride, 137. Ethyl iodide, 137. iso valerate, 137. ketone, 137 malonic acid, 186. methyl ketone, 204. propionate, 136. urethane, 355. valerate, 137. Fats, fatty acids, 138. Ferrous, ferric, see Iron. Ferri, ferrocyanide of potassium, 250. Formaldehyde, 11. Fumaric acid, 139. Furfurol, 139. Gadolinium sulphate, 139.

360

Galactose, 139. Gallic acid, 139. Germanium dioxide, 140. potassium fluoride, 251. sulphide, 140. Glass, 140. Glucinium, see also Beryllium. Glucinium hydroxide, 63. salts, 140. sulphate, 63. Glutaric acid, 140. Glycolic acid, 140. Gold, 140. alkali chlorides, 140. caesium chlorides, 81. chloride, 141. phosphorus tri chloride, 141. Grape sugar, 325-326. Guaicol, 141. carbonate, 141. Guanidine, 141. Helium, 142. Hexane, 142. Hippuric acid, 142. Homatropine, hydrobromide, 143. Hydrastine, 143. chloride, 143 Hydrazine sulphate, 143. Hydriodic acid, 145. Hydrobromic acid, 143. Hydrochloric acid, 144. Hydrofluoric acid, 145. Hydrogen, 145-149. sulphide, 150. Hydroquinone, 150-151. Hydroxy benzoic acids, 61. Hydroxylamine, 151. hydrochloride, 151. Hyoscyamine, 151. Hyoscine hydrobromide, 151. Indium ammonium sulphate, 34. caesium alum, 8o. Iodic acid, 145. Iodine, 152-154 Iodo benzoic acid, 60. Iron ammonium alum, 33ammonium sulphate, 33. caesium alum, 8o. caesium sulphate, 84. chloride, 157–159. chloride mix crystals, 159. hydroxide, 160. lead cyanide, 165. nitrate, 160. oxide, 160. phosphate, 160. potassium sulphate, 161, 262. rubidium alum, 271. rubidium sulphate, 274. sulphate, 160. sulphate + CdSO, 79. sulphate + Na<sub>2</sub>SO, 161. sulphide, 160.

Iron tellurium alum, 332. amyl acetate, 35. amyl alcohol, 11. amyl formate, 35 amyl malonic acid, 186. Iso butyric acid, 70. butyric aldehyde, 69. butyl acetate, 69-70. butyl alcohol, 12. phthalic acid, 228. propyl benzoic acid, 132. Ketone, di ethyl, 137. methyl ethyl, 204. Lactic acid di ethyl amide, 355. Lanthanum bromate, 162. sulphate, 162. Lead, 162. and Pt alloys, 232. acetate, 162. ammonium cobalticyanide, 22. benzoate, 162. bromate, 162. bromide, 163. carbonate, 163. chlorate, 163. chloride, 163-165. chromate, 165. citrate, 165. cyanides, 165. fluoride, 165. formate, 165. hydroxide, 166. hyposulphate, 170. iodate, 166. iodide, 166–167. malate, 167. nitrate, 168. nitrate + Ba(NO3)3, 50. oxalate, 168. oxides, 168. palmitate, 169. phosphate, 169. succinate, 169. sulphate, 169. tartrate, 170. Levulose, 170. Ligröin, 170. Lime, see Calcium hydroxide. Lithium benzoate, 170. bicarbonate, 172. bichromate, 173. borate, 170. bromate, 171. bromide, 171. carbonate, 171. chlorate, 172. chloraurate, 172. chloride, 172. chromate, 173citrate, 173. fluoride, 173. formate, 174.

Lithium gold chloride, 141. hydroxide, 174. hypophosphate, 176. iodate, 174. iodide, 175. laurinate, 176. myristate, 176. nitrate, 175. oleate, 176. oxalate, 175. palmitate, 176. permanganate, 176. phosphate, 176. stearate, 176. sulphate, 176. Magnesium ammonium nitrate, 30. ammonium sulphate, 34. bicarbonate, 178-179. bromate, 177. bromide, 177. bromide alcoholates, 177. bromide aliphatic compounds, 177. bromide etherates, 177. cadmium chloride, 74. caesium sulphate, 84. carbonate, 178-179. carbonate in aq. acetone, 6. chlorate, 180. chloride, 180-181. chromate, 181. fluoride, 181. fluosilicate, 184. hydroxide, 181-182. hypophosphate, 184. iodate, 182. iodide, 182-183. iodide alcoholate, 183 iodide, alkyl esters, 183. iodide, aliphatic compounds, 183. iodide etherate, 183. nitrate, 184. oxalate, 184. platinic chloride, 181. platinic chromate, 181. potassium sulphate, 185. salicylate, 184. sulphate, 184-185. sulphate + MgCl<sub>2</sub>, 181. sulphate + Na<sub>2</sub>SO<sub>4</sub>, 312. sulphite, 185. Maleic acid, 130. Malonic acid, 185-186. Maltose in aq. acetone, 7. Manganese ammonium molybdate, 30. ammonium sulphate, 34. borate, 186. bromide, 186. caesium sulphate, 84. chloride, 187. fluo silicate, 187. hypophosphate, 187. nitrate, 187.

Manganese potassium vanadate, 189. sulphate, 188-189. sulphate + CuSO, 130. Mannite, 189. Mannitol, 189. Mercury, 278. bromide, 189-190. caesium bromide, 81. chloride (ic), 190-196. chloride (ous), 196. chloride + BaCl<sub>2</sub>, 46. chloride + CsCl, 81. cyanide, 197. fulminate, 197. iodide, 197-199. oxide, 200. sulphate, 200. tetra methylamine chloride, 195. Methane, 200. Methoxy benzoic acid, 38. Methyl acetate, 203. alcohol, 136. amine, 15. amine HgCl<sub>2</sub>, 195 ammonium iodide, 26. benzoic acids, 61, 341. butyrate, 203-204. Methylene bromide, 203. chloride, 203. Methyl ethyl ketone, 204. iodide, 203. malonic acid, 186. phenyl carbamide, 104. propionate, 203. urethane, 355. valerate, 204. Milk sugar, 325-326. Molybdenum trioxide, 204. Monoacetin, 355. Mono chlor acetic acid, 6. Morphine, 204-205. salts, 205. Mustard oil, 205. Naphthalene, 206-207. in aq. acetone, 6. β-Naphthalene picrate, 55. Naphthoic acid, 207. Naphthol, 208. Naphthylamine sulphonic acid, 206. Naphtion acid, 206. •Narceine, 208. Narcotics, 355 Neodymium chloride. 208. sulphate, 208. Nickel ammonium sulphate, 34, 129. bromate, 208. bromide, 208. caesium sulphate, 84. chloride, 208-209. iodate, 209. iodide, 209. nitrate, 210. potassium sulphate, 212, 262.

Nickel sulphate, 210-212. tellurium sulphate, 334. Nicotine, 212. Nitranilines, o, m, and p, 38. Nitric oxide, 218. Nitro benzene, 56-57. benzoic acids, 61-62. Nitrogen, 213-214. Nitrous oxide, 215-218. Nitro phenols, 226. Olive oil as solvent, 355. Ortho boric acid, 65-67. Oxalic acid, 31, 175, 219, 310. Oxygen, 220-221. Ozone, 221. Papaverine, 222. Paraffine, 222. Pentane acid, 348. Pentanon, 137. Petroleum benzine, 58. Phenacetine, 8. Phenanthrene, 222-223. picrate, 223. Phenic acid, 223. Phenol, 223-225. Phenols (amido), 60. Phenol anilin mixtures, 38. Phenolate of phenyl ammonium, 226. Phenyl ammonium, phenolate, 226. amines, 17. di amines, 226. guanidine (tri), 141. hydrazine (benzoyl), 57. methane (tri), 201-203. salicylate, 227. thio carbamide, 344-346. thio urea, 344-346. Philocarpine salts, 231. Phosphorus, 227-228. Phosphomolybdic acid, 227. Phthalic acids, 228. anhydride, 228-220. Physostigmine salts, 229. Picric acid, 229-231. Piperine, 231. Platino amines, 233. Platinum alloys, 232. ammonium bromide, 20. bromide, 232. double chlorides, 232. potassium bromide, 232. Plumbic, see Lead. Potassium acetate, 233. acid formate, 251. acid nitrate, 257. acid oxalate, 259 acid sulphate, 264. alum, 13-14. antimony tartrate, 41. arsenate (di hydrogen), 233. barium ferrocyanide, 48. benzoate, 233. bicarbonate, 238-239.

bitartrate, 265-266.

Potassium borates, 234. boride (fluo), 234. bromate, 234-235. bromide, 235-238. bromide and chloride, 242. bromide + Hg(CN)2, 197. butyrate, 238. cadmium bromide, 71. cadmium chloride, 76. cadmium iodide, 78. cadmium sulphate, 79. calcium ferrocyanide, go. carbonate, 238-239. carbonate in aq. acetone, 6. carbonate in aq. ammonia, 18. carbonyl ferrocyanide, 250. chlorate + TlClO<sub>3</sub>, 335. chlorate + TlClO<sub>3</sub>, 335. chloride, 24, 241–248. chloride + BaCl<sub>2</sub>, 46. chloride + BaCl<sub>2</sub>, 46. chloride + CaCl<sub>2</sub>, 89. chloride + FeCl<sub>3</sub>, 159. chloride + HgCl<sub>2</sub>, 191. chloride + HgCl<sub>2</sub>, 191. chloride + KBr, 236. chloride + KBr, 236. chloride + NaCl, 300. chloride + Na2SO<sub>4</sub>, 312. chromates, 248-249. chromates, 248-249. chromates + K<sub>2</sub>SO<sub>4</sub>, 263. chromium alum, 116. chromium molybdate, 116. chromisulphocyanide, 250. chromocyanide, 250. cobalt sulphate, 262. copper chloride, 127. copper sulphate, 131, 262. citrate, 249. cyanate, 249. cyanide, 249. di chromate, 248-249. didymium sulphate, 133. ferricyanide, 250. ferrocyanide, 250. ferrosulphate, 262. fluoride, 250. fluo boride, 234. fluo germanate, 251. fluo titanate, 266. formate, 251. gold chloride, 141. hippurate, 142. hydroxide, 251. hypophosphate, 260. hypophosphite, 260. iodate, 252. iodide, 252-253. iodide and bromide, 236. iodide and chloride, 236. iodide and chloride, 243. iodide and PbI, 167. iodide and Hg(CN), 197. iron sulphate, 161. lead cobalticyanide, 165.

363

#### INDEX

Potassium lead ferricyanide, 165. magnesium chloride, 181. magnesium chromate, 181. magnesium cyanide, 181. magnesium sulphate, 185. manganese vanadate, 189. mercuric cyanide, 197. nickel sulphate, 212, 262. nitrate, 24, 29, 254–258. nitrate + Ba(NO<sub>2</sub>)<sub>2</sub>, 50. nitrate + KBr, 237. nitrate + KCl, 244. nitrate + NaCl, 300. nitrate + NaNO<sub>3</sub>, 308. nitrite, 254. oxalate, 258-259. perchlorate, 241 perchlorate + KMnO4, 260. persulphate, 264. permanganate, 259-260. phosphate, 260. phosphite, 260. phosphomolybdate, 261. platinic bromide, 232. platinic chloride, 232-233. selinate, 261. sodium carbonate, 239. sodium sulphate, 263. sodium sulphite, 264. sodium thio sulphate, 264. stannate, 261. sulphate, 24, 32, 261-264. sulphate + KCl, 245. sulphate + KNO<sub>3</sub>, 256. sulphate + NaCl, 300. sulphate + Na<sub>2</sub>SO<sub>4</sub>, 312. sulphocyanide, 265, 291. tartrate, 265-266. tellurium bromide, 332. thio cyanate, 291. tri chromate, 249. uranyl butyrate, 343. uranvl carbonate, 239. uranyl chloride, 342. uranyl nitrate, 343. uranyl sulphate, 344. vanadate, 266. zinc vanadate, 266. Praseodymium sulphate, 267. Propio nitril, 267. Propionic acid (amido), 10. aldehyde, 267. Propylene, 268. Propyl acetate, butyrate, etc., 267-268. acetic acid, 348. alcohol in aq. K<sub>2</sub>CO<sub>3</sub>, 230. ammonium iodide (tetra), 28. anisol (p), 35. bromide, chloride, etc., 268. formate, 268. malonic acid, 186. Pseudo cumidin, 132.

Pyrene, 268. Pyrogallol, 268. Pyrotartaric acid, 140. Quinine and salts, 117, 269. Racemic acid, 331. Resorcinol, 270 Rhodium salts, 270. sodium nitrite, 309. Rubidium alums, 15, 271. bromide, 271. brom iodide, 273 cadmium bromide, 72 cadmium chloride, 75. cadmium sulphate, 274. carbonate, 271. chlorate, 271. chloride, 272. chromate, 272. cobalt nitrate, 122. cobalt sulphate, 274 copper sulphate, 274. di chromate, 272. fluo boride, 271. fluo silicate, 273. gold chloride, 141. hydroxide, 272. iodate, 272. iodide, 272–273. iron sulphate, 274. nitrate, 273. mercuric chlorides, 192. perchlorate, 271. permanganate, 273. permanganate + KMnO<sub>4</sub>, 260. platinic chloride, 232. selenate, 273 silico tungstate. 273. sulphate, 273–274. tellurium bromide, 332. tellurium chloride, 272, 332 thallium chloride, 272. uranyl chloride, 342. uranyl nitrate, 343. Saccharine, 61. Salicylamid, 355. Salicylic acid, 61, 274–276. Salol, 227. Selenious acid, 277. Selenium, 276. Senföl, 205. Silicon, 277 Silico tungstic acid, 277. Silver, 278. and Pt alloys, 232. acetate, 278. benzoate, 270. borate, 279. bromate, 279-280. bromide, 280-281. butyrate, 281. caproates, 282. carbonate, 282. chlorate, 282.

364

Silver chloride, 283-286. chromate, 286. citrate, 286. cvanide, 286. di chromate, 286. di ethyl acetate, 279. di propyl acetate, 278. fluoride, 287 fulminate, 287. heptoate, 287. hydroxide + AgCl, 285. iodate, 287. iodide, 277, 287-288. iso butyrate, 281. malate, 288. methyl ethyl acetate, 279. mono chlor acetate, 278. nitrate, 288-289. nitrate + KNO<sub>3</sub>, 257. nitrite, 280. onanthylate, 287. oxalate, 289. oxide, 289. permanganate, 289. phosphate, 289. propionate, 200. salicylate, 290. sodium cyanide, 286. succinate, 290. sulphate, 290-291. sulphate + CaSO<sub>4</sub>, 101. sulphocyanide, 201. tartrate, 291. thallous cyanide, 286. thio cyanate, 291. tri methyl acetate, 279. valerates, 291–292. vanadate, 292. Sodium acetate, 202-203. acid formate, 305. alum, 15. ammonium sulphate, 34. ammonium sulphite, 35. arsenate, 293. benzoate, 293. bicarbonate, 22, 297–298. bicarbonate + NaCl, 300. bisulphate, 315. borate, 294. bromate, 294. bromide, 295. cadmium bromide, 72. cadmium iodide, 78. cadmium sulphate, 80. carbonate, 296-297. carbonate in aq. acetone, 6. chlorate, 298-299. chloride, 24, 299-299. chloride,  $48aCl_{1}$ , 46. chloride + BaCl\_{1}, 46. chloride + CaCl\_{1}, 89. chloride + FeCl\_{1}, 159. chloride + Hg(CN)<sub>2</sub>, 191. chloride + KCl, 245.

Sodium chloride + KNO<sub>2</sub>, 256. chloride + Na<sub>2</sub>CO<sub>2</sub>, 298. chloride + NaClO<sub>2</sub>, 299. chromates, 303-304. citrate, 305. copper sulphate, 131. ferrocyanide, 305. fluoride, 305. fluoride phosphate, 310. fluo silicate, 305. fluo zirconate, 316. formate, 305. gold chloride, 141. hydrogen arsenate, 293. hydroxide, 306. hydroxide + NaCl, 301. hypophosphates, 311. hypophosphite, 311. iodate, 306. iodide, 306. iodide + Hg(CN), 197. mercuric chloride, 193. mono chromate, 303-304. molybdate, 307. nitrate, 29, 307-309. nitrate + KNO<sub>3</sub>, 256. nitrate + NaCl, 301. nitrate + AgNO<sub>3</sub>, 288. nitrite, 309. p nitro phenol, 310. oxalate, 309-310. phosphates, 310. phosphites, 311. potassium carbonate, 239. potassium sulphate, 263. potassium sulphite, 264. potassium thio sulphate, 264. rhodonitrite, 309. salicylate, 275, 355. selinate, 311. silver cyanide, 286. stannate, 311. sulphate, 311-315. sulphate + CoSO<sub>4</sub>, 122. sulphate + CuSO<sub>4</sub>, 131. sulphate + FeSO<sub>4</sub>, 161. sulphate + NiSO, 211. sulphate + ZnSO, 353. sulphite, 315. telluriate, 315. tetra borate, 293. tetra chromate, 304. thio sulphate, 315. tri molybdate, 307. tungstate, 316. uranyl chromate, 343. wolfromate, 316. Stannous, stannic, see Tin. Strontium benzoate, 316. bicarbonate, 316. bromate, 316. bromide, 316. carbonate, 316.

Strontium chlorate, 317. chloride, 317. chromate, 318. di tungstate, 321. fluoride, 318. hydroxide, 318. hyposulphate, 170. iodate, 318. iodide, 318. iodide +  $Hg(CN)_{1}$ , 197. malate, 319. molybdate, 319. nitrate, 319. nitrate + Pb(NO<sub>2</sub>)<sub>2</sub>, 168. oxalate, 319. salicylate, 319. sulphate, 320. tartrate, 320-321. tungstate (di), 321. Strychnine and salts, 321. Suberic acid, 321. Suberic acid, 322-323. anhydride, 322. nitril, 323. Succinimid, 323. Sugar, 324–326. in aq. acetone, 7. + K. Butyrate, 238. + MgSO, 185. Sulphanilic acid, 326. Sulphonal, 355. Sulphonic acids, 57. Sulphur, 327–328. in anilin, 36. in benzene, 56. dioxide, 329-331. trioxide, HgO and H<sub>2</sub>O, 200. Syngenite, 101. Tannic acid, 331. Tartar emetic, 41. Tartaric acid, 331. Telluric acid, 332. Tellurium, 331. caesium bromide, 332. caesium chloride, 82, 332. chromium alum, 116. mercuric cyanide, 197. potassium bromide, 332. rubidium bromide, 332. rubidium chloride, 272, 332. Terephthalic acid, 228. Tetra boric acid, 67. chlor methane, 201. ethyl ammonium bromide, 20. ethyl ammonium chloride, 25. ethyl ammonium iodide, 27. methyl ammonium iodide, 26. propyl ammonium iodide, 28. sodium chromate, 304. Tetronal, 355.

Thallium alum, 14, 15, 332. bromate, 332. bromide, 332. caesium chloride, 82. carbonate, 338. chlorate, 333. chloride, 333-335. chromate, 335. copper sulphate, 338. cyanide, 336. fluoride, 336. iodate, 336. iodide, 336. nickel sulphate, 338. nitrate, 336. nitrate + KNO<sub>2</sub>, 257. oxalate, 336-337 perchlorate, 338. phosphate, 337. picrate, 337. platinic chloride, 232. rubidium chloride, 272. silver cyanide, 286. sulphate, 338. sulphide, 338. sulphite, 339. sulphocyanide, 338. vanadates, 339. zinc sulphate, 338. Thallous tri chromate, 335. Thallo thallic chloride, 335. Theobromine, 339. Thio urea (phenyl), 344-346. Thorium selenate, 339. sulphate, 339. Tin chloride, 340. hydroxide, 340. iodide, 340-341. sulphate, 341. Toluene, 341. Toluidine, 341-342. Toluyl acids, 341. Tolyl carbamide, 104. Tri acetin, 355. brom phenols, 226. chlor phenols, 226. chlor acetic acid, 6. ethyl amine, 16. methyl amine, 15. nitro benzene, 57. oxymethylene, 11. phenyl amine, 17. phenyl guanidine, 141. phenyl methane, 201. Trional, 355. Tungsto silicic acid, 277. Uranyl ammonium carbonate, 22. ammonium propionate, 343. chloride, 342.

Uranyl double chlorides, 342. double nitrates, 343. nitrate, 343. potassium butyrate, 343. potassium carbonate, 343. sodium chromate, 344. sodium chromate, 343. sulphate, 344. Urea, 344-346. Urethane, 347. Uric acid, 347. Valerianic acid, 348. Valeramide, etc., 355. Vanadium alum, 80. rubidium alum, 271. tellurium alum, 332. Ytterbium sulphate, 348. Yttrium iodate, 348. Zinc and Pt alloys, 232. Zinc acetate, 348. ammonium sulphate, 34, 129. Zinc benzoate, 348. bromide, 348. caesium sulphate, 84. carbonate, 349. chlorate, 349. chloride, 349-350. cyanide, 349-350. cyanide, 350. fluoride, 350. hydroxide, 350-351. iodate, 351. iodate, 351. oxalate, 352. potassium sulphate, 262. potassium vanadate, 266. sulphate, 352-353. sulphate + CuSO<sub>4</sub>, 130. sulphate, 353. tartrate, 353. tellurium sulphate, 334. valerate, 353. . • . . .

. .



# D. VAN NOSTRAND COMPANY

# 25 PARK PLACE

New York

# SHORT=TITLE CATALOG

OF

# Publications and Importations

OF

# SCIENTIFIC AND ENGINEERING BOOKS



This list includes the technical publications of the following English publishers: SCOTT, GREENWOOD & CO. CROSBY LOCKWOOD & SON

CONSTABLE & COMPANY, Ltd. TECHNICAL PUBLISHING CO. ELECTRICIAN PRINTING & PUBLISHING CO.

for whom D. Van Nostrand Company are American agents.

# SHORT-TITLE CATALOG

## OF THB

# Publications and Importations

#### OF

# D. VAN NOSTRAND COMPANY

# 25 PARK PLACE, N. Y.

**Prices** marked with an asterisk (\*) are NET. All bindings are in cloth unless otherwise noted.

\_\_\_\_\_

| A B C Code. (See Clausen-Thue.)                                      |            |    |
|----------------------------------------------------------------------|------------|----|
| Ar Code. (See Clausen-Thue.)                                         |            |    |
| Abbott, A. V. The Electrical Transmission of Energy                  | *\$5       | 00 |
| A Treatise on Fuel. (Science Series No. 9.)                          | 0          | 50 |
| Testing Machines. (Science Series No. 74.)                           | 0          | 50 |
| Adam, P. Practical Bookbinding. Trans. by T. E. Maw                  | *2         | 50 |
| Adams, H. Theory and Practice in Designing                           | *2         | 50 |
| Adams, H. C. Sewage of Sea Coast Towns                               | *2         | 00 |
| Adams, J. W. Sewers and Drains for Populous Districts                | 2          | 50 |
| Addyman, F. T. Practical X-Ray Work                                  | *4         | 00 |
| Adler, A. A. Theory of Engineering Drawing 8vo,                      | *2         | 00 |
| Principles of Parallel Projecting-line Drawing                       | *I         | 00 |
| Aikman, C. M. Manures and the Principles of Manuring 8vo,            | 2          | 50 |
| Aitken, W. Manual of the Telephone                                   | *8         | 00 |
| d'Albe, E. E. F., Contemporary Chemistry                             | *I         | 25 |
| Alexander, J. H. Elementary Electrical Engineering                   | 2          | 00 |
| Allan, W Strength of Beams Under Transverse Loads. (Science Series   |            |    |
| No. 19.) 16mo,                                                       | 0          | 50 |
| Theory of Arches. (Science Series No. 11.)                           |            | -  |
| Allen, H. Modern Power Gas Producer Practice and Applications. 12mo, | <b>*</b> 2 | 50 |
| Gas and Oil Engines                                                  | *4         | 50 |
| Anderson, F. A. Boiler Feed Water                                    | *2         | -  |
| Anderson, Capt. G. L. Handbook for the Use of Electricians           | 3          | 00 |
| Anderson, J. W. Prospector's Handbook                                | I          | 50 |
| Andés, L. Vegetable Fats and Oils                                    | *4         | -  |
| Animal Fats and Oils. Trans. by C. Salter                            | *4         |    |
| Drying Oils, Boiled Oil, and Solid and Liquid Driers                 | *5         |    |
| Iron Corrosion, Anti-fouling and Anti-corrosive Paints. Trans. by    | 5          |    |
| C. Salter                                                            | *4         | 00 |
| Andes, L. Oil Colors, and Printers' Ink. Trans. by A. Morris and     | -          |    |
| H. Robson                                                            | <b>*</b> 2 | 50 |

| Andés, L. Treatment of Paper for Special Purposes. Trans. by C. Salter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *2                                         | 50             |
| Andrews, E. S. Reinforced Concrete Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *1                                         | 25             |
| Annual Reports on the Progress of Chemistry. Nine Volumes now ready.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                                        | 100            |
| Vol. I. 1004, Vol. IX, 1012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                          |                |
| Vol. I. 1904, Vol. IX, 1912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                |
| A. S. Hardy. (Science Series No. 52.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                          | 50             |
| Armstrong, R., and Idell, F. E. Chimneys for Furnaces and Steam Boilers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | -              |
| (Science Series No. 1.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                          | 50             |
| Arnold, E. Armature Windings of Direct-Current Dynamos. Trans. by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                |
| F. B. DeGress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *2 1                                       | 00             |
| Ashe, S. W., and Keiley, J. D. Electric Railways. Theoretically and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                |
| Practically Treated. Vol. I. Rolling Stock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *2 :                                       | 50             |
| Ashe, S. W. Electric Railways. Vol. II. Engineering Preliminaries and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            |                |
| Direct Current Sub-Stations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *2 :                                       | 50             |
| Electricity: Experimentally and Practically Applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *2 1                                       |                |
| Atkins, W. Common Battery Telephony Simplified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *1 :                                       | 25             |
| Atkinson, A. A. Electrical and Magnetic Calculations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *1 :                                       |                |
| Atkinson, J. J. Friction of Air in Mines. (Science Series No. 14.) 16mo,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                          | 50             |
| Atkinson, J. J., and Williams, Jr., E. H. Gases Met with in Coal Mines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |                |
| (Science Series No. 13.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                          | 50             |
| Atkinson, P. The Elements of Electric Lighting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I                                          | 50             |
| The Elements of Dynamic Electricity and Magnetism 12mo,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 (                                        | 00             |
| Power Transmitted by Electricity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 (                                        | 00             |
| Auchincloss, W. S. Link and Valve Motions Simplified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *1 !                                       | 50             |
| Ayrton, H. The Electric Arc8vo,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *5                                         | 00             |
| of the second se |                                            |                |
| Bacon, F. W. Treatise on the Richards Steam-Engine Indicator 12mo,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I                                          | 00             |
| Bailes, G. M. Modern Mining Practice. Five Volumes 8vo, each,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 :                                        | 50             |
| Bailey, R. D. The Brewers' Analyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *5 0                                       | 00             |
| Baker, A. L. Quaternions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *1 :                                       | 25             |
| Thick-Lens Optics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *I 5                                       | 50             |
| Baker, Benj. Pressure of Earthwork. (Science Series No. 56.)16mo)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 PP                                       |                |
| Baker, I. O. Levelling. (Science Series No. 91.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 5                                        | 50             |
| Baker, M. N. Potable Water. (Science Series No. 61.) 16mo,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 5                                        | 50             |
| Sewerage and Sewage Purification. (Science Series No. 18.)16mo,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 5                                        | 50             |
| Baker, T. T. Telegraphic Transmission of Photographs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *1 2                                       | 15             |
| Bale, G. R. Modern Iron Foundry Practice. Two Volumes. 12mo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |                |
| Vol. I. Foundry Equipment, Materials Used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *2 5                                       | 50             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *1 5                                       | 50             |
| Vol. II. Machine Moulding and Moulding Machines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | 50             |
| Bale, M. P. Pumps and Pumping12mo,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IS                                         |                |
| Bale, M. P. Pumps and Pumping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15                                         |                |
| Bale, M. P.       Pumps and Pumping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 5<br>*4 5                                | 50             |
| Bale, M. P.       Pumps and Pumping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                |
| Bale, M. P.       Pumps and Pumping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *4 5                                       | 00             |
| Bale, M. P.       Pumps and Pumping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *4 5                                       | 50             |
| Bale, M. P.       Pumps and Pumping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *4 5<br>*2 0<br>*3 5                       | 00<br>50<br>50 |
| Bale, M. P.       Pumps and Pumping.       12m0,         Ball, J. W.       Concrete Structures in Railways. (In Press.)       8vo,         Ball, R. S.       Popular Guide to the Heavens.       8vo,         —       Natural Sources of Power. (Westminster Series.)       8vo,         Ball, W. V.       Law Affecting Engineers.       8vo,         Bankson, Lloyd.       Slide Valve Diagrams. (Science Series No. 108.).16mo,       Barba, J.         Barham, G. B.       Development of the Incandescent Electric Lamp.       8vo,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *4 5<br>*2 0<br>*3 5                       |                |
| Bale, M. P.       Pumps and Pumping.       12mo,         Ball, J. W.       Concrete Structures in Railways. (In Press.)       8vo,         Ball, R. S.       Popular Guide to the Heavens.       8vo,         —       Natural Sources of Power. (Westminster Series.)       8vo,         Ball, W. V.       Law Affecting Engineers.       8vo,         Bankson, Lloyd.       Slide Valve Diagrams. (Science Series No. 108.).16mo,         Barba, J.       Use of Steel for Constructive Purposes       12mo,         Barham, G. B.       Development of the Incandescent Electric Lamp.       8vo,         Barker, A.       Textiles and Their Manufacture. (Westminster Series.).       8vo,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *4 5<br>*2 0<br>*3 5<br>1 0                |                |
| Bale, M. P.       Pumps and Pumping.       12m0,         Ball, J. W.       Concrete Structures in Railways. (In Press.)       8vo,         Ball, R. S.       Popular Guide to the Heavens.       8vo,         —       Natural Sources of Power. (Westminster Series.)       8vo,         Ball, W. V.       Law Affecting Engineers.       8vo,         Bankson, Lloyd.       Slide Valve Diagrams. (Science Series No. 108.).16mo,       Barba, J.         Barham, G. B.       Development of the Incandescent Electric Lamp.       8vo,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *4 5<br>*2 0<br>*3 5<br>0 5<br>1 0<br>*2 0 |                |

.

| Barnard, J. H. The Naval Militiaman's Guide 16mo, leather                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 25 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Barnard, Major J. G. Rotary Motion. (Science Series No. 90.) 16mo,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 50 |
| Barrus, G. H. Boiler Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 00 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 00 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 00 |
| Barwise, S. The Purification of Sewage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 50 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 00 |
| Bates, E. L., and Charlesworth, F. Practical Mathematics 12mo,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| Part I. Preliminary and Elementary Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50   |
| Practical Geometry and Graphics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50   |
| Bechhold. Colloids in Biology and Medicine. Trans. by J. G. Bullowa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| (In Press.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| Beckwith, A. Pottery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60   |
| Bedell, F., and Pierce, C. A. Direct and Alternating Current Manual.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| Beech, F. Dyeing of Cotton Fabrics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00   |
| Beech, F. Dyeing of Cotton Fabrics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00   |
| Dyeing of Woolen Fabrics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00   |
| Beggs, G. E. Stresses in Railway Girders and Bridges(In Press.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50   |
| Proportions of Piers used in Bridges. (Science Series No. 4.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| 16mo, o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50   |
| Bennett, H. G. The Manufacture of Leather                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50   |
| - Leather Trades (Outlines of Industrial Chemistry). 8vo (In Pres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s.)  |
| Bernthsen, A. A Text - book of Organic Chemistry. Trans. by G.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| M'Gowan12m0, *2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50   |
| Berry, W. J. Differential Equations of the First Species. 12mo. (In Preparatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (m_) |
| Bersch, J. Manufacture of Mineral and Lake Pigments. Trans. by A. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OU   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25   |
| Blaine, R. G. The Calculus and Its Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00   |
| and the second s | 00   |
| 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50   |
| Blücher, H. Modern Industrial Chemistry. Trans. by J. P. Millington.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| 8vo, *7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50   |
| Blyth, A. W. Foods: Their Composition and Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50   |
| Poisons: Their Effects and Detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |

| Böckmann, F. Celluloid                                                | *2 50  |
|-----------------------------------------------------------------------|--------|
| Bodmer, G. R. Hydraulic Motors and Turbines                           | 5 00   |
| Boileau, J. T. Traverse Tables                                        | 5 00   |
| Bonney, G. E. The Electro-platers' Handbook                           | I 20   |
| Booth, N. Guide to the Ring-spinning Frame                            | *1 25  |
| Booth, W. H. Water Softening and Treatment                            | *2 50  |
| Superheaters and Superheating and Their Control                       | *I 50  |
| Bottcher, A. Cranes: Their Construction, Mechanical Equipment and     |        |
| Working. Trans. by A. Tolhausen                                       | *10 00 |
| Bottler, M. Modern Bleaching Agents. Trans. by C. Salter 12mo,        | *2 50  |
| Bottone, S. R. Magnetos for Automobilists                             | *I 00  |
| Boulton, S. B. Preservation of Timber. (Science Series No. 82.) 16mo, | 0 50   |
| Bourcart, E. Insecticides, Fungicides and Weedkillers                 | *4 50  |
| Bourgougnon, A. Physical Problems. (Science Series No. 113.) 16mo,    | 0 50   |
| Bourry, E. Treatise on Ceramic Industries. Trans. by A. B. Searle.    |        |
| 8vo,                                                                  | *5 00  |
| Bow, R. H. A Treatise on Bracing                                      | I 50   |
| Bowie, A. J., Jr. A Practical Treatise on Hydraulic Mining            | 5 00   |
| Bowker, W. R. Dynamo, Motor and Switchboard Circuits                  | *2 50  |
| Bowles, O. Tables of Common Rocks. (Science Series No. 125.).16mo,    | 0 50   |
| Bowser, E. A. Elementary Treatise on Analytic Geometry 12mo,          | I 75   |
| Elementary Treatise on the Differential and Integral Calculus. 12mo,  | 2 25   |
| Elementary Treatise on Analytic Mechanics                             | 3 00   |
| Elementary Treatise on Hydro-mechanics                                | 2 50   |
| A Treatise on Roofs and Bridges 12mo,                                 | *2 25  |
| Boycott, G. W. M. Compressed Air Work and Diving                      | *4.00  |
| Bragg, E. M. Marine Engine Design                                     | *2 00  |
| Brainard, F. R. The Sextant. (Science Series No. 101.)                |        |
| Brassey's Naval Annual for 1911                                       | *6 00  |
| Brew, W. Three-Phase Transmission                                     | *2 00  |
| Brewer, R. W. A. Motor Car Construction                               | *2 00  |
| Briggs, R., and Wolff, A. R. Steam-Heating. (Science Series No.       |        |
| 67.)                                                                  | 0 50   |
| Bright, C. The Life Story of Sir Charles Tilson Bright                | *4 50  |
| Brislee, T. J. Introduction to the Study of Fuel. (Outlines of Indus- |        |
| trial Chemistry.)                                                     | *3 00  |
| British Standard Sections 8x15                                        | °I 00  |
| Complete list of this series (45 parts) sent on application.          |        |
| Broadfoot, S. K. Motors, Secondary Batteries. (Installation Manuals   |        |
| Series.)                                                              | *0 75  |
| Broughton, H. H. Electric Cranes and Hoists                           | *9 00  |
| Brown, G. Healthy Foundations. (Science Series No. 80.) 16mo,         | 0 50   |
| Brown, H. Irrigation                                                  | *5 00  |
| Brown, Wm. N. The Art of Enamelling on Metal                          | *I 00  |
| Brown, Wm. N. Handbook on Japanning and Enamelling 12mo,              | *1 50  |
| House Decorating and Painting                                         | *I 50  |
| History of Decorative Art                                             | *I 25  |
| Dipping, Burnishing, Lacquering and Bronzing Brass Ware 12mo,         | *I 00  |
| Workshop Wrinkles                                                     | °1 00  |
| Browne, R. E. Water Meters. (Science Series No. 81.) 16mo,            | 0 50   |
| Bruce, E. M. Pure Food Tests                                          | *1 25  |

| Bruhns, Dr. New Manual of Logarithms                                                                                                              | 2 00    |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| bruins, bit new manual of Logariums                                                                                                               | 2 00    |
| Brunner, R. Manufacture of Lubricants, Shoe Polishes and Leather                                                                                  | 2 50    |
| Dressings. Trans. by C. Salter                                                                                                                    |         |
| Buel, R. H. Safety Valves. (Science Series No. 21.)                                                                                               | *3 00   |
| Bulman, H. F., and Redmayne, R. S. A. Colliery Working and Manage-                                                                                | 0 50    |
|                                                                                                                                                   | i       |
| ment                                                                                                                                              | 6 00    |
| Burns, D. Safety in Coal Mines                                                                                                                    | *I 00   |
| Burstall, F. W. Energy Diagram for Gas. With Text                                                                                                 | 1 50    |
| Diagram. Sold separately                                                                                                                          | °I 00   |
| Burt, W. A. Key to the Solar Compass                                                                                                              | 2 50    |
| Burton, F. G. Engineering Estimates and Cost Accounts 12mo,                                                                                       | *1 50   |
| Buskett, E. W. Fire Assaying                                                                                                                      | "I 25   |
| Butler, H. J. Motor Bodies and Chassis                                                                                                            | *2 50   |
| Byers, H. G., and Knight, H. G. Notes on Qualitative Analysis 8vo,                                                                                | *1 50   |
| Cale III Delet Contro la dia Calendra                                                                                                             | a main  |
| Cain, W. Brief Course in the Calculus                                                                                                             | °I 75   |
|                                                                                                                                                   | 0 50    |
|                                                                                                                                                   | 0 50    |
| Practical Designing Retaining of Walls. (Science Series No. 3.)                                                                                   | -       |
| Theory of Steel-concrete Arches and of Vaulted Structures.                                                                                        | 0 50    |
|                                                                                                                                                   | -       |
| (Science Series No. 42.)                                                                                                                          | 0 50    |
|                                                                                                                                                   | 0 50    |
|                                                                                                                                                   | 0 50    |
| Campin, F. The Construction of Iron Roofs                                                                                                         | 2 00    |
| Carpenter, F. D. Geographical Surveying. (Science Series No. 37.).16mo,<br>Carpenter, R. C., and Diederichs, H. Internal Combustion Engines. 8vo, |         |
| Carter, E. T. Motive Power and Gearing for Electrical Machinery 8vo,                                                                              | *5 00   |
| Carter, H. A. Ramie (Rhea), China Grass                                                                                                           | *5 00   |
| Carter, H. R. Modern Flax, Hemp, and Jute Spinning                                                                                                | 3 00    |
| Cary, E. R. Solution of Railroad Problems with the Slide Rule 16mo,                                                                               | 1 00    |
| Cathcart, W. L. Machine Design. Part I. Fastenings                                                                                                | *3 00   |
| Cathcart, W. L., and Chaffee, J. I. Elements of Graphic Statics                                                                                   | *3 00   |
|                                                                                                                                                   | I 50    |
| Caven, R. M., and Lander, G. D. Systematic Inorganic Chemistry. 12mo,                                                                             | *2 00   |
| Chalkley, A. P. Diesel Engines                                                                                                                    | *3 00   |
| Chambers' Mathematical Tables                                                                                                                     | 1 75    |
| Chambers, G. F. Astronomy                                                                                                                         | *1 50   |
| Charnock, G. F. Workshop Practice. (Westminster Series.)8vo (In )                                                                                 |         |
| Charpentier, P. Timber                                                                                                                            | *6 00   |
| Chatley, H. Principles and Designs of Aeroplanes. (Science Series                                                                                 | 0.00    |
| No. 126)                                                                                                                                          | 0 50    |
| How to Use Water Power                                                                                                                            | 1 00    |
| Gyrostatic Balancing                                                                                                                              | "I 00   |
|                                                                                                                                                   | Press.) |
| Child, C. T. The How and Why of Electricity                                                                                                       | 1 00    |
| Christie, W. W. Boiler-waters, Scale, Corrosion, Foaming                                                                                          | 3 00    |
| Chimney Design and Theory                                                                                                                         | *3 00   |
|                                                                                                                                                   | 0 50    |
|                                                                                                                                                   | *2 00   |
|                                                                                                                                                   |         |

| D. VAN NOSTRAND COMPANY'S SHORT TITLE CATALOG 7                                                       |
|-------------------------------------------------------------------------------------------------------|
| Church's Laboratory Guide. Rewritten by Edward Kinch                                                  |
| Clark, A. G. Motor Car Engineering.                                                                   |
| Vol. I. Construction*3 00                                                                             |
| Vol. II. Design (In Press.)                                                                           |
| Clark, C. H. Marine Gas Engines                                                                       |
| Clark, D. K. Rules, Tables and Data for Mechanical Engineers 8vo, 5 oo                                |
| Fuel: Its Combustion and Economy 12mo, 1 50                                                           |
| The Mechanical Engineer's Pocketbook                                                                  |
| Tramways: Their Construction and Working                                                              |
| Clark, J. M. New System of Laying Out Railway Turnouts 12mo, 1 00                                     |
| Clausen-Thue, W. A B C Telegraphic Code. Fourth Edition 12mo, *5 00                                   |
| Fifth Edition         8vo, *7 00           — The A 1 Telegraphic Code         8vo, *7 50              |
| Cleemann, T. M. The Railroad Engineer's Practice                                                      |
| Clerk, D., and Idell, F. E. Theory of the Gas Engine. (Science Series                                 |
| No. 62.)                                                                                              |
| Clevenger, S. R. Treatise on the Method of Government Surveying.                                      |
| 16mo, morocco                                                                                         |
| Clouth, F. Rubber, Gutta-Percha, and Balata                                                           |
| Cochran, J. Concrete and Reinforced Concrete Specifications 8vo (In Press.)                           |
| Treatise on Cement Specifications                                                                     |
| Coffin, J. H. C. Navigation and Nautical Astronomy 12mo, *3 50                                        |
| Colburn, Z., and Thurston, R. H. Steam Boiler Explosions. (Science                                    |
| Series No. 2.)                                                                                        |
| Cole, R. S. Treatise on Photographic Optics                                                           |
| Coles-Finch, W. Water, Its Origin and Use                                                             |
| tomis, j. E. Userin Anoys and Memoranda for Goldsinius, jewerers.                                     |
| Collis, A. G. Switch-gear Design                                                                      |
| Constantine, E. Marine Engineers, Their Qualifications and Duties. 8vo, *2 00                         |
| Coombs, H. A. Gear Teeth. (Science Series No. 120.)                                                   |
| Cooper, W. R. Primary Batteries                                                                       |
| " The Electrician " Primers                                                                           |
| Part I*1 50                                                                                           |
| Part II                                                                                               |
| Part III                                                                                              |
| Copperthwaite, W. C. Tunnel Shields4to, *9 00<br>Corey, H. T. Water Supply Engineering8vo (In Press.) |
|                                                                                                       |
| — Water and Water-Supply. (Science Series No. 50.)16mo, 0 50                                          |
| Cornwall, H. B. Manual of Blow-pipe Analysis                                                          |
| Courtney, C. F. Masonry Dams                                                                          |
| Cowell, W. B. Pure Air, Ozone, and Water                                                              |
| Craig, T. Motion of a Solid in a Fuel. (Science Series No. 49.). 16mo, 0 50                           |
| Wave and Vortex Motion. (Science Series No. 43.)                                                      |
| Cramp, W. Continuous Current Machine Design                                                           |
| Creedy, F. Single Phase Commutator Motors 8vo, *2 00                                                  |
| Crocker, F. B. Electric Lighting. Two Volumes. 8vo.                                                   |
| Vol. I. The Generating Plant                                                                          |
| Vol. II. Distributing Systems and Lamps                                                               |

| Crocker, F. B., and Arendt, M. Electric Motors                            | *2 50           |
|---------------------------------------------------------------------------|-----------------|
| Crocker, F. B., and Wheeler, S. S. The Management of Electrical Ma-       | 1               |
| chinery                                                                   | *I 00           |
| tions. (Westminster Series.)                                              | ** **           |
| Crosskey, L. R. Elementary Perspective                                    | *2 00<br>I 00   |
| Crosskey, L. R., and Thaw, J. Advanced Perspective                        | 1 50            |
| Culley, J. L. Theory of Arches. (Science Series No. 87.) 16mo,            | 0 50            |
|                                                                           | 0.30            |
| Dadourian, H. M. Analytical Mechanics                                     | *3 00           |
| Danby, A. Natural Rock Asphalts and Bitumens                              | *2 50           |
| Davenport, C. The Book. (Westminster Series.)                             | *2 00           |
| Davies, D. C. Metalliferous Minerals and Mining 8vo,                      | 5 00            |
| Earthy Minerals and Mining                                                | 5 00            |
| Davies, E. H. Machinery for Metalliferous Mines                           | 8 00            |
| Davies, F. H. Electric Power and Traction                                 | *2 00           |
| Foundations and Machinery Fixing. (Installation Manual Series.)           |                 |
| 1 <sup>6</sup> 16mo,                                                      | 00 I*           |
| Dawson, P. Electric Traction on Railways                                  | °9 00           |
| Day, C. The Indicator and Its Diagrams                                    | 2 00            |
| Deerr, N. Sugar and the Sugar Cane                                        | *8 00           |
| Deite, C. Manual of Soapmaking. Trans. by S. T. King                      | 5 00            |
| De la Coux, H. The Industrial Uses of Water. Trans. by A Morris. 8vo,     | *4 50           |
| Del Mar, W. A. Electric Power Conductors                                  | *2 00<br>*10 00 |
| — Diamond Drilling for Gold.                                              | 10 00           |
| De Roos, J. D. C. Linkages. (Science Series No. 47.)                      | 0 50            |
| Derr, W. L. Block Signal Operation                                        | 1 50            |
| — Maintenance-of-Way Engineering                                          | - 50            |
| Desaint, A. Three Hundred Shades and How to Mix Them 8vo,                 | *10 00          |
| De Varona, A. Sewer Gases. (Science Series No. 55.)                       | 0 50            |
| Devey, R. G. Mill and Factory Wiring. (Installation Manuals Series.)      |                 |
|                                                                           | *I 00 I*        |
| Dibdin, W. J. Public Lighting by Gas and Electricity                      | *8 00           |
| Purification of Sewage and Water                                          | 6 50            |
| Dichmann, Carl. Basic Open-Hearth Steel Process                           | *3 50           |
| Dieterich, K. Analysis of Resins, Balsams, and Gum Resins 8vo,            | *3 00           |
| Dinger, Lieut. H. C. Care and Operation of Naval Machinery 12mo,          | *2 00           |
| Dixon, D. B. Machinist's and Steam Engineer's Practical Calculator.       | 1263            |
| I6mo, morocco,                                                            | 1 25            |
| Doble, W. A. Power Plant Construction on the Pacific Coast (In Press.)    |                 |
| Dorr, B. F. The Surveyor's Guide and Pocket Table-book.<br>16mo, morocco, | 2 22            |
| Down, P. B. Handy Copper Wire Table                                       | 2 00<br>"I 00   |
| Draper, C. H. Elementary Text-book of Light, Heat and Sound 12mo,         | 1 00            |
|                                                                           | *2 00           |
| Duckwall, E. W. Canning and Preserving of Food Products 8vo,              | *5 00           |
| Dumesny, P., and Noyer, J. Wood Products, Distillates, and Extracts.      | 1               |
| 8vo,                                                                      | *4 50           |
| Duncan, W. G., and Penman, D. The Electrical Equipment of Collieries.     | 15 2            |
| 8vo,                                                                      | *4 00           |

| Dunstan, A. E., and Thole, F. B. T. Textbook of Practical Chemistry.        |              |    |
|-----------------------------------------------------------------------------|--------------|----|
| I2mo.                                                                       | *I .         | 40 |
| Duthie, A. L. Decorative Glass Processes. (Westminster Series.). 8vo,       | *2 1         |    |
| Dwight, H. B. Transmission Line Formulas                                    | *2 (         |    |
| Dyson, S. S. Practical Testing of Raw Materials                             | *5           | 00 |
| Dyson, S. S., and Clarkson, S. S. Chemical Works                            | *7 :         |    |
| A REAL PROPERTY AND A REAL PROPERTY AND |              |    |
| Eccles, R. G., and Duckwall, E. W. Food Preservatives 8vo, paper,           | 0 9          | 50 |
| Eddy, H. T. Researches in Graphical Statics                                 | 1            | 50 |
| Maximum Stresses under Concentrated Loads                                   | I            |    |
| Edgcumbe, K. Industrial Electrical Measuring Instruments 8vo,               | *2 :         | 50 |
| Eissler, M. The Metallurgy of Gold                                          | 7 5          | 50 |
| The Hydrometallurgy of Copper                                               | *4 5         | 50 |
| The Metallurgy of Silver                                                    | 4 (          | 00 |
| The Metallurgy of Argentiferous Lead                                        | 5 0          |    |
| Cyanide Process for the Extraction of Gold                                  | 3 (          |    |
| - A Handbook on Modern Explosives                                           | 5 0          |    |
| Ekin, T. C. Water Pipe and Sewage Discharge Diagrams folio,                 | *3 (         | 00 |
| Eliot, C. W., and Storer, F. H. Compendious Manual of Qualitative           | -            | -  |
| Chemical Analysis                                                           | *1 3         | -  |
| Elliot, Major G. H. European Light-house Systems                            | 5 0          |    |
| - Applied Thermodynamics                                                    | 4            |    |
| <ul> <li>— Flying Machines To-day</li></ul>                                 | *4 5         |    |
|                                                                             | 4 :<br>*I (  |    |
| Erfurt, J. Dyeing of Paper Pulp. Trans. by J. Hubner                        | *7 5         |    |
| Ermen, W. F. A. Materials Used in Sizing                                    | *2 0         | -  |
| Evans, C. A. Macadamized Roads                                              | -            |    |
| Ewing, A. J. Magnetic Induction in Iron                                     | *4 0         | 00 |
|                                                                             |              |    |
| Fairie, J. Notes on Lead Ores                                               | *I 0         | 00 |
| Notes on Pottery Clays                                                      | *1 5         | 50 |
| Fairley, W., and Andre, Geo. J. Ventilation of Coal Mines. (Science         |              |    |
| Series No. 58.)                                                             | 0 5          | 50 |
| Fairweather, W. C. Foreign and Colonial Patent Laws                         | *3 0         |    |
| Fanning, J. T. Hydraulic and Water-supply Engineering                       | *5 0         | 00 |
| Fauth, P. The Moon in Modern Astronomy. Trans. by J. McCabe.                |              |    |
| Svo,                                                                        | *2 0         |    |
| Fay, I. W. The Coal-tar Colors                                              | 4 0          |    |
| Fernbach, R. L. Glue and Gelatine                                           | "3 0<br>"1 0 |    |
| Fischer, E. The Preparation of Organic Compounds. Trans. by R. V.           | 10           | 0  |
| Stanford                                                                    | *1 2         | 25 |
| Fish, J. C. L. Lettering of Working DrawingsOblong 8vo,                     | IC           | -  |
| Fisher, H. K. C., and Darby, W. C. Submarine Cable Testing 8vo,             | *3 5         |    |
| Fiske, Lieut. B. A. Electricity in Theory and Practice                      | 2 5          | -  |
| Fleischmann, W. The Book of the Dairy. Trans. by C. M. Aikman.              | - 0          | 0  |
| Bvo,                                                                        | 4 (          | 00 |
| Fleming, J. A. The Alternate-current Transformer. Two Volumes. 8vo.         |              |    |
| Vol. L. The Induction of Electric Currents                                  | *5 0         | 00 |
| Vol. II. The Utilization of Induced Currents                                | *5 0         | 00 |
|                                                                             |              |    |

| The second se | -    |                |
|-----------------------------------------------------------------------------------------------------------------|------|----------------|
| Fleming, J. A. Propagation of Electric Currents                                                                 | *3   | 00             |
| Centenary of the Electrical Current                                                                             |      | 50             |
| Electric Lamps and Electric Lighting                                                                            | *3   | 00             |
| Electrical Laboratory Notes and Forms                                                                           |      | 00             |
| -A Handbook for the Electrical Laboratory and Testing Room. Two                                                 |      | -              |
| Volumes                                                                                                         |      | -              |
|                                                                                                                 | -    | 00             |
| Fleury, P. Preparation and Uses of White Zinc Paints                                                            | 72   | 50             |
| Fleury, H. The Calculus Without Limits or Infinitesimals. Trans. by                                             |      |                |
| C. O. Mailloux (In Press.)                                                                                      |      |                |
| Flynn, P. J. Flow of Water. (Science Series No. 84.)                                                            | 0    | 50             |
|                                                                                                                 |      | 50             |
| Foley, N. British and American Customary and Metric Measures folio,                                             |      | 00             |
| Foster, H. A. Electrical Engineers' Pocket-book. (Seventh Edition.)                                             | 3    | 00             |
|                                                                                                                 |      |                |
| 12mo, leather,                                                                                                  | -    | 00             |
| Engineering Valuation of Public Utilities and Factories 8vo,                                                    | *3   | 00             |
| Handbook of Electrical Cost Data                                                                                |      |                |
| Foster, Gen. J. G. Submarine Blasting in Boston (Mass.) Harbor 4to,                                             | 3    | 50             |
| Fowle, F. F. Overhead Transmission Line Crossings                                                               |      | 50             |
|                                                                                                                 | -    | 30             |
| Fox, W. G. Transition Curves. (Science Series No. 110.)16mo,                                                    | -    | -              |
| Fox, w. G. Transition Curves. (Science Series No. 110.)                                                         | •    | 50             |
| Fox, W., and Thomas, C. W. Practical Course in Mechanical Draw-                                                 |      |                |
| ing                                                                                                             | I    | 25             |
| Foye, J. C. Chemical Problems. (Science Series No. 69.)16mo,                                                    | 0    | 50             |
| Handbook of Mineralogy. (Science Series No. 86.)                                                                | 0    | 50             |
| Francis, J. B. Lowell Hydraulic Experiments                                                                     | 15   |                |
| Freudemacher, P. W. Electrical Mining Installations. (Installation                                              |      | -              |
|                                                                                                                 |      |                |
| Manuals Series.)                                                                                                | I.   | and the second |
| Frith, J. Alternating Current Design                                                                            | *2   | 00             |
| Fritsch, J. Manufacture of Chemical Manures. Trans. by D. Grant.                                                |      |                |
| 8vo,                                                                                                            | *4   | 00             |
| Frye, A. I. Civil Engineers' Pocket-book 12mo, leather,                                                         | *5   | 00             |
| Fuller, G. W. Investigations into the Purification of the Ohio River.                                           | -    |                |
|                                                                                                                 | *10  | 00             |
| 4to,<br>Furnell, J. Paints, Colors, Oils, and Varnishes                                                         | *1   |                |
| Caladara I W I Fastherada                                                                                       |      | 00             |
| Gairdner, J. W. I. Earthwork                                                                                    | 2    |                |
| Gant, L. W. Elements of Electric Traction                                                                       | 2    | 10 March 10    |
| Garcia, A. J. R. V. Spanish-English Railway Terms                                                               | *4 : | 50             |
| Garforth, W. E. Rules for Recovering Coal Mines after Explosions and                                            |      |                |
| Fires                                                                                                           | IS   | 50             |
| Gaudard, J. Foundations. (Science Series No. 34.)                                                               | 0    | 10.00          |
| Gear, H. B., and Williams, P. F. Electric Central Station Distribution                                          |      |                |
|                                                                                                                 | 1.   |                |
| Systems                                                                                                         | 3    |                |
| Geerligs, H. C. P. Cane Sugar and Its Manufacture                                                               | *5 0 |                |
| World's Cane Sugar Industry                                                                                     | *5   |                |
| Geikie, J. Structural and Field Geology                                                                         | *4 ( | 0.00           |
| Gerber, N. Analysis of Milk, Condensed Milk, and Infants' Milk-Food. 8vo,                                       | I    | 25             |
| Gerhard, W. P. Sanitation, Watersupply and Sewage Disposal of Country                                           |      | -              |
| A Houses                                                                                                        | *2 1 | 00             |
| Gas Lighting. (Science Series No. 111.)                                                                         | 0    |                |
|                                                                                                                 |      | 2.2            |
| Tousenoid wastes. (Ocience Series No. 97.)                                                                      | 0 :  |                |
| House Drainage. (Science Series No. 63.)                                                                        | 0 1  | 50             |

| Gerhard, W. P. Sanitary Drainage of Buildings. (Science Series No. 03.)         |       |
|---------------------------------------------------------------------------------|-------|
| 16mo,                                                                           | 0 50  |
| Gerhardi, C. W. H. Electricity Meters                                           | *4 00 |
| Geschwind, L. Manufacture of Alum and Sulphates. Trans. by C.                   | 4 00  |
| Salter                                                                          | *5 00 |
|                                                                                 |       |
| Gibbs, W. E. Lighting by Acetylene                                              | *1 50 |
| Physics of Solids and Fluids. (Carnegie Technical School's Text-                |       |
| books.)                                                                         | *1 50 |
| Gibson, A. H. Hydraulics and Its Application                                    | *5 00 |
| Water Hammer in Hydraulic Pipe Lines                                            | *2 00 |
| Gilbreth, F. B. Motion Study 12mo,                                              | *2 00 |
| Primer of Scientific Management                                                 | *I 00 |
| Gillmore, Gen. Q. A. Limes, Hydraulic Cements and Mortars 8vo,                  | 4 00  |
| Roads, Streets, and Pavements                                                   | 2 00  |
| Golding, H. A. The Theta-Phi Diagram                                            | *1 25 |
| Goldschmidt, R. Alternating Current Commutator Motor                            |       |
| Condictinitity, K. Alternating Current Commutator Motor                         | *3 00 |
| Goodchild, W Precious Stones. (Westminster Series.)8vo,                         | *2 00 |
| Goodeve, T. M. Textbook on the Steam-engine                                     | 2 00  |
| Gore, G. Electrolytic Separation of Metals                                      | *3 50 |
| Gould, E. S. Arithmetic of the Steam-engine                                     | I 00  |
| Calculus. (Science Series No. 112.)                                             | 0 50  |
| High Masonry Dams. (Science Series No. 22.)                                     | 0 50  |
| Practical Hydrostatics and Hydrostatic Formulas. (Science Series                |       |
| No. 117.)                                                                       | 0 50  |
| Grant, J. Brewing and Distilling. (Westminster Series.) 8vo (In Press.)         |       |
|                                                                                 | 30    |
| Gratacap, L. P. A Popular Guide to Minerals                                     | *3 00 |
| Gray, J. Electrical Influence Machines                                          | 2 00  |
| Marine Boiler Design 12mo,                                                      | *1 25 |
| Greenhill, G. Dynamics of Mechanical Flight                                     | *2 50 |
| Greenwood, E. Classified Guide to Technical and Commercial Books. 8vo,          | *3 00 |
| Gregorius, R. Mineral Waxes. Trans. by C. Salter                                | *3 00 |
| Griffiths, A. B. A Treatise on Manures                                          | 3 00  |
| Dental Metallurgy                                                               | *3 50 |
| Gross, E. Hops                                                                  | *4 50 |
| Grossman, J. Ammonia and Its Compounds                                          | *1 25 |
| Groth, L. A. Welding and Cutting Metals by Gases or Electricity 8vo,            | *3 00 |
| Grover, F. Modern Gas and Oil Engines                                           | *2 00 |
|                                                                                 |       |
| Gruner, A. Power-loom Weaving                                                   | *3 00 |
| Güldner, Hugo. Internal Combustion Engines. Trans. by H. Diederichs.            |       |
| 4to, *                                                                          |       |
| Gunther, C. O. Integration12mo,                                                 | *1 25 |
| Gurden, R. L. Traverse Tablesfolio, half morocco,                               | *7 50 |
| Guy, A. E. Experiments on the Flexure of Beams                                  | *I 25 |
| or standing of the later of the standing of the standing of the standing of the |       |
| Haeder, H. Handbook on the Steam-engine. Trans. by H. H. P.                     |       |
| Powles                                                                          | 3 00  |
| Hainbach, R. Pottery Decoration. Trans. by C. Slater                            | *3 00 |
| Haenig, A. Emery and Emery Industry                                             | *2 50 |
| Hale, W. J. Calculations of General Chemistry                                   | *1 00 |
|                                                                                 |       |
| Hall, C. H. Chemistry of Paints and Paint Vehicles                              | *2 00 |
| Hall, R. H. Governors and Governing Mechanism                                   | *2 00 |

| Hall, W. S. Elements of the Differential and Integral Calculus8vo,         | *2 25                                                                                                                                                |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Descriptive Geometry                                                       | *3 50                                                                                                                                                |
| Haller, G. F., and Cunningham, E. T. The Tesla Coil                        | *1 25                                                                                                                                                |
| Halsey, F. A. Slide Valve Gears 12mo,                                      | I 50                                                                                                                                                 |
| The Use of the Slide Rule. (Science Series No. 114.)                       | 0 50                                                                                                                                                 |
| Worm and Spiral Gearing. (Science Series No. 116.) 16mo,                   | 0 50                                                                                                                                                 |
| Hamilton, W. G. Useful Information for Railway Men 16mo,                   | I 00                                                                                                                                                 |
| Hammer, W. J. Radium and Other Radio-active Substances8vo,                 | *I 00                                                                                                                                                |
| Hancock, H. Textbook of Mechanics and Hydrostatics                         | I 50                                                                                                                                                 |
| Hardy, E. Elementary Principles of Graphic Statics12mo,                    | *1 50                                                                                                                                                |
| Harrison, W. B. The Mechanics' Tool-book                                   | I 50                                                                                                                                                 |
| Hart, J. W. External Plumbing Work 8vo,                                    | *3 00                                                                                                                                                |
| Hints to Plumbers on Joint Wiping                                          | *3 00                                                                                                                                                |
| Principles of Hot Water Supply                                             | *3 00                                                                                                                                                |
| Sanitary Plumbing and Drainage                                             | *3 00                                                                                                                                                |
| Haskins, C. H. The Galvanometer and Its Uses                               | I 50                                                                                                                                                 |
| Hatt, J. A. H. The Coloristsquare 12mo,                                    | *1 50                                                                                                                                                |
| Hausbrand, E. Drying by Means of Air and Steam. Trans. by A. C.            |                                                                                                                                                      |
| Wright                                                                     | *2 00                                                                                                                                                |
| Evaporating, Condensing and Cooling Apparatus. Trans. by A. C.             |                                                                                                                                                      |
| Wright                                                                     | *5 00                                                                                                                                                |
| Hausner, A. Manufacture of Preserved Foods and Sweetmeats. Trans.          |                                                                                                                                                      |
| by A. Morris and H. Robson                                                 | *3 00                                                                                                                                                |
| Hawke, W. H. Premier Cipher Telegraphic Code4to,                           | *5 00                                                                                                                                                |
| 100,000 Words Supplement to the Premier Code4to,                           | *5 00                                                                                                                                                |
| Hawkesworth, J. Graphical Handbook for Reinforced Concrete Design.         |                                                                                                                                                      |
| 4to,                                                                       | *2 50                                                                                                                                                |
| Hay, A. Alternating Currents                                               | *                                                                                                                                                    |
|                                                                            | *2 50                                                                                                                                                |
| Electrical Distributing Networks and Distributing Lines8vo,                | *3 50                                                                                                                                                |
| <ul> <li>Electrical Distributing Networks and Distributing Lines</li></ul> |                                                                                                                                                      |
| <ul> <li>Electrical Distributing Networks and Distributing Lines</li></ul> | *3 50                                                                                                                                                |
| <ul> <li>Electrical Distributing Networks and Distributing Lines</li></ul> | *3 50                                                                                                                                                |
| <ul> <li>Electrical Distributing Networks and Distributing Lines</li></ul> | *3 50<br>*2 50.                                                                                                                                      |
| Electrical Distributing Networks and Distributing Lines                    | *3 50<br>*2 50<br>2 00                                                                                                                               |
| <ul> <li>Electrical Distributing Networks and Distributing Lines</li></ul> | *3 50<br>*2 50<br>2 00<br>*3 50                                                                                                                      |
| <ul> <li>Electrical Distributing Networks and Distributing Lines</li></ul> | *3 50<br>*2 50.<br>2 00<br>*3 50<br>*5 00                                                                                                            |
| <ul> <li>Electrical Distributing Networks and Distributing Lines</li></ul> | *3 50<br>*2 50<br>2 00<br>*3 50<br>*5 00<br>*7 50<br>*5 00                                                                                           |
| <ul> <li>Electrical Distributing Networks and Distributing Lines</li></ul> | *3 50<br>*2 50<br>2 00<br>*3 50<br>*5 00<br>*7 50<br>*5 00<br>*3 50                                                                                  |
| <ul> <li>Electrical Distributing Networks and Distributing Lines</li></ul> | *3 50<br>*2 50<br>*3 50<br>*5 00<br>*7 50<br>*5 00<br>*3 50<br>*5 00                                                                                 |
| <ul> <li>Electrical Distributing Networks and Distributing Lines</li></ul> | *3 50<br>*2 50<br>*3 50<br>*5 00<br>*7 50<br>*5 00<br>*3 50<br>*5 00<br>*1 00                                                                        |
| <ul> <li>Electrical Distributing Networks and Distributing Lines</li></ul> | *3 50<br>*2 50<br>*3 50<br>*5 00<br>*7 50<br>*5 00<br>*3 50<br>*5 00                                                                                 |
| <ul> <li>Electrical Distributing Networks and Distributing Lines</li></ul> | *3 50<br>*2 50<br>2 00<br>*3 50<br>*5 00<br>*7 50<br>*5 00<br>*3 50<br>*5 00<br>*1 00<br>*1 00<br>3 00                                               |
| <ul> <li>Electrical Distributing Networks and Distributing Lines</li></ul> | *3 50<br>*2 50<br>2 00<br>*3 50<br>*5 00<br>*7 50<br>*5 00<br>*3 50<br>*5 00<br>*1 00<br>*1 00<br>3 00<br>*2 50                                      |
| <ul> <li>Electrical Distributing Networks and Distributing Lines</li></ul> | *3 50<br>*2 50<br>2 00<br>*3 50<br>*5 00<br>*7 50<br>*5 00<br>*3 50<br>*5 00<br>*1 00<br>*1 00<br>*2 50<br>*2 00                                     |
| <ul> <li>Electrical Distributing Networks and Distributing Lines</li></ul> | *3 50<br>*2 50<br>2 00<br>*3 50<br>*5 00<br>*7 50<br>*5 00<br>*3 50<br>*5 00<br>*1 00<br>*1 00<br>*2 50<br>*2 00<br>1 50                             |
| <ul> <li>Electrical Distributing Networks and Distributing Lines</li></ul> | *3 50<br>*2 50<br>3 50<br>*5 00<br>*7 50<br>*5 00<br>*7 50<br>*5 00<br>*1 00<br>*2 50<br>*1 00<br>*1 75                                              |
| <ul> <li>Electrical Distributing Networks and Distributing Lines</li></ul> | *3 50<br>*2 50<br>2 00<br>*3 50<br>*5 00<br>*7 50<br>*5 00<br>*7 50<br>*5 00<br>*1 00<br>*2 50<br>*1 75<br>*5 00                                     |
| <ul> <li>Electrical Distributing Networks and Distributing Lines</li></ul> | *3 50<br>*2 50<br>2 00<br>*3 50<br>*5 00<br>*7 50<br>*5 00<br>*7 50<br>*5 00<br>*1 00<br>*2 50<br>*1 75<br>*5 00<br>*1 75<br>*5 00<br>*1 75<br>*5 00 |
| <ul> <li>Electrical Distributing Networks and Distributing Lines</li></ul> | *3 50<br>*2 50<br>2 00<br>*3 50<br>*5 00<br>*7 50<br>*5 00<br>*1 00<br>*2 50<br>*1 00<br>*2 50<br>*1 75<br>*5 00<br>*1 75<br>*5 00<br>*2 00          |
| <ul> <li>Electrical Distributing Networks and Distributing Lines</li></ul> | *3 50<br>*2 50<br>2 00<br>*3 50<br>*5 00<br>*7 50<br>*5 00<br>*7 50<br>*5 00<br>*1 00<br>*2 50<br>*1 75<br>*5 00<br>*1 75<br>*5 00<br>*1 75<br>*5 00 |

| Hildebrandt, A. Airships, Past and Present                                                   | *3 50          |
|----------------------------------------------------------------------------------------------|----------------|
| Hildenbrand, B. W. Cable-Making. (Science Series No. 32.) 16mo,                              | 0 50           |
| Hilditch, T. P. A Concise History of Chemistry                                               | *1 25          |
| Hill, J. W. The Purification of Public Water Supplies. New Edition.                          | 3              |
| (In Press.)                                                                                  |                |
| Interpretation of Water Analysis                                                             |                |
| Hiroi, I. Plate Girder Construction. (Science Series No. 95.) 16mo,                          |                |
|                                                                                              | 0 50           |
| Statically-Indeterminate Stresses                                                            | *2 00          |
| Hirshfeld, C. F. Engineering Thermodynamics. (Science Series No. 45.)                        |                |
| 16mo,                                                                                        | 0 50           |
| Hobart, H. M. Heavy Electrical Engineering                                                   | *4 50          |
| Design of Static Transformers                                                                | *2 00          |
| Electricity                                                                                  | *2 00          |
| Electric Trains                                                                              | *2 50          |
| Hobart, H. M. Electric Propulsion of Ships                                                   | *2 00          |
| Hobart, J. F. Hard Soldering, Soft Soldering and Brazing 12mo,                               | *I 00 I*       |
| Hobbs, W. R. P. The Arithmetic of Electrical Measurements 12mo,                              | 0 50           |
| Hoff, J. N. Paint and Varnish Facts and Formulas                                             | *1 50          |
| Hole, W. The Distribution of Gas                                                             | *7 50          |
| Holley, A. L. Railway Practice                                                               | 12 00          |
| Holmes, A. B. The Electric Light Popularly Explained 12mo, paper,                            | 0 50           |
| Hopkins, N. M. Experimental Electrochemistry                                                 | *3 00          |
| Model Engines and Small Boats                                                                | 1 25           |
| Hopkinson, J. Shoolbred, J. N., and Day, R. E. Dynamic Electricity.                          | 1 23           |
| (Science Series No. 71.)                                                                     |                |
| Horner, J. Engineers' Turning                                                                | 0 50           |
| - Metal Turning                                                                              | *3 50          |
|                                                                                              | 1 50           |
| Toothed Gearing                                                                              | 2 25           |
| Houghton, C. E. The Elements of Mechanics of Materials 12mo,                                 | *2 00          |
| Houllevigue, L. The Evolution of the Sciences                                                | *2 00          |
| Houstoun, R. A. Studies in Light Production                                                  | *2 00          |
| Howe, G. Mathematics for the Practical Man12mo,                                              | *1 25          |
| Howorth, J. Repairing and Riveting Glass, China and Earthenware.                             |                |
| 8vo, paper,                                                                                  | *0 50          |
| Hubbard, E. The Utilization of Wood-waste                                                    | *2 50          |
| Hübner, J. Bleaching and Dyeing of Vegetable and Fibrous Materials                           |                |
| (Outlines of Industrial Chemistry)                                                           | *5 00          |
| Hudson, O.F. Iron and Steel. (Outlines of Industrial Chemistry.) .8vo,                       | *2 00          |
| Humper, W. Calculation of Strains in Girders                                                 | 2 50           |
| Humphreys, A. C. The Business Features of Engineering Practice . 8vo,                        | *I 25          |
| Hunter, A. Bridge Work                                                                       | Care La        |
| Hurst, G. H. Handbook of the Theory of Color                                                 | *2 50          |
| Dictionary of Chemicals and Raw Products                                                     | *3 00          |
| Lubricating Oils, Fats and Greases                                                           | *4 00          |
| Soaps                                                                                        | *5 00          |
| Hurst, G. H. Textile Soaps and Oils                                                          | *2 50          |
| Hurst, H. E., and Lattey, R. T. Text-book of Physics                                         | *3 00          |
| - Also published in three parts.                                                             | 3              |
|                                                                                              |                |
| Part I. Dynamics and Heat                                                                    | **             |
| Part I. Dynamics and Heat                                                                    | *1 25          |
| Part I. Dynamics and Heat<br>Part II. Sound and Light<br>Part III. Magnetism and Electricity | *1 25<br>*1 25 |

| Hutchinson, R. W., Jr. Long Distance Electric Power Transmission.                            | *3 0   |
|----------------------------------------------------------------------------------------------|--------|
| Hutchinson, R. W., Jr., and Ihlseng, M. C. Electricity in Mining 12mo,                       | 3 0    |
| (In Press.)                                                                                  |        |
| Hutchinson, W. B. Patents and How to Make Money Out of Them.                                 |        |
| 12mo,                                                                                        | .1 2   |
| Hutton, W. S. Steam-boiler Construction                                                      | 6 0    |
| Practical Engineer's Handbook                                                                | 7 0    |
| The Works' Manager's Handbook                                                                | 6 0    |
| Hyde, E. W. Skew Arches. (Science Series No. 15.)                                            | 0 5    |
| Hyde, F. S. Solvents, Oils, Gums, Waxes                                                      | and in |
|                                                                                              |        |
| Induction Coils. (Science Series No. 53.)                                                    | 0 5    |
| Ingle, H. Manual of Agricultural Chemistry                                                   | *3 0   |
| Inness, C. H. Problems in Machine Design                                                     | *2 0   |
| Air Compressors and Blowing Engines                                                          | *2 0   |
| Centrifugal Pumps                                                                            | *2 0   |
| — The Fan                                                                                    | *2 0   |
| Isherwood, B. F. Engineering Precedents for Steam Machinery 8vo,                             | 2 5    |
| Ivatts, E. B. Railway Management at Stations                                                 | *2 5   |
|                                                                                              |        |
| Jacob, A., and Gould, E. S. On the Designing and Construction of                             |        |
| Storage Reservoirs. (Science Series No. 6)                                                   | 0 5    |
| Jamieson, A. Text Book on Steam and Steam Engines                                            | 30     |
| Elementary Manual on Steam and the Steam Engine12mo,                                         | I 5    |
| Jannettaz, E. Guide to the Determination of Rocks. Trans. by G. W.                           |        |
| Plympton                                                                                     | 15     |
| Jehl, F. Manufacture of Carbons                                                              | *4 0   |
| Jennings, A. S. Commercial Paints and Painting. (Westminster Series.)                        |        |
| 8vo (In Press.)                                                                              | 1000   |
| Jennison, F. H. The Manufacture of Lake Pigments                                             | *3 0   |
| Jepson, G. Cams and the Principles of their Construction 8vo,                                | *1 50  |
| — Mechanical Drawing,                                                                        | - 11   |
| Jockin, W. Arithmetic of the Gold and Silversmith                                            | *I OC  |
| Johnson, G. L. Photographic Optics and Color Photography 8vo,                                | *3 00  |
| Johnson, J. H. Arc Lamps and Accessory Apparatus. (Installation                              | 1      |
| Manuals Series.)                                                                             | *0 7   |
| Johnson, T. M. Ship Wiring and Fitting. (Installation Manuals Series.)                       | -      |
| 12m0,                                                                                        | *0 75  |
| Johnson, W. H. The Cultivation and Preparation of Para Rubber 8vo,                           | *3 00  |
| Johnson, W. McA. The Metallurgy of Nickel (In Preparation.)                                  |        |
| Johnston, J. F. W., and Cameron, C. Elements of Agricultural Chemistry                       | - 6-   |
| and Geology                                                                                  | 2 60   |
| Joly, J. Radioactivity and Geology                                                           | 3 00   |
|                                                                                              | *2 00  |
| — New Era in Chemistry 12mo. (In Press.)<br>Jones, M. W. Testing Raw Materials Used in Paint | ***    |
| Jones, M. w. Testing Raw Materials Used in Paint                                             | *2 00  |
| Jordan, L. C. Practical Railway Spiral                                                       | *5 00  |
| Joynson, F. H. Designing and Construction of Machine Gearing 8vo,                            | *1 50  |
| Jüptner, H. F. V. Siderology: The Science of Iron                                            | 2 00   |
| Jupiner, I. F. V. Diderology. The Science of Hon                                             | *5 00  |

| Kansas City Bridge                                                      | 6 00                  |
|-------------------------------------------------------------------------|-----------------------|
| Kapp, G. Alternate Current Machinery. (Science Series No. 96.).16mo,    | 0 50                  |
| Electric Transmission of Energy                                         | 3 50                  |
| Keim, A. W. Prevention of Dampness in Buildings                         | *2 00                 |
| Keller, S. S. Mathematics for Engineering Students. 12mo, half leather. |                       |
| Algebra and Trigonometry, with a Chapter on Vectors                     | *1 75                 |
| Special Algebra Edition                                                 |                       |
| Plane and Solid Geometry                                                | *1.25                 |
| Analytical Geometry and Calculus                                        | *2 00                 |
| Kelsey, W. R. Continuous-current Dynamos and Motors                     | *2 50                 |
| Kemble, W. T., and Underhill, C. R. The Periodic Law and the Hydrogen   |                       |
| Spectrum                                                                | *0 50                 |
| Kemp, J. F. Handbook of Rocks                                           | *1 50                 |
|                                                                         | 12 50                 |
| Kennedy, A. B. W., and Thurston, R. H. Kinematics of Machinery.         | 30                    |
| (Science Series No. 54.)                                                | 0 50                  |
| Kennedy, A. B. W., Unwin, W. C., and Idell, F. E. Compressed Air.       | 1-                    |
| (Science Series No. 106.)                                               | 0 50                  |
| Kennedy, R. Modern Engines and Power Generators. Six Volumes. 4to,      | 15 00                 |
| Single Volumeseach,                                                     |                       |
| - Electrical Installations. Five Volumes                                | 3 00                  |
| Single Volumes                                                          | and the second second |
|                                                                         | 3 50                  |
| - Principles of Aeroplane Construction                                  | *1 50                 |
| Kennelly, A. E. Electro-dynamic Machinery                               |                       |
| Kent, W. Strength of Materials. (Science Series No. 41.) 16mo,          | 1 50                  |
| Kershaw, J. B. C. Fuel, Water and Gas Analysis                          | 0 50                  |
| — Electrometallurgy. (Westminster Series.)                              | *2 50                 |
|                                                                         | *2 00                 |
| Kinzbrunner, C. Alternate Current Windings                              | *1 50                 |
| - Continuous Current Armatures                                          | 1 50                  |
| Testing of Alternating Current Machines                                 | *1 50                 |
| Kirkaldy, W. G. David Kirkaldy's System of Mcchanical Testing. 4to,     | *2 00                 |
|                                                                         | 10 00                 |
| Kirkbride, J. Engraving for Illustration                                | *1 50                 |
| Kirschke, A. Gas and Oil Engines                                        | 7 50                  |
| Klein, J. F. Design of a High-speed Steam-engine                        | 1 25                  |
| - Physical Significance of Entropy                                      | 5 00                  |
| Kleinhans, F. B. Boiler Construction                                    | *1 50                 |
| Knight, RAdm. A. M. Modern Seamanship                                   | 3 00                  |
|                                                                         | *7 50                 |
| Half morocco.<br>Knox, J. Physico-Chemical Calculations12mo,            | 9 00                  |
|                                                                         | *I 00                 |
| Knox, W. F. Logarithm Tables                                            | -                     |
| Knott, C. G., and Mackay, J. S. Practical Mathematics                   | 2 00                  |
| Koester, F. Steam-Electric Power Plants                                 | *5 00                 |
|                                                                         | 5 00                  |
| Koller, T. The Utilization of Waste Products                            |                       |
| Cosmetics                                                               | *2 50                 |
| Kremann, R. Technical Processes and Manufacturing Methods. Trans.       |                       |
| by H. E. Potts                                                          |                       |
| Kretchmar, K. Yarn and Warp Sizing                                      | 4 00                  |

| Lallier, E. V. Elementary Manual of the Steam Engine 12mo,                  |
|-----------------------------------------------------------------------------|
| Lambert, T. Lead and Its Compounds                                          |
| Bone Products and Manures                                                   |
| Lamborn, L. L. Cottonseed Products                                          |
| Modern Soaps, Candles, and Glycerin                                         |
| Lamprecht, R. Recovery Work After Pit Fires. Trans. by C. Salter 8vo, *4 oo |
| Lanchester, F. W. Aerial Flight. Two Volumes. 8vo.                          |
| Vol. I. Aerodynamics *6 oo                                                  |
| Aerial Flight. Vol. II. Aerodonetics*6.00                                   |
| Larner, E. T. Principles of Alternating Currents                            |
| Larrabee, C. S. Cipher and Secret Letter and Telegraphic Code. 16mo, o 60   |
| La Rue, B. F. Swing Bridges. (Science Series No. 107.) 16mo, 0 5a           |
| Lassar-Cohn. Dr. Modern Scientific Chemistry. Trans. by M. M.               |
| - Pattison Muir 12mo, *> oc                                                 |
| Latimer, L. H., Field, C. J., and Howell, J. W. Incandescent Electric       |
| Lighting. (Science Series No. 57.)                                          |
| Latta, M. N. Handbook of American Gas-Engineering Practice 8vo, *4 50       |
| American Producer Gas Practice                                              |
| Leask, A. R. Breakdowns at Sea 12mo, 2 00                                   |
| Refrigerating Machinery 2 00                                                |
| Lecky, S. T. S. "Wrinkles" in Practical Navigation                          |
| Le Doux, M. Ice-Making Machines. (Science Series No. 46.). 16mo, 0 50       |
| Leeds, C. C. Mechanical Drawing for Trade Schools oblong 4to,               |
| High School Edition*1 25                                                    |
| Machinery Trades Edition*2.00                                               |
| Lefévre, L. Architectural Pottery. Trans. by H. K. Bird and W. M.           |
| Binns                                                                       |
| Lehner, S. Ink Manufacture. Trans. by A. Morris and H. Robson. 8vo, *2 50   |
| Lemstrom, S. Electricity in Agruiclture and Horticulture                    |
| Le Van, W. B. Steam-Engine Indicator. (Science Series No. 78.)16mo, 0 50    |
| Lewes, V. B. Liquid and Gaseous Fuels. (Westminster Series.). 8vo, *2 00    |
| Carbonization of Coal                                                       |
| Lewis, L. P. Railway Signal Engineering                                     |
| Lieber, B. F. Lieber's Standard Telegraphic Code                            |
| Code. German Edition                                                        |
|                                                                             |
|                                                                             |
| Terminal Index                                                              |
| Lieber's Appendix                                                           |
|                                                                             |
| Bankers and Stockbrokers' Code and Merchants and Shippers'                  |
| Blank Tables,                                                               |
| 100,000,000 Combination Code                                                |
| Engineering Code                                                            |
| Livermore, V. P., and Williams, J. How to Become a Competent Motor-         |
| man                                                                         |
| Liversedge, A. J. Commercial Engineering                                    |
| Livingstone, R. Design and Construction of Commutators                      |
| Lobben, P. Machinists' and Draftsmen's Handbook                             |
|                                                                             |
| Locke, A. G. and C. G. Manufacture of Sulphuric Acid                        |

| Lockwood, T. D. Electrical Measurement and the Galvanometer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12mo, 0 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Lodge, O. J. Elementary Mechanics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Signalling Across Space without Wires                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Loewenstein, L. C., and Crissey, C. P. Centrifugal Pumps *4 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Lord, R. T. Decorative and Fancy Fabrics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Loring, A. E. A Handbook of the Electromagnetic Telegraph 16mo, 0 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Handbook. (Science Series No. 39.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Low, D. A. Applied Mechanics (Elementary)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Lubschez, B. J. Perspective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Lucke, C. E. Gas Engine Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Power Plants: Design, Efficiency, and Power Costs. 2 vols.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (In Preparation.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Lunge, G. Coal-tar and Ammonia. Two Volumes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Manufacture of Sulphuric Acid and Alkali. Four Volumes 8vo,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Vol. I. Sulphuric Acid. In three parts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Vol. II. Salt Cake, Hydrochloric Acid and Leblanc Soda. In two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| parts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Vol. III. Ammonia Soda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Vol. IV. Electrolytic Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Technical Chemists' Handbook 12mo, leather, *3 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Technical Methods of Chemical Analysis. Trans by C. A. Keane.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| in collaboration with the corps of specialists.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Vol. I. In two parts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Vol. II. In two parts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Vol. III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Lupton, A., Parr, G. D. A., and Perkin, H. Electricity as Applied to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Luquer, L. M. Minerals in Rock Sections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| No. A. CANTON COMPANY AND ADDRESS OF ADDRESS |
| Macewen, H. A. Food Inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Mackenzie, N. F. Notes on Irrigation Works                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Mackie, J. How to Make a Woolen Mill Pay 8vo, *2 oo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Mackrow, C. Naval Architect's and Shipbuilder's Pocket-book.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 16mo, leather, 5 oo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Maguire, Wm. R. Domestic Sanitary Drainage and Plumbing 8vo, 4 oo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mallet, A. Compound Engines. Trans. by R. R. Buel. (Science Series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| No. 10.)16mo,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Mansfield, A. N. Electro-magnets. (Science Series No. 64.) 16mo, o 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Marks, E. C. R. Construction of Cranes and Lifting Machinery 12mo, *1 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Construction and Working of Pumps 12mo, *1 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Manufacture of Iron and Steel Tubes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Mechanical Engineering Materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Marks, G. C. Hydraulic Power Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Inventions, Patents and Designs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Marlow, T. G. Drying Machinery and Practice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Marsh, C. F. Concise Treatise on Reinforced Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Reinforced Concrete Compression Member Diagram. Mounted on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cloth Boards*1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Marsh, C. F., and Dunn, W. Manual of Reinforced Concrete and Con-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| crete Block Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Marshall, W. J., and Sankey, H. R. Gas Engines. (Westminster Series.)  |
|------------------------------------------------------------------------|
| 8vo, *2 00                                                             |
| Martin, G. Triumphs and Wonders of Modern Chemistry 8vo, *2 00         |
| Martin, N. Properties and Design of Reinforced Concrete 12mo, *2 50    |
| Massie, W. W., and Underhill, C. R. Wireless Telegraphy and Telephony. |
| 12mo, *1 00                                                            |
| Matheson, D. Australian Saw-Miller's Log and Timber Ready Reckoner.    |
| 12mo, leather, 1 50                                                    |
| Mathot, R. E. Internal Combustion Engines                              |
| Maurice, W. Electric Blasting Apparatus and Explosives                 |
| Shot Firer's Guide                                                     |
| Maxwell, J. C. Matter and Motion. (Science Series No. 36.).            |
| 16mo, o 50                                                             |
| Maxwell, W. H., and Brown, J. T. Encyclopedia of Muncipal and Sani-    |
| tary Engineering                                                       |
| Mayer, A. M. Lecture Notes on Physics                                  |
| McCullough, R. S. Mechanical Theory of Heat                            |
| McIntosh, J. G. Technology of Sugar                                    |
| Industrial Alcohol                                                     |
| Manufacture of Varnishes and Kindred Industries. Three Volumes.        |
| 8vo.                                                                   |
| Vol. I. Oil Crushing, Refining and Boiling*3 50                        |
| Vol. II. Varnish Materials and Oil Varnish Making 4 00                 |
| Vol. III. Spirit Varnishes and Materials                               |
| McKnight, J. D., and Brown, A. W. Marine Multitubular Boilers *1 50    |
| McMaster, J. B. Bridge and Tunnel Centres. (Science Series No. 20.)    |
| 16mo, 0 50                                                             |
| McMechen, F. L. Tests for Ores, Minerals and Metals                    |
|                                                                        |
| McPherson, J. A. Water-works Distribution                              |
| Merck, E. Chemical Reagents; Their Purity and Tests                    |
| Merritt, Wm. H. Field Testing for Gold and Silver16mo, leather, 1 50   |
| Messer, W. A. Railway Permanent Way                                    |
| Meyer, J. G. A., and Pecker, C. G. Mechanical Drawing and Machine      |
| Design                                                                 |
| Michell, S. Mine Drainage                                              |
| Mierzinski, S. Waterproofing of Fabrics. Trans. by A. Morris and H.    |
| Robson                                                                 |
| Miller, G. A. Determinants. (Science Series No 105.)16mo,              |
| Milroy, M. E. W. Home Lace-making                                      |
| Minifie, W. Mechanical Drawing                                         |
| Mitchell, C. A. Mineral and Aerated Waters                             |
| Mitchell, C. A., and Prideaux, R. M. Fibres Used in Textile and Allied |
| Industries                                                             |
| Mitchell, C. F., and G. A. Building Construction and Drawing. 12mo.    |
| Elementary Course *1 50                                                |
| Advanced Course *2 50                                                  |
| Monckton, C. C. F. Radiotelegraphy. (Westminster Series.)8vo, *2 oo    |
| Monteverde, R. D. Vest Pocket Glossary of English-Spanish, Spanish-    |
| English Technical Terms                                                |

| Moore, E. C. S. New Tables for the Complete Solution of Ganguillet and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kutter's Formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Morecroft, J. H., and Hehre, F. W. Short Course in Electrical Testing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8vo, *1 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Moreing, C. A., and Neal, T. New General and Mining Telegraph Code.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8vo, *5 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Morgan, A. P. Wireless Telegraph Apparatus for Amateurs 12mo, *1 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Moses, A. J. The Characters of Crystals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Moses, A. J., and Parsons, C. L. Elements of Mineralogy 8vo, *2 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Moss, S.A. Elements of Gas Engine Design. (Science Series No.121.)16mo, 0 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| The Lay-out of Corliss Valve Gears. (Science Series No. 119.)16mo, 0 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mulford, A. C. Boundaries and Landmarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mullin, J. P. Modern Moulding and Pattern-making 12mo, 2 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Munby, A. E. Chemistry and Physics of Building Materials. (West-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| minster Series.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Murphy, J. G. Practical Mining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Murphy. W. S. Textile Industries. Eight Volumes 20 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Murray, J. A. Soils and Manures. (Westminster Series.)8vo, *2 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Namet A. Tanal Chamilton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Naquet, A. Legal Chemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Nasmith, J. The Student's Cotton Spinning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| — Recent Cotton Mill Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Neilson, R. M. Aeroplane Patents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Nerz, F. Searchlights. Trans. by C. Rodgers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Nuchit & D. Dissipite and Manualine (T. Dassettin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Neuberger, H., and Noalhat, H. Technology of Petroleum. Trans. by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| J. G. McIntosh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Newall, J. W. Drawing, Sizing and Cutting Bevel-gears                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Nicol, G. Ship Construction and Calculations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Nipher, F. E. Theory of Magnetic Measurements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Nisbet, H. Grammar of Textile Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Nolan, H. The Telescope. (Science Series No. 51.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Noll, A. How to Wire Buildings 12mo, 1 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| North, H. B. Laboratory Notes of Experiments in General Chemistry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (In Press.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Nugent, E. Treatise on Optics 1 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| at all a part of the total in the second state of the second state |
| O'Connor, H. The Gas Engineer's Pocketbook                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Petrol Air Gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ohm, G. S., and Lockwood, T. D. Galvanic Circuit. Translated by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| William Francis. (Science Series No. 102.)16mo, 0 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Olsen, J. C. Text-book of Quantitative Chemical Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Olsson, A. Motor Control, in Turret Turning and Gun Elevating. (U.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Navy Electrical Series, No. 1.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Oudin, M. A. Standard Polyphase Apparatus and Systems8vo, *3 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| support to Branchisen Taxable Provide The State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pakes, W. C. C., and Nankivell, A. T. The Science of Hygiene 8vo, *1 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Palaz, A. Industrial Photometry. Trans. by G. W. Patterson, Jr 8vo, *4 oo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Pamely, C. Colliery Manager's Handbook                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Parker, P. A. M. The Control of Water                                    |       |      |
|--------------------------------------------------------------------------|-------|------|
| Parr, G. D. A. Electrical Engineering Measuring Instruments 8vo,         | * 3   | 50   |
| Parry, E. J. Chemistry of Essential Oils and Artificial Perfumes 8vo,    | *5    | 00   |
| Foods and Drugs. Two Volumes                                             |       |      |
| Vol. I. Chemical and Microscopical Analysis of Foods and Drugs.          | *7    | 50   |
| Vol. II. Sale of Food and Drugs Act                                      | *3    | 00   |
| Parry, E. J., and Coste, J. H. Chemistry of Pigments                     | *4    | 50   |
| Parry, L. A. Risk and Dangers of Various Occupations                     |       | 00   |
| Parshall, H. F., and Hobart, H. M. Armature Windings 4to,                |       | 50   |
| Electric Railway Engineering                                             | *10   | 00   |
| Parshall, H. F., and Parry, E. Electrical Equipment of Tramways(In       | Pre   | 88.) |
| Parsons, S. J. Malleable Cast Iron                                       |       | 50   |
| Partington, J. R. Higher Mathematics for Chemical Students. 12mo,        |       | 00   |
| - Textbook of Thermodynamics                                             | -     |      |
| Passmore, A. C. Technical Terms Used in Architecture                     | **    | 50   |
| Patchell, W. H. Electric Power in Mines                                  | 1.000 | 00   |
| Paterson, G. W. L. Wiring Calculations                                   |       | 00   |
| Patterson, D. The Color Printing of Carpet Yarns                         |       | 50   |
| - Color Matching on Textiles                                             | -     | -    |
|                                                                          |       | 00   |
|                                                                          |       | 00   |
| Paulding, C. P. Condensation of Steam in Covered and Bare Pipes. 8vo,    |       | 00   |
| Transmission of Heat through Cold-storage Insulation12mo,                |       | 00   |
| Payne, D. W. Iron Founders' Handbook(In Press.)                          | -     |      |
| Peddie, R. A. Engineering and Metallurgical Books12mo,                   |       | 50   |
| Peirce, B. System of Analytic Mechanics4to,                              | 10    |      |
| Pendred, V. The Railway Locomotive. (Westminster Series.) 8vo,           | *2    |      |
| Perkir., F. M. Practical Methods of Inorganic Chemistry12mo,             | *1    | 00   |
| Perrigo, O. E. Change Gear Devices                                       | -     | 00   |
| Perrine, F. A. C. Conductors for Electrical Distribution                 | *3    | -    |
| Perry, J. Applied Mechanics                                              | *2    | 50   |
| Petit, G. White Lead and Zinc White Paints                               | *1    | 50   |
| Petit, R. How to Build an Aeroplane. Trans. by T. O'B. Hubbard, and      |       |      |
| J. H. Ledeboer                                                           | *1    | 50   |
| Pettit, Lieut. J. S. Graphic Processes. (Science Series No. 76.)16mo,    | 0     | 50   |
| Philbrick, P. H. Beams and Girders. (Science Series No. 88.) 16mo,       |       |      |
| Phillips, J. Engineering Chemistry8vo,                                   | *4    | 50   |
| Gold Assaying                                                            | *2    | 50   |
| Dangerous Goods                                                          | 3     | 50   |
| Phin, J. Seven Follies of Science                                        | *1    | 25   |
| Pickworth, C. N. The Indicator Handbook. Two Volumes 12mo, each,         | I     | 50   |
| Logarithms for Beginners                                                 | 0     | 50   |
| The Slide Rule,                                                          |       | 00   |
| Plattner's Manual of Blow-pipe Analysis. Eighth Edition, revised. Trans. |       | -    |
| by H. B. Cornwall                                                        | *4    | 00   |
| Plympton, G. W. The Aneroid Barometer. (Science Series No. 35.) 16mo,    |       | 50   |
| How to become an Engineer. (Science Series No. 100.) 16mo,               |       | 50   |
|                                                                          |       | 50   |
| Pochet, M. L. Steam Injectors. Translated from the French. (Science      |       | 30   |
| Series No. 29.)                                                          |       | 50   |
| Pocket Logarithms to Four Places. (Science Series No. 65.)16mo,          |       | 50   |
| leather,                                                                 |       | 00   |
| leather,                                                                 | 1     | 00   |

| Polleyn, F. Dressings and Finishings for Textile Fabrics                  | *3 00                        |
|---------------------------------------------------------------------------|------------------------------|
| Pope, F. G. Organic Chemistry                                             | *2 25                        |
| Pope, F. L. Modern Practice of the Electric Telegraph                     | I 50                         |
| Popplewell, W. C. Elementary Treatise on Heat and Heat Engines 12mo,      | *3 00                        |
| Prevention of Smoke                                                       | *3 50                        |
| Strength of Materials                                                     | *1 75                        |
| Porter, J. R. Helicopter Flying Machine                                   | "I 25                        |
| Potter, T. Concrete                                                       | *3 00                        |
| Potts, H. E. Chemistry of the Rubber Industry. (Outlines of Indus-        |                              |
| trial Chemistry)                                                          | *2 00                        |
| Practical Compounding of Oils, Tallow and Grease                          | *3 50                        |
| Practical Iron Founding                                                   | I 50                         |
| Pratt, K. Boiler Draught                                                  | *I 25                        |
| Pray, T., Jr. Twenty Years with the Indicator                             | 2 50                         |
| Steam Tables and Engine Constant                                          | 2 00                         |
| Calorimeter Tables                                                        | I 00                         |
| Preece, W. H. Electric Lamps                                              |                              |
| Prelini, C. Earth and Rock Excavation                                     | *3 00                        |
| Graphical Determination of Earth Slopes                                   | *2 00                        |
| Tunneling. New Edition                                                    | *3 00                        |
| - Dredging, A Practical Treatise                                          | *3 00                        |
| Prescott, A. B. Organic Analysis                                          | 5 00                         |
| Prescott, A. B., and Johnson, O. C. Qualitative Chemical Analysis         | *3 50                        |
| Prescott, A. B., and Sullivan, E. C. First Book in Qualitative Chemistry. | 5 5-                         |
| 12mo,                                                                     | *1 50                        |
| Prideaux, E. B. R. Problems in Physical Chemistry                         | *2 00                        |
| Pritchard, O. G. The Manufacture of Electric-light Carbons 8vo, paper,    | *0 60                        |
| Pullen, W. W. F. Application of Graphic Methods to the Design of          | 0.00                         |
| Structures                                                                | *2 50                        |
| Injectors: Theory, Construction and Working                               | *1 50                        |
| Pulsifer, W. H. Notes for a History of Lead                               | 4 00                         |
| Purchase, W. R. Masonry                                                   | *3 00                        |
| Putsch, A. Gas and Coal-dust Firing                                       | *3 00                        |
| Pynchon, T. R. Introduction to Chemical Physics                           | 3 00                         |
|                                                                           | 3 00                         |
| Rafter G. W. Mechanics of Ventilation. (Science Series No. 33.). 16mo,    | 0 50                         |
| - Potable Water. (Science Series No. 103.)                                | 50                           |
| - Treatment of Septic Sewage. (Science Series No. 118.)16mo               | 50                           |
| Rafter, G. W., and Baker, M. N. Sewage Disposal in the United States.     | 20                           |
| 4to,                                                                      | *6 00                        |
| Raikes, H. P. Sewage Disposal Works                                       | *4 00                        |
| Railway Shop Up-to-Date                                                   | 2 00                         |
| Ramp, H. M. Foundry Practice                                              | 2 00                         |
| Randall, P. M. Quartz Operator's Handbook                                 |                              |
| Randau, P. Enamels and Enamelling                                         | 2 00                         |
| Rankine, W. J. M. Applied Mechanics                                       |                              |
| — Civil Engineering                                                       | -                            |
|                                                                           | 5 00                         |
|                                                                           | 5 00<br>6 50                 |
| Machinery and Millwork8vo,                                                | 5 00<br>6 50<br>5 00         |
| <ul> <li>Machinery and Millwork</li></ul>                                 | 5 00<br>6 50<br>5 00<br>5 00 |
| Machinery and Millwork8vo,                                                | 5 00<br>6 50<br>5 00         |

| Raphael, F. C. Localization of Faults in Electric Light and Power Mains                                                                                                  |                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 840                                                                                                                                                                      |                                                                                                                                                   |
| Rasch, E. Electric Arc Phenomena. Trans. by K. Tornberg .(In Press.                                                                                                      |                                                                                                                                                   |
| Rathbone, R. L. B. Simple Jewellery 8vo                                                                                                                                  | *2 00                                                                                                                                             |
| Rateau, A. Flow of Steam through Nozzles and Orifices. Trans. by H                                                                                                       | -                                                                                                                                                 |
| B. Brydon                                                                                                                                                                |                                                                                                                                                   |
| Rausenberger, F. The Theory of the Recoil of Guns                                                                                                                        |                                                                                                                                                   |
| Rautenstrauch, W. Notes on the Elements of Machine Design. 8vo, boards                                                                                                   |                                                                                                                                                   |
| Rautenstrauch, W., and Williams, J. T. Machine Drafting and Empirica                                                                                                     | S. Internet                                                                                                                                       |
| Design.                                                                                                                                                                  | ** **                                                                                                                                             |
| Part I. Machine Drafting                                                                                                                                                 |                                                                                                                                                   |
| Raymond, E. B. Alternating Current Engineering                                                                                                                           |                                                                                                                                                   |
| Rayner, H. Silk Throwing and Waste Silk Spinning                                                                                                                         |                                                                                                                                                   |
| Recipes for the Color, Paint, Varnish, Oil, Soap and Drysaltery Trades. 8vo                                                                                              |                                                                                                                                                   |
| Recipes for Flint Glass Making                                                                                                                                           |                                                                                                                                                   |
| Redfern, J. B., and Savin, J. Bells, Telephones (Installation Manuals                                                                                                    |                                                                                                                                                   |
| Series.)                                                                                                                                                                 | *0 50                                                                                                                                             |
| Redwood, B. Petroleum. (Science Series No. 92.)                                                                                                                          | 0 50                                                                                                                                              |
| Reed, S. Turbines Applied to Marine Propulsion                                                                                                                           |                                                                                                                                                   |
| Reed's Engineers' Handbook8vo                                                                                                                                            | *5 00                                                                                                                                             |
| Key to the Nineteenth Edition of Reed's Engineers' Handbook 8vo                                                                                                          |                                                                                                                                                   |
| Useful Hints to Sea-going Engineers                                                                                                                                      |                                                                                                                                                   |
| Marine Boilers                                                                                                                                                           |                                                                                                                                                   |
|                                                                                                                                                                          | *1 60                                                                                                                                             |
|                                                                                                                                                                          |                                                                                                                                                   |
|                                                                                                                                                                          | 1 00                                                                                                                                              |
| oblong 4to, boards                                                                                                                                                       |                                                                                                                                                   |
| The Technic of Mechanical Drafting oblong 4to, boards                                                                                                                    | *1 00                                                                                                                                             |
| The Technic of Mechanical Draftingoblong 4to, boards<br>Reiser, F. Hardening and Tempering of Steel. Trans. by A. Morris and                                             | *I 00                                                                                                                                             |
| The Technic of Mechanical Drafting oblong 4to, boards                                                                                                                    | *I 00<br>*2 50                                                                                                                                    |
| <ul> <li>The Technic of Mechanical Draftingoblong 4to, boards Reiser, F. Hardening and Tempering of Steel. Trans. by A. Morris and H. Robson</li></ul>                   | *1 00<br>*2 50<br>*2 50                                                                                                                           |
| <ul> <li>The Technic of Mechanical Draftingoblong 4to, boards</li> <li>Reiser, F. Hardening and Tempering of Steel. Trans. by A. Morris and</li> <li>H. Robson</li></ul> | *1 00<br>*2 50<br>*2 50                                                                                                                           |
| <ul> <li>The Technic of Mechanical Draftingoblong 4to, boards Reiser, F. Hardening and Tempering of Steel. Trans. by A. Morris and H. Robson</li></ul>                   | *1 00<br>*2 50<br>*2 50<br>*5 00<br>5 00                                                                                                          |
| <ul> <li>The Technic of Mechanical Draftingoblong 4to, boards Reiser, F. Hardening and Tempering of Steel. Trans. by A. Morris and H. Robson</li></ul>                   | *1 00<br>*2 50<br>*2 50<br>*5 00<br>5 00                                                                                                          |
| <ul> <li>The Technic of Mechanical Draftingoblong 4to, boards Reiser, F. Hardening and Tempering of Steel. Trans. by A. Morris and H. Robson</li></ul>                   | *1 00<br>*2 50<br>*2 50<br>*5 00<br>5 00<br>0 50                                                                                                  |
| <ul> <li>The Technic of Mechanical Draftingoblong 4to, boards Reiser, F. Hardening and Tempering of Steel. Trans. by A. Morris and H. Robson</li></ul>                   | *1 00<br>*2 50<br>*2 50<br>*5 00<br>5 00<br>0 50                                                                                                  |
| <ul> <li>The Technic of Mechanical Draftingoblong 4to, boards Reiser, F. Hardening and Tempering of Steel. Trans. by A. Morris and H. Robson</li></ul>                   | *1 00<br>*2 50<br>*2 50<br>*5 00<br>5 00<br>0 50<br>*1 00                                                                                         |
| <ul> <li>The Technic of Mechanical Draftingoblong 4to, boards Reiser, F. Hardening and Tempering of Steel. Trans. by A. Morris and H. Robson</li></ul>                   | *1 00<br>*2 50<br>*2 50<br>*5 00<br>5 00<br>0 50<br>*1 00<br>0 50                                                                                 |
| <ul> <li>The Technic of Mechanical Draftingoblong 4to, boards Reiser, F. Hardening and Tempering of Steel. Trans. by A. Morris and H. Robson</li></ul>                   | *1 00<br>*2 50<br>*2 50<br>*5 00<br>5 00<br>0 50<br>*1 00<br>0 50<br>*1 50                                                                        |
| <ul> <li>The Technic of Mechanical Draftingoblong 4to, boards Reiser, F. Hardening and Tempering of Steel. Trans. by A. Morris and H. Robson</li></ul>                   | *1 00<br>*2 50<br>*5 00<br>5 00<br>0 50<br>*1 00<br>0 50<br>*1 50<br>*3 50                                                                        |
| <ul> <li>The Technic of Mechanical Draftingoblong 4to, boards Reiser, F. Hardening and Tempering of Steel. Trans. by A. Morris and H. Robson</li></ul>                   | *1 00<br>*2 50<br>*5 00<br>5 00<br>0 50<br>*1 00<br>0 50<br>*1 50<br>*3 50<br>*2 00                                                               |
| <ul> <li>The Technic of Mechanical Draftingoblong 4to, boards Reiser, F. Hardening and Tempering of Steel. Trans. by A. Morris and H. Robson</li></ul>                   | *1 00<br>*2 50<br>*2 50<br>*5 00<br>5 00<br>0 50<br>*1 00<br>0 50<br>*1 50<br>*3 50<br>*2 00<br>*4 00                                             |
| <ul> <li>The Technic of Mechanical Draftingoblong 4to, boards Reiser, F. Hardening and Tempering of Steel. Trans. by A. Morris and H. Robson</li></ul>                   | *1 00<br>*2 50<br>*5 00<br>5 00<br>0 50<br>*1 00<br>0 50<br>*1 50<br>*3 50<br>*2 00<br>*4 00<br>*1 75<br>*2 50                                    |
| <ul> <li>The Technic of Mechanical Draftingoblong 4to, boards Reiser, F. Hardening and Tempering of Steel. Trans. by A. Morris and H. Robson</li></ul>                   | *1 00<br>*2 50<br>*5 00<br>5 00<br>0 50<br>*1 00<br>0 50<br>*1 50<br>*3 50<br>*2 00<br>*4 00<br>*1 75<br>*2 50<br>*5 00                           |
| <ul> <li>The Technic of Mechanical Draftingoblong 4to, boards Reiser, F. Hardening and Tempering of Steel. Trans. by A. Morris and H. Robson</li></ul>                   | *1 00<br>*2 50<br>*5 00<br>5 00<br>0 50<br>*1 00<br>0 50<br>*1 50<br>*3 50<br>*2 00<br>*4 00<br>*1 75<br>*2 50<br>*5 00<br>*6 00                  |
| <ul> <li>The Technic of Mechanical Draftingoblong 4to, boards Reiser, F. Hardening and Tempering of Steel. Trans. by A. Morris and H. Robson</li></ul>                   | *1 00<br>*2 50<br>*2 50<br>*5 00<br>5 00<br>0 50<br>*1 00<br>0 50<br>*1 50<br>*3 50<br>*2 00<br>*4 00<br>*1 75<br>*2 50<br>*5 00<br>*6 00<br>0 50 |
| <ul> <li>The Technic of Mechanical Draftingoblong 4to, boards Reiser, F. Hardening and Tempering of Steel. Trans. by A. Morris and H. Robson</li></ul>                   | *1 00<br>*2 50<br>*5 00<br>5 00<br>0 50<br>*1 00<br>0 50<br>*1 50<br>*3 50<br>*2 00<br>*4 00<br>*1 75<br>*2 50<br>*5 00<br>*6 00<br>0 50<br>*2 00 |
| <ul> <li>The Technic of Mechanical Draftingoblong 4to, boards Reiser, F. Hardening and Tempering of Steel. Trans. by A. Morris and H. Robson</li></ul>                   | *1 00<br>*2 50<br>*5 00<br>5 00<br>0 50<br>*1 00<br>0 50<br>*1 50<br>*3 50<br>*2 00<br>*1 75<br>*2 50<br>*5 00<br>*6 00<br>0 50<br>*2 00<br>2 00  |

1

| Robinson, S. W. Practical Treatise on the Teeth of Wheels. (Science   |       |
|-----------------------------------------------------------------------|-------|
| Series No. 24.)                                                       | 0 50  |
| Railroad Economics. (Science Series No. 59.)                          | 0 50  |
| Wrought Iron Bridge Members. (Science Series No. 60.) 16mo,           | 0 50  |
| Robson, J. H. Machine Drawing and Sketching                           | *I 50 |
| Roebling, J A. Long and Short Span Railway Bridgesfolio,              | 25 00 |
| Rogers, A. A Laboratory Guide of Industrial Chemistry                 | *1 50 |
| Rogers, A., and Aubert, A. B. Industrial Chemistry                    | *5 00 |
| Rogers, F. Magnetism of Iron Vessels. (Science Series No. 30.). 16mo, | 0 50  |
| Rohland, P. Colloidal and Crystalloidal State of Matter. Trans. by    |       |
| W. J. Britland and H. E. Potts                                        | *I 25 |
| Rollins, W. Notes on X-Light                                          | *5 00 |
| Rollinson, C. AlphabetsOblong, 12mo,                                  | "I 00 |
| Rose, J. The Pattern-makers' Assistant                                | 2 50  |
| Key to Engines and Engine-running                                     | 2 50  |
| Rose, T. K. The Precious Metals. (Westminster Series.) 8vo,           | *2 00 |
| Rosenhain, W. Glass Manufacture. (Westminster Series.)8vo,            | *2 00 |
| Ross, W. A. Blowpipe in Chemistry and Metallurgy                      | *2 00 |
| Rossiter, J. T. Steam Engines. (Westminster Series.) 8vo (In Press.)  | 10.00 |
| Pumps and Pumping Machinery. (Westminster Series.) 8vo,               |       |
|                                                                       |       |
| (In Press.)<br>Roth. Physical Chemistry                               | *2 00 |
| Rouillion, L. The Economics of Manual Training                        | 2 00  |
| Rowan, F. J. Practical Physics of the Modern Steam-boiler 8vo,        | *3 00 |
| Rowan, F. J., and Idell, F. E. Boiler Incrustation and Corrosion.     |       |
| (Science Series No. 27.)                                              | 0 50  |
| Roxburgh, W. General Foundry Practice                                 | *3 50 |
| Ruhmer, E. Wireless Telephony. Trans. by J. Erskine-Murray 8vo,       | *3 50 |
| Russell, A. Theory of Electric Cables and Networks                    | *3 00 |
|                                                                       |       |
| Sabine, R. History and Progress of the Electric Telegraph 12mo,       | 1 25  |
| Saeltzer, A. Treatise on Acoustics                                    | I 00  |
| Salomons, D. Electric Light Installations. 12mo.                      |       |
| Vol. I. The Management of Accumulators                                | 2 50  |
| Vol. II. Apparatus                                                    | 2 25  |
| Vol. III. Applications                                                | I 50  |
| Sanford, P. G. Nitro-explosives                                       | *4 00 |
| Saunders, C. H. Handbook of Practical Mechanics                       | 1 00  |
| leather,                                                              | I 25  |
| Saunnier, C. Watchmaker's Handbook 12mo,                              | 3 00  |
| Sayers, H. M. Brakes for Tram Cars                                    | °I 25 |
| Scheele, C. W. Chemical Essays 8vo,                                   | *2 00 |
| Scheithauer, W. Shale Oils and Tars                                   | *3 50 |
| Schellen, H. Magneto-electric and Dynamo-electric Machines 8vo,       | 5 00  |
| Scherer, R. Casein. Trans. by C. Salter                               | *3 00 |
| Schidrowitz, P. Rubber, Its Production and Industrial Uses            | *5 00 |
| Schindler, K. Iron and Steel Construction Works                       | *1 25 |
| Schmall, C. N. First Course in Analytic Geometry, Plane and Solid.    |       |
| 12mo, half leather,                                                   | *1 75 |
| Schmall, C. N., and Shack, S. M. Elements of Plane Geometry 12mo,     | *1 25 |
| Schmeer, L. Flow of Water                                             | *3 00 |

| Schumann, F. A Manual of Heating and Ventilation 12mo, leather,             |       | 50 |
|-----------------------------------------------------------------------------|-------|----|
| Schwarz, E. H. L. Causal Geology                                            | *2    | -  |
| Schweizer, V. Distillation of Resins                                        | *3    | -  |
| Scott, W. W. Qualitative Analysis. A Laboratory Manual8vo,                  | .I.   | -  |
| Scribner, J. M. Engineers' and Mechanics' Companion 16mo, leather,          |       | 50 |
| Searle, A. B. Modern Brickmaking                                            | *5    | 00 |
| Searle, G. M. "Sumners' Method." Condensed and Improved.                    |       |    |
| (Science Series No. 124.)                                                   | 0     | 50 |
| Seaton, A. E. Manual of Marine Engineering                                  | 8     | 00 |
| Seaton, A. E., and Rounthwaite, H. M. Pocket-book of Marine Engineer-       |       |    |
| ing                                                                         | 3     | 00 |
| Seeligmann, T., Torrilhon, G. L., and Falconnet, H. India Rubber and        |       |    |
| Gutta Percha. Trans. by J. G. McIntosh                                      | *5    | 00 |
| Seidell, A. Solubilities of Inorganic and Organic Substances 8vo,           | *3    | 00 |
| Sellew, W. H. Steel Rails                                                   | *12   | 50 |
| Senter, G. Outlines of Physical Chemistry                                   | *1    | 75 |
| Text-book of Inorganic Chemistry                                            | *I :  |    |
| Sever, G. F. Electric Egnineering Experiments                               | *1 0  |    |
| Sever, G. F., and Townsend, F. Laboratory and Factory Tests in Elec-        |       |    |
| trical Engineering                                                          | *2 :  | 50 |
| Sewall, C. H. Wireless Telegraphy                                           | *2 0  |    |
| Lessons in Telegraphy                                                       | *1 4  |    |
| Sewell, T. Elements of Electrical Engineering                               | *3 (  |    |
| The Construction of Dynamos                                                 | *3 (  |    |
| Sexton, A. H. Fuel and Refractory Materials                                 | *2    |    |
| — Chemistry of the Materials of Engineering                                 | *2    |    |
| - Alloys (Non-Ferrous)                                                      | *3 (  |    |
|                                                                             |       |    |
| Seymour, A. Practical Lithography                                           | *6 :  |    |
| Modern Printing Inks                                                        | *2 0  | -  |
| Shaw, Henry S. H. Mechanical Integrators. (Science Series No. 83.)          |       | 0  |
| Shaw, henry S. H. Mechanical Integrators. (Science Series No. 63.)<br>16mo, | 1.2   | -  |
| Shaw, P. E. Course of Practical Magnetism and Electricity8vo,               | 0 :   |    |
|                                                                             | *I C  |    |
| Shaw, S. History of the Staffordshire Potteries                             | 2 0   |    |
| Chemistry of Compounds Used in Porcelain Manufacture 8vo,                   | 5 0   |    |
| Shaw, W. N. Forecasting Weather                                             | 3 :   |    |
| Sheldon, S., and Hausmann, E. Direct Current Machines 12mo,                 | *2 :  |    |
| Alternating Current Machines                                                | *2 5  | 50 |
| Sheldon, S., and Hausmann, E. Electric Traction and Transmission            | -     |    |
| Engineering                                                                 | 2 5   |    |
| Sheriff, F. F. Oil Merchants' Manual                                        | 3 5   |    |
| Shields, J. E. Notes on Engineering Construction                            | 15    |    |
| Shreve, S. H. Strength of Bridges and Roofs                                 | 3 5   |    |
| Shunk, W. F. The Field Engineer 12mo, morocco,                              | 2 5   | 0  |
| Simmons, W. H., and Appleton, H. A. Handbook of Soap Manufacture.           |       |    |
| 8vo,                                                                        | *3 0  |    |
| Simmons, W. H., and Mitchell, C. A. Edible Fats and Oils 8vo,               | * 3 0 | 0  |
| Simms, F. W. The Principles and Practice of Levelling                       | 2 5   | 0  |
| Practical Tunneling                                                         | 7 5   | 0  |
| Simpson, G. The Naval Cnostructor                                           | *5 o  | 0  |
| Simpson, W. Foundations                                                     |       |    |

| Sinclair, A. Development of the Locomotive Engine 8vo, half leather,                                                                         | 5    | 00 |
|----------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| Twentieth Century Locomotive                                                                                                                 | * 5  | 00 |
| Sindall, R. W., and Bacon, W. N. The Testing of Wood Pulp 8vo,                                                                               |      | 50 |
| Sindall, R. W. Manufacture of Paper. (Wesmtinster Series.)8vo,                                                                               | -    | 00 |
| Sloane, T. O'C. Elementary Electrical Calculations                                                                                           | *2   | 00 |
| Smith, C. A. M. Handbook of Testing, MATERIALS                                                                                               |      | 50 |
| Smith, C. A. M., and Warren, A. G. New Steam Tables                                                                                          |      | 25 |
| Smith, C. F. Practical Alternating Currents and Testing                                                                                      |      | 50 |
| Practical Testing of Dynamos and Motors                                                                                                      |      | 00 |
| Smith, F. E. Handbook of General Instruction for Mechanics 12mo,                                                                             | -    | 50 |
| Smith, J. C. Manufacture of Paint                                                                                                            | *3   | 00 |
| Paint and Painting Defects                                                                                                                   | -    |    |
| Smith, R. H. Principles of Machine Work                                                                                                      | 1000 | 00 |
| Elements of Machine Work                                                                                                                     |      | 00 |
| Smith, W. Chemistry of Hat Manufacturing                                                                                                     | -    | 00 |
| Snell, A. T. Electric Motive Power                                                                                                           |      | 00 |
| Snow, W. G. Pocketbook of Steam Heating and Ventilation. (In Press.)<br>Snow, W. G., and Nolan, T. Ventilation of Buildings. (Science Series |      |    |
| No. 5.)                                                                                                                                      |      |    |
| Soddy, F. Radioactivity                                                                                                                      |      | 50 |
| Solomon, M. Electric Lamps. (Westminster Series.)                                                                                            | -    | 00 |
| Sothern, J. W. The Marine Steam Turbine                                                                                                      |      | 00 |
| Southcombe, J. E. Chemistry of the Oil Industries. (Outlines of In-                                                                          | 5    | 00 |
| dustrial Chemistry.)                                                                                                                         | *2   | 00 |
| Soxhlet, D. H. Dyeing and Staining Marble. Trans. by A. Morris and                                                                           | 3    | 00 |
| H. Robson                                                                                                                                    | *2   | 50 |
| Spang, H. W. A Practical Treatise on Lightning Protection                                                                                    |      | 00 |
| Spangenburg, L. Fatigue of Metals. Translated by S. H. Shreve.                                                                               |      |    |
| (Science Series No. 23.)                                                                                                                     | 0    | 50 |
| Specht, G. J., Hardy, A. S., McMaster, J. B., and Walling. Topographical                                                                     |      | 30 |
| Surveying. (Science Series No. 72.)                                                                                                          | 0    | 50 |
| Speyers, C. L. Text-book of Physical Chemistry                                                                                               |      | 25 |
| Stahl, A. W. Transmission of Power. (Science Series No. 28.) 16mo,                                                                           |      | 10 |
| Stahl, A. W., and Woods, A. T. Elementary Mechanism 12mo,                                                                                    | *2   | 00 |
| Staley, C., and Pierson, G. S. The Separate System of Sewerage 8vo,                                                                          | *3   | 00 |
| Standage, H. C. Leatherworkers' Manual                                                                                                       | *3   | 50 |
| Sealing Waxes, Wafers, and Other Adhesives                                                                                                   | *2   | 00 |
| Agglutinants of all Kinds for all Purposes                                                                                                   | *3   | 50 |
| Stansbie, J. H. Iron and Steel. (Westminster Series.)                                                                                        | *2   | 00 |
| Steadman, F. M. Unit Photography and Actinometry (In Press.)                                                                                 |      |    |
| Steinman, D. B. Suspension Bridges and Cantilevers. (Science Series                                                                          |      |    |
| No. 127.)                                                                                                                                    | 0    | 50 |
| Stevens, H. P. Paper Mill Chemist                                                                                                            |      | 50 |
| Stevenson, J. L. Blast-Furnace Calculations                                                                                                  |      | 00 |
| Stewart, A. Modern Polyphase Machinery 12mo,                                                                                                 |      | 00 |
| Stewart, G. Modern Steam Traps                                                                                                               |      | 25 |
| Stiles, A. Tables for Field Engineers                                                                                                        |      | 00 |
| Stillman, P. Steam-engine Indicator                                                                                                          |      | 00 |
| Stodola, A. Steam Turbines. Trans. by L. C. Loewenstein 8vo,                                                                                 |      | 00 |
| Stone, H. The Timbers of Commerce                                                                                                            | -    | 50 |
| Stone, Gen. R. New Roads and Road Laws 12mo,                                                                                                 | I    | 00 |
|                                                                                                                                              |      |    |

| Stopes, M. Ancient Plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | 00    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|--|
| The Study of Plant Life                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | 00    |  |
| Stumpf, Prof. Una-Flow of Steam Engine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | 50    |  |
| Sudborough, J. J., and James, T. C. Practical Organic Chemistry. 12mo,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | 00    |  |
| Suffling, E. R. Treatise on the Art of Glass Painting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | 50    |  |
| Suggate, A. Elements of Engineering Estimating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | 50    |  |
| Swan, K. Patents, Designs and Trade Marks. (Westminster Series.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -   | 50    |  |
| and the set of the set | **  | -     |  |
| Sweet, S. H. Special Report on Coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 00    |  |
| Swinburne, J., Wordingham, C. H., and Martin, T. C. Electric Currents.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -   | 00    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | - 202 |  |
| (Science Series No. 190.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | 50    |  |
| Swoope, C. W. Lessons in Practical Electricity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *2  | 00    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |  |
| Tailfer, L. Bleaching Linen and Cotton Varn and Fabrics 8vo,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *5  | 00    |  |
| Tate, J. S. Surcharged and Different Forms of Retaining-walls. (Science                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |       |  |
| Series No. 7.)16mo,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 50    |  |
| Taylor, E. N. Small Water Supplies12mo,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *2  | 00    |  |
| Templeton, W. Practical Mechanic's Workshop Companion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |       |  |
| 12mo, morocco,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2   | 00    |  |
| Terry, H. L. India Rubber and its Manufacture. (Westminster Series.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |       |  |
| 8vo,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *2  | 00    |  |
| Thayer, H. R. Structural Design. 8vo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |       |  |
| Vol. I. Elements of Structural Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *2  | 00    |  |
| Vol. II. Design of Simple Structures(In Preparation.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |       |  |
| Vol. III. Design of Advanced Structures (In Preparation.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |       |  |
| Thiess, J. B., and Joy, G. A. Toll Telephone Practice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *3  | 50    |  |
| Thom, C., and Jones, W. H. Telegraphic Connectionsoblong, 12mo,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I   | 50    |  |
| Thomas, C. W. Paper-makers' Handbook                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | -     |  |
| Thompson, A. B. Oil Fields of Russia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *7  | 50    |  |
| Petroleum Mining and Oil Field Development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *5  | 00    |  |
| Thompson, S. P. Dynamo Electric Machines. (Science Series No. 75.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |  |
| 16mo,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0   | 50    |  |
| Thompson, W. P. Handbook of Patent Law of All Countries 16mo,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | 50    |  |
| Thomson, G. S. Milk and Cream Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -   | 75    |  |
| Modern Sanitary Engineering, House Drainage, etc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -   | 00    |  |
| Thornley, T. Cotton Combing Machines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 | 00    |  |
| Cotton Waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100 | 00    |  |
| Cotton Spinning, 8vo,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -   | -     |  |
| First Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *z  | 50    |  |
| Second Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | 50    |  |
| Third Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | 50    |  |
| Thurso, J. W. Modern Turbine Practice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | 00    |  |
| Tidy, C. Meymott. Treatment of Sewage. (Science Series No. 94.)16mo,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 50    |  |
| Tillmans, J. Water Purification and Sewage Disposal. Trans. by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | -     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |  |
| Hugh S. Taylor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -   |       |  |
| Tinney, W. H. Gold-mining Machinery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -   | 00    |  |
| Titherley, A. W. Laboratory Course of Organic Chemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100 | 00    |  |
| Toch, M. Chemistry and Technology of Mixed Paints                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -   | 00    |  |
| - Materials for Permanent Painting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 00    |  |
| Todd, J., and Whall, W. B. Practical Seamanship                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7   | 50    |  |
| Tonge, J. Coal. (Westminster Series.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *2  |       |  |

| D. VAN NOSTRAND COMPANY'S SHORT TITLE CATALOG | G 2 | 27 |
|-----------------------------------------------|-----|----|
|-----------------------------------------------|-----|----|

| Townsend, F. Alternating Current Engineering                           | *0 75           |
|------------------------------------------------------------------------|-----------------|
| Townsend, J. Ionization of Gases by Collision                          | *1 25           |
| Transactions of the American Institute of Chemical Engineers, 8vo.     |                 |
| Vol. I. 1908                                                           | *6 00           |
| Vol. II. 1909                                                          | *6 00           |
| Vol. III. 1910                                                         | *6 00           |
| Vol. IV. 1911                                                          | *6 00           |
| Vol. V. 1912                                                           | *6 00           |
| Traverse Tables. (Science Series No. 115.)                             | 0 50            |
| morocco,                                                               | I 00            |
| Trinks, W., and Housum, C. Shaft Governors. (Science Series No. 122.)  |                 |
| 16mo,                                                                  | 0 50            |
| Trowbridge, W. P. Turbine Wheels. (Science Series No. 44.). 16mo,      | 0 50            |
| Tucker, J. H. A Manual of Sugar Analysis                               | 3 50            |
| Tunner, P. A. Treatise on Roll-turning. Trans. by J. B. Pearse.        | 0.0-            |
| 8vo, text and folio atlas,                                             | 10 00           |
| Turnbull, Jr., J., and Robinson, S. W. A Treatise on the Compound      |                 |
| Steam-engine. (Science Series No. 8.)                                  |                 |
| Turrill, S. M. Elementary Course in Perspective                        | *1 25           |
| Autin, of Mr. Diementary course in respective ( )                      | 1 23            |
| Underhill, C. R. Solenoids, Electromagnets and Electromagnetic Wind-   |                 |
| ings                                                                   | *2 00           |
| Urquhart, J. W. Electric Light Fitting                                 | 2 00            |
| Electro-plating                                                        | 2 00            |
| Electrotyping                                                          | 2 00            |
| - Electric Ship Lighting                                               |                 |
| Usborne, P. O. G. Design of Simple Steel Bridges                       | 3 00<br>*4 00   |
| Usborne, P. O. G. Design of Simple Steel Bruges                        | 4 00            |
| Vacher, F. Food Inspector's Handbook                                   |                 |
| Van Nostrand's Chemical Annual. Second issue 1000                      | *2 50           |
|                                                                        | *2 50<br>Press  |
| Van Wagenen, T. F. Manual of Hydraulic Mining                          | Press.)         |
| Vega, Baron Von. Logarithmic Tables                                    | 1 00            |
| half morroco,                                                          | 2 00            |
| han morroco,                                                           | 2 50            |
| Villon, A. M. Practical Treatise on the Leather Industry. Trans. by    | *** ***         |
| F. T. Addyman                                                          | *10 00<br>*2 00 |
| Volk, C. Haulage and Winding Appliances                                | 10.00           |
| Von Georgievics, G. Chemical Technology of Textile Fibres. Trans.      | *4 00           |
|                                                                        |                 |
| by C. Salter                                                           | 4 50            |
| - Chemistry of Dyestuffs. Trans. by C. Salter                          | *4 50           |
| Vose, G. L. Graphic Method for Solving Certain Questions in Arithmetic | 1.00            |
| and Algebra (Science Series No. 16.)                                   | 0 50            |
| Wabner, R. Ventilation in Mines. Trans. by C. Salter                   | 4 50            |
| Wade, E. J. Secondary Batteries                                        | *4 00           |
| Wadmore, T. M. Elementary Chemical Theory                              | 1 50            |
| Wadsworth, C. Primary Battery Ignition                                 | 0 50            |
| Wagner, E. Preserving Fruits, Vegetables, and Meat 12mo,               | *2 50           |
| Waldram, P. J. Principles of Structural Mechanics                      | *3 00           |
| Walker, F. Aerial Navigation                                           | 2 00            |
| Dynamo Building. (Science Series No. 98.)                              | 0 50            |

| Walker, F. Electric Lighting for Marine Engineers                        | 2 00           |
|--------------------------------------------------------------------------|----------------|
| Walker, S. F. Steam Boilers, Engines and Turbines                        | 3 00           |
| Refrigeration, Heating and Ventilation on Shipboard 12mo,                | *2 00          |
| Electricity in Mining                                                    | *3 50          |
| Wallis-Tayler, A. J. Bearings and Lubrication                            | °I 50          |
| Aerial or Wire Ropeways                                                  | *3 00          |
| Motor Cars                                                               | I 80           |
| Motor Vehicles for Business Purposes                                     | 3 50           |
| Wallis-Tayler, A. J. Pocket Book of Refrigeration and Ice Making. 12mo,  | 1 50           |
| Refrigeration, Cold Storage and Ice-Making                               | *4 50          |
| Sugar Machinery 12m0,                                                    | *2 00          |
| Wanklyn, J. A. Water Analysis12mo,                                       | 2 00           |
| Wansbrough, W. D. The A B C of the Differential Calculus 12mo,           | *1 50          |
| Slide Valves                                                             | *2 00          |
| Ward, J. H. Steam for the Million                                        | I 00           |
| Waring, Jr., G. E. Sanitary Conditions. (Science Series No. 31.). 16mo,  | 0 50           |
| Sewerage and Land Drainage                                               | *6 00          |
| Waring, Jr., G. E. Modern Methods of Sewage Disposal12mo,                | 2 00           |
| How to Drain a House 12mo,                                               | 1 25           |
| Warren, F. D. Handbook on Reinforced Concrete                            | *2 50          |
| Watkins, A. Photography. (Westminster Series.)                           | *2 00          |
| Watson, E. P. Small Engines and Boilers12mo,                             | I 25           |
| Watt, A. Electro-plating and Electro-refining of Metals                  | *4 50          |
| Electro-metallurgy 12m0,                                                 | I 00           |
| - The Art of Soap-making                                                 | 3 00           |
| Leather Manufacture                                                      | *4 00          |
| Paper-Making                                                             | 3 00           |
| Weale, J. Dictionary of Terms Used in Architecture12mo,                  | 2 50           |
| Weale's Scientific and Technical Series. (Complete list sent on applica- |                |
| tion.)                                                                   |                |
| Weather and Weather Instruments12mo,                                     | 1 00           |
| paper,                                                                   | 0 50           |
| Webb, H. L. Guide to the Testing of Insulated Wires and Cables. 12mo,    | I 00           |
| Webber, W. H. Y. Town Gas. (Westminster Series.)                         | *2 00          |
| Weisbach, J. A Manual of Theoretical Mechanics                           | *6 00          |
| sheep,                                                                   | *7 50          |
| Weisbach, J., and Herrmann, G. Mechanics of Air Machinery 8vo,           | *3 75          |
| Welch, W. Correct Lettering                                              | ****           |
| Weston, E. B. Loss of Head Due to Friction of Water in Pipes 12mo,       | *1 50          |
| Weymouth, F. M. Drum Armatures and Commutators                           | *3 00          |
| Wheatley, O. Ornamental Cement Work(In Press.)                           |                |
| Wheeler, J. B. Art of War 12mo,                                          | 1 75           |
| Field Fortifications                                                     | 1 75           |
| Whipple, S. An Elementary and Practical Treatise on Bridge Building.     | -              |
| Svo,                                                                     | 3 00           |
| White, A. T. Toothed Gearing                                             |                |
| Whithard, P. Illuminating and Missal Painting                            | 1 50           |
|                                                                          | 0 50           |
| Wilda, H. Steam Turbines. Trans. by C. Salter                            | I 25           |
| Williams, A. D., Jr., and Hutchinson, R. W. The Steam Turbine(In.        | *6 00<br>Press |
| winams, A. D., Jr., and Hutchinson, K. W. The Steach Turbine (In         | (1888.)        |

-

.

| Williamson, J., and Blackadder, H. Surveying8vo, (In Press.)           |     |             |
|------------------------------------------------------------------------|-----|-------------|
| Williamson, R. S. On the Use of the Barometer4to,                      | 15  | 00          |
| Practical Tables in Meteorology and Hypsometery4to,                    | -   | 50          |
| Willson, F. N. Theoretical and Practical Graphics4to,                  | *4  | -           |
| Wilson, F. I., and Heilbron, I. M. Chemical Theory and Calculations.   | •   |             |
|                                                                        | *r  | 00          |
| Wimperis, H. E. Internal Combustion Engine                             |     | 00          |
| Primer of Internal Combustion Engine                                   | •   | 00          |
| Winchell, N. H., and A. N. Elements of Optical Mineralogy8vo,          | *3  |             |
| Winkler, C., and Lunge, G. Handbook of Technical Gas-Analysis8vo,      | -   | 00          |
| Winslow, A. Stadia Surveying. (Science Series No. 77.)                 | •   | 50          |
| Wisser, Lieut. J. P. Explosive Materials. (Science Series No. 70.).    | v   | 30          |
| iomo.                                                                  | •   | 50          |
| Wisser, Lieut. J. P. Modern Gun Cotton. (Science Series No. 80.) 16mo, |     | 50          |
| Wood, De V. Luminiferous Aether. (Science Series No. 85.)16mo,         |     | 50          |
| Worden, E. C. The Nitrocellulose Industry. Two Volumes                 |     | -           |
| · · · · ·                                                              | +10 | 00          |
| Cellulose Acetate                                                      | *-  | -           |
| Wright, A. C. Analysis of Oils and Allied Substances                   | *3  |             |
| Simple Method for Testing Painters' Materials                          | *2  |             |
| Wright, F. W. Design of a Condensing Plant                             | *1  | •           |
| Wright, H. E. Handy Book for Brewers                                   | *5  | 00          |
| Wright, J. Testing, Fault Finding, etc., for Wiremen. (Installation    |     |             |
| Manua's Series.)                                                       |     | 50          |
| Wright, T. W. Elements of Mechanics                                    | *2  | •           |
| Wright, T. W., and Hayford, J. F. Adjustment of Observations8vo,       | *3  | 00          |
|                                                                        |     |             |
| Young, J. E. Electrical Testing for Telegraph Engineers                | *4  | 00          |
|                                                                        |     |             |
| Zahner, R. Transmission of Power. (Science Series No. 40.)16mo,        |     |             |
| Zeidler, J., and Lustgarten, J. Electric Arc Lamps                     | *2  | 00          |
| Zeuner, A. Technical Thermodynamics. Trans. by J. F. Klein. Two        |     |             |
| Volumes                                                                | *8  |             |
| Zimmer, G. F. Mechanical Handling of Material4to,                      | *10 | 00          |
| Zipser, J. Textile Raw Materials. Trans. by C. Salter8vo,              | *5  | 00          |
| Zur Nedden, F. Engineering Workshop Machines and Processes. Trans.     |     |             |
| by J. A. Davenport                                                     | *2  | <b>oo</b> ' |
|                                                                        |     |             |

# D. VAN NOSTRAND COMPANY

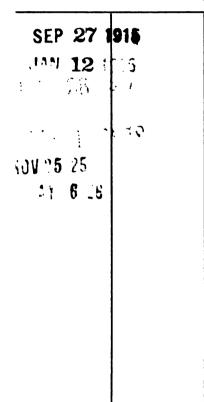
are prepared to supply, either from their complete stock or at short notice,

# Any Technical or Scientific Book

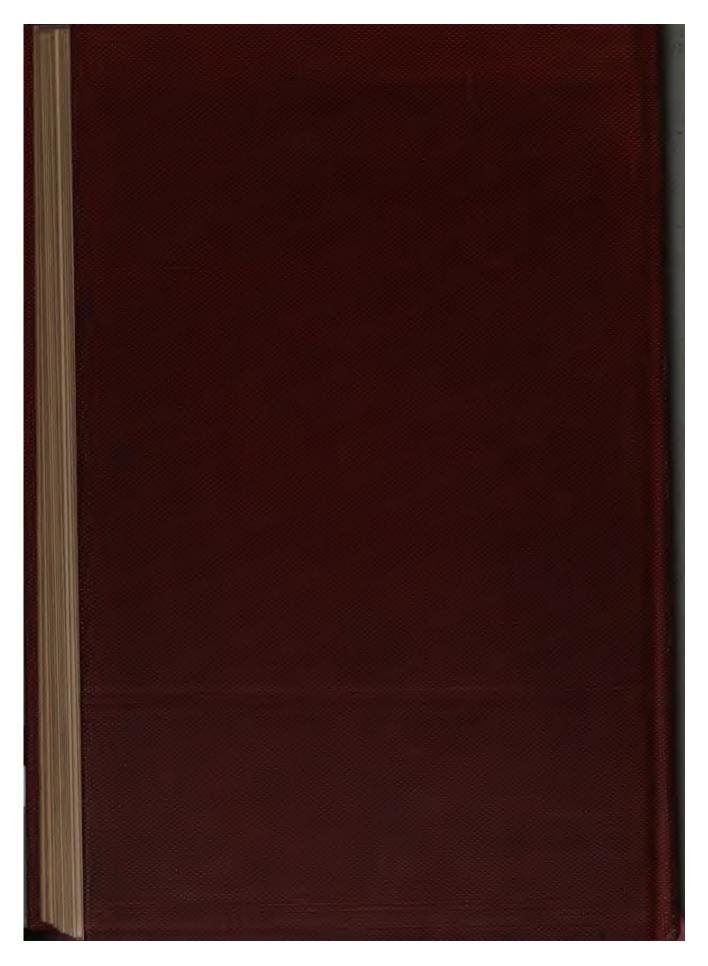
In addition to publishing a very large and varied number of SCIENTIFIC AND ENGINEERING BOOKS, D. Van Nostrand Company have on hand the largest assortment in the United States of such books issued by American and foreign publishers.

All inquiries are cheerfully and carefully answered and complete catalogs sent free on request.

25 PARK PLACE . . . . New York


. . •

.


#### LANE MEDICAL LIBRARY

To avoid fine, this book should be returned on or before the date last stamped below.

ł



2 18 133 a 14 N Seidell, A. Solubili-ties of inorganic and organic substances. C66 845 1911 NAME 31320 DATE DUE n. G. Forter 16 Junite 1916 r. Churford. net May #7 1917. gens Clater Au reh

